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Abstract

The availability of large transaction level datasets, such as retail scanner data, provides a

wealth of information on prices and quantities that national statistical institutes can use to

produce more accurate, timely, measures of inflation. However, there is no universally agreed

upon method for calculating price indexes with such high frequency data, reflecting a lack of

systematic evidence on the performance of different approaches. We use a dataset that covers

178 product categories comprising all fast-moving consumer goods over 8 years to provide

a systematic comparison of the leading bilateral and multilateral index number methods for

computing month-to-month inflation.
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1 Introduction

The ability to detect changes in the inflation rate in an accurate and timely way

is essential for effective policymaking. For instance, central banks rely on inflation

measures when setting interest rates, while their ability to maintain price stabil-

ity depends on inflation expectations and inflation-indexed labor contracts, both

of which are likely to be influenced by the most recent inflation statistics (e.g.,

Coibion et al. (2018)). In addition, benefit and social insurance programs are typi-

cally indexed to inflation measures, meaning their ability to provide protection for

individuals against adverse inflation shocks depends on whether they quickly and

accurately track sudden changes in consumer purchasing power.

Traditionally, National Statistical Institutes (NSIs) collect price data for their

consumer price indexes (CPIs) using in-person collectors, which yield a relatively

small sample of price quotes and no product level expenditure information. This

can result in month-to-month changes in the index that are noisy. In addition, index

methods traditionally used to construct CPIs, that weight product aggregates using

historical expenditure weights, are ill-suited to the task of inflation measurement

using high-frequency data as they can result in an index that becomes rapidly

unrepresentative of spending patterns over time, leading to substantial substitution

bias.1

The increasing availability of large, comprehensive transaction-level scanner

datasets, which contain close-to real-time expenditure and price information for

thousands of products across millions of transactions, has created new opportunities

for accurately measuring month-to-month price changes for important segments of

the economy.2 These datasets are being increasingly used to produce price indexes

by NSIs.3 However, challenges facing any index using this type of data include the

typically large degree of product entry and exit, and volatile movements in prices

and quantities. These can lead to biases in the index (Ivancic et al. (2011), de Haan

and van der Grient (2011)). Moreover, at present, there is no universally agreed

upon method for calculating price indexes with high-frequency transaction data.

1Substitution bias occurs when relative price changes cause consumers to change their con-
sumption choices, yet expenditure weights representing, e.g., a previous period’s expenditure pat-
terns are used to weight the current period’s prices.

2Scanner data sets typically cover fast-moving consumer goods, which make up approximately
40% of household expenditure on goods and 15% of expenditure on goods and services (see Jaravel
(2019)).

3For instance, retail chains have agreed to share their high frequency product level volume
and sales data with NSIs in several countries, including Australia, Canada, Japan, Netherlands,
Norway, Switzerland and the UK (Diewert (2022)), with several of these agencies working on, or
already, incorporating high-frequency transaction data into their CPI.
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In this paper we provide a systematic empirical comparison of alternative in-

dex number methods for computing month-to-month inflation with high frequency

transactions data. We use a scanner dataset from the Kantar FMCG At-Home

Purchase Panel that covers fast-moving consumer goods, including food and drink

(both alcoholic and non-alcoholic) products and household supplies, such as toi-

letries, non-prescription drugs, cleaning products, and pet foods. The dataset con-

tains information on expenditures and transaction prices for over 290,000 unique

products and over 300 million transactions over eight years (2012-19). We compute

price indexes both for fast-moving consumer goods as a whole, as well as for each

of the 178 product categories that together comprise this segment of the economy.

We compare fixed base, chained bilateral and multilateral methods, in order to

determine best practice.

We start by showing that the use of fixed weights can lead to a price index quickly

becoming unrepresentative: only 32% of expenditure in the final month of our data

is on products that were purchased in the first month. Chained bilateral indexes

allow for the basket of products to be updated over time, but can introduce chain

drift bias. This bias can arise in chained indexes when changes in product weights

between two periods are correlated with prices in other periods (see Reinsforf (1998)

and Diewert (2022)). One reason this can happen is inventory stockpiling during

sales, which can lead to product quantity and budget shares being lower immediately

following the sale than prior to it. This bias results in the index failing a multiperiod

identity test – if all prices and weights return to their initial period values the

chained price index will not equal its initial value.

We show that in practice chained bilateral indexes do exhibit substantial chain

drift. For instance, a chained Törnqvist index, the type of index used by the

US Bureau of Labor statistics in calculating the C-CPI-U measure of inflation,

reports cumulative inflation of -16% for all fast-moving consumer goods over 2012-

19, and cumulative inflation above 20% for 9 product categories, and below -50%

for 10 product categories. Price changes of this magnitude for this sector are not

realistic over this time period. For indexes computed at a higher level of time

aggregation, chain drift bias is reduced but can remain significant; for instance,

a quarter-to-quarter chained Törnqvist index for all fast-moving consumer goods

records cumulative inflation of -7%, which is closer to, but remains below, the

chain-drift-free multilateral index methods that we consider.

One approach to tackling this bias is to chain across periods that are not nec-

essarily adjacent but are the most similar in terms of price structures or available

products. This can in principle reduce chain drift bias, but the empirical perfor-
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mance of such approaches has not be extensively explored, with multiple options

available for deciding the order of chaining. We show that the bias associated with

monthly chaining is mitigated only to a very limited extent when using this ap-

proach. While in principle this approach should reduce chain drift bias, we find

that in practice the immediately preceding months are often selected as the most

similar, and as a result this approach yields similar results to chaining period-on-

period.

A second approach to tackling chain drift bias is to use multilateral index meth-

ods, which compare the current month’s price level to all previous months over

which the index is computed and which have no chain drift bias. We compare three

multilateral indexes that take the Törnqvist, Fisher and Walsh indexes as their ba-

sic building blocks. These bilateral indexes are all “superlative”; a superlative index

formula is exactly equal to a Könus (1924) true cost of living index if households

have preferences that can be represented by certain functional forms, where these

functional forms can approximate arbitrary preferences to the accuracy of a second-

order approximation (Diewert (1976)). The corresponding multilateral indexes are

called Caves-Christensen-Diewert-Inklaar (CCDI), GEKS-Fisher and GEK-Walsh

indexes (where GEKS stands for Gini-Eltetö-Köves-Szulc).

Using our dataset, the CCDI index reports cumulative inflation for all fast mov-

ing consumer goods of 2.5%. Both for the segment as a whole and individual product

categories, the GEKS indexes generate similar results to the CCDI index, though

we find the former are more sensitive to large product level price changes likely to

reflect measurement error. We also consider the Geary-Khamis (GK) index. Un-

like the other multilateral indexes we consider, the GK index is not built from a

superlative bilateral index, but instead is microfounded by a consumer model with

either linear or Leontief preferences, making the index more susceptible to substi-

tution bias. We find that this is borne out in practice; across product categories

the 25th and 75th percentiles of the distribution of differences in average monthly

inflation with the CCDI index are -0.002 percentage points (ppt) and 0.002 for the

GEKS-Fisher, and -0.004 ppt and 0.004 ppt for the GEKS-Walsh indexes, but -0.01

ppt and 0.02 ppt for the GK index.4

A practical drawback of multilateral indexes, in their pure form, is they entail

revisions to historic numbers as each new month of data becomes available, mak-

4Another approach to addressing chain drift is to compute a sequence of year over year monthly
indexes. This approach was used by Handbury et al. (2013), and has the benefit of avoiding
seasonality problems. Our focus is on methods for calculating month-to-month CPIs, consistent
with NSI practice and the needs of central banks and other users.
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ing them inappropriate for use in CPIs.5 Splicing methods, which link multilateral

indexes calculated in different ‘windows’ of time, eliminate the need to make CPI

revisions, but reintroduce some chain drift bias. While there have been various

suggestions by researchers and practitioners, and some NSIs have implemented dif-

ferent options, the performance of different splicing methods is still debated and is

ultimately an empirical question.

We evaluate alternative splicing methods and window lengths by comparing

spliced series to their corresponding chain-drift-free multilateral index series com-

puted over all 96 months of our data; the difference provides a quantification of the

chain drift bias the splicing procedure induces. We show that spliced multilateral

indexes tend to exhibit much smaller chain drift bias than their chained bilateral

counterparts. Nonetheless, chain drift bias in spliced series can be significant and

therefore the choice of index number formula and splicing procedure matter in prac-

tice. We find the differences in chain drift biases across splicing methods for the

CCDI and GEKS indexes are not large, but the degree of chain drift bias exhibited

by the Geary-Khamis index is highly sensitive to the choice of splicing method.

Our results suggest the CCDI multilateral index as the preferred option, using

a 25 month window length. While the choice of splicing method appears relatively

unimportant for the degree of chain drift bias, we argue for the use of the mean

splice which averages over different splicing periods and so is less sensitive to the

risk of linking on a particularly anomalous month.

We conclude our analysis by exploring what the main drivers of chain drift bias

for spliced multilateral indexes are. We show that the most significant predictor of

chain drift bias in spliced series across product categories is the degree of product

entry and exit, or “churn”, in the category. Monthly and annual product churn

contribute to 88% of the total explained variance in chain drift in 25 month spliced

CCDI indexes, with the rest being due to the frequency of price and quantity

promotions and seasonality in prices. This analysis illustrates that categories with

rapid product turnover are where chain drift bias is likely to be most severe, and

thus where longer window lengths are likely to be of most benefit.

Our work adds to a literature that evaluates different index number methods for

measuring inflation with high frequency scanner data. This includes Feenstra and

Shapiro (2003) who use scanner data for canned tuna over two years to compare the

performance of fixed base and chained bilateral indexes, Ivancic et al. (2011) who

use scanner data on a set of 19 product categories over 15 months to quantify the

5For instance, the US Bureau of Labor Statics and the UK NSI, the Office for National
Statistics, have a policy of never revising published headline CPI numbers, unless a significant
error has occurred. This is standard practice internationally.

4



extent of chain drift among superlative bilateral indexes, through comparison with

a chain drift free GEKS-Fisher index and Diewert and Fox (2022) who simulate a

dataset based on consumers with constant elasticity of substitution (CES) prefer-

ences and compare price series computed with different bilateral and multilateral

index numbers to the true CES cost-of-living index.

A limitation of previous work is that empirical evidence has been limited to a

subset of available index methods and a small number of product categories over

relatively short time periods. We contribute to this literature by systematically

comparing the set of leading methods for measuring inflation using transaction

data of significantly broader scale and scope.

Our work also contributes to the broader literature that uses scanner data to

advance understanding of various aspects of inflation measurement, including work

quantifying the impact of product entry and exit on changes in the cost-of-living

(e.g., Broda and Weinstein (2010)), documenting a divergence in inflation experi-

enced by consumers and in posted prices (e.g., Coibion et al. (2015)), measuring

the degree of heterogeneity in inflation rates across consumers (e.g., Kaplan and

Schulhofer-Wohl (2017), Jaravel (2019)) and the impact on inflation of intertem-

poral substitution caused by consumer hording (e.g., Ueda et al. (2024)).6 We

contribute to the strand of this literature focused on the measurement of high fre-

quency price dynamics, and that includes work documenting the frequency of price

adjustment of individual products (e.g., Eichenbaum et al. (2011); see also the sur-

vey by Nakamura and Steinsson (2013)) and high frequency inflation during the

COVID-19 pandemic (Jaravel and O’Connell (2020)).

The remainder of this article is structured as follows. In Section 2 we outline

the different index number methods and in Section 3 we describe the dataset we use

to empirically assess their performance. In Section 4 we compare fixed-based and

chained bilateral indexes with multilateral indexes. In Section 5 we focus on spliced

multilateral indexes, quantifying how their degree of chain drift bias varies with the

linking method and window length used in their construction, and exploring the

drivers of this bias. We conclude and discusses potential avenues for future research

in a final section.

6In an interesting contribution, Ueda et al. (2024) propose a type of price index that eliminates
intertemporal substitution bias, illustrating their approach with scanner data over 30 years for
processed food and daily necessities, making up about 20% of households’ expenditure. They
compare their method with rolling window CCDI indexes using daily data, with windows of 7,
28 and 30 days. In contrast to this paper, they do not consider alternative multilateral indexes,
alternative methods for splicing windows, nor alternative drivers of chain drift bias.
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2 Inflation measurement with high-frequency data

Suppose, for a sequence of periods 1, . . . , T , we observe period specific prices, pt =

(pt1, . . . , p
t
N)

′, and quantities qt = (qt1, . . . , q
t
N)

′ for N goods, and we wish to compare

how the cost of purchasing the basket of goods changes over time. In this section

we examine alternative ways of doing this, with particular reference to the use of

high-frequency (scanner/transactions) data.

2.1 Bilateral index numbers

Suppose we are interested in comparison of the change in the cost of the basket of

goods between two sequential periods, t and t+1. One way of measuring this change

is with a Lowe price index, which takes the form P t,t+1
Lo = pt+1′q

pt′q
, and is commonly

used in CPI construction. If base period quantities are used (i.e., q = qt) the

index is known as a Laspeyres index (P t,t+1
L ) and if end period quantities are used

(q = qt+1) it is known as Paasche index (P t,t+1
P ). The indexes can be re-written

in terms of price relatives for each good between t and t+ 1, pt+1
n

ptn
, weighted by the

share of expenditure allocated to them, stn = ptnq
t
n

pt′qt :

P t,t+1
L =

∑
n

stn
pt+1
n

ptn

P t,t+1
P =

(∑
n

st+1
n

(
pt+1
n

ptn

)−1
)−1

.

A drawback of these indexes is that they suffer from substitution bias. This bias

arises as the indexes use weights corresponding to just one (either the base or end)

period, and therefore fail to reflect that when the price of goods increase/decrease

consumer typically substitute away/towards them. This leads to upward bias in the

case of the Laspeyres index and downwards bias in the case of the Paasche index.

A solution to the problem of substitution bias is offered by superlative indexes

(see Diewert (1976)). These use a combination of base and final period weights.

Three commonly used superlative indexes are the Fisher index (a geometric mean of

the Laspeyres and Paasche indexes), P t,t+1
F , the Törnqvist index (a geometric mean

of price changes weighted by average spending shares in the base and end periods),

P t,t+1
Tq , and the Walsh index (an arithmetic average of price changes weighted by
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the geometric mean of quantities in the base and end periods), P t,t+1
W :7

P t,t+1
F =(P t,t+1

L P t,t+1
P )1/2

P t,t+1
Tq =

∏
n

(
pt+1
n

ptn

)0.5(stn+st+1
n )

P t,t+1
W =

∑
n

√
qtnq

t+1
n pt+1

n∑
n

√
qtnq

t+1
n ptn

2.2 Chaining and chain drift

Now suppose we are interested in how the cost of the basket of goods changes

across several periods, and consider the comparison of the first and some subsequent

period s > 2. One way of making this comparison is by constructing the chain of

intervening period-to-period comparisons, P 1,2 × P 2,3 × · · · × P s−1,s, which results

in a chained index. An alternative is to make the direct, or fixed-base, comparison

P 1,s. Notice that in this case the comparison of prices in two sequential periods is

given by P 1,t+1/P 1,t. A major limitation of fixed-based indexes arises in contexts

in which there is product churn (entry and exit of products through time), as in

this case the comparison of price levels across two periods is between continuing

products (i.e., those available in both periods), and in the case of the fixed-base

index the set of overlapping products can fall rapidly over time.8 Hence, there is

an international consensus that it is preferable to use chained indexes as they more

closely follow market-place developments.9

A drawback of chained indexes is that (unlike fixed-base indexes) they can ex-

hibit chain drift. Suppose that the period T price and quantity vectors coincide

exactly with the price and quantity vectors in period 1 (i.e., by the end of the pe-

riod price and quantities return to their initial level). A chained index is said to

satisfy the multiperiod identity test if P 1,2 × P 2,3 × · · · × P T−1,1 = 1; i.e., if the

chained comparisons between the first and final period – identical in terms of prices

7Hill (2006) noted that although superlative indexes can theoretically approximate each other
to the second order, they can diverge empirically. However, he finds that indexes such as the
Fisher, Törnqvist and Walsh indexes fall into the category of superlative indexes that do tend to
numerically approximate each other closely.

8Consider, comparison of period t and t + 1. The chained comparison P t,t+1 will use data
on the set of products available in periods t and t + 1. The fixed-base comparison, P 1,t+1/P 1,t,
will use data on the set of products available in both periods 1 and t or 1 and t + 1. If there is
entry and exit, the set of products available in all periods 1 and t (or t+1) may comprise a much
smaller share of spending than those available in periods t and t+ 1, especially when t is several
periods after the initial period.

9For instance, the ILO (2004) CPI Manual (p. 407) states: “rapid sample attrition means that
fixed-base indexes rapidly become unrepresentative and hence it seems preferable to use chained
indexes which can more closely follow market-place developments.”
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and quantities – leads to the conclusion that the two periods have the same price

level. In general, bilateral chained indexes (including those constructed with the

five index numbers defined above) fail this test and are therefore said to suffer from

chain drift. The resulting bias when indexes are computed with transaction level

data, like scanner data, can be severe (e.g., Ivancic et al. (2011)).

Sources of chain drift. A cost-of-living index measures the resources a house-

hold requires to reach a fixed standard of living (Könus (1924)). The economic

approach to index numbers motivates price indexes as capturing (either exactly or

approximately) a cost-of-living index. If the price index has been correctly chosen

to match consumers’ true preferences, the fixed-base and chained comparison be-

tween two (non-consecutive) periods will coincide; the price index will exhibit no

chain drift. For all commonly used index numbers – that depend only on prices and

quantities (or spending shares) – this requires homothetic preferences. However, in

practice, the assumptions that underlie the exact correspondence between common

price indexes and a cost-of-living index almost never hold exactly.

For instance, household preferences are typically not homothetic: as their in-

come rises they raise the share of their spending allocated to some goods – lux-

uries – and reduce the share allocated to other goods – necessities. In this case

the underlying cost-of-living index depends on (unobserved) compensated budget

shares, rather than the observed ones used in standard price indices (Samuelson

and Swamy (1974), Theil (1976)). Household preferences may also be affected by

seasonal patterns and fashions that lead tastes and therefore purchases of particular

products to change drastically from month-to-month. In addition, typical practice

is to construct an aggregate price index (based on aggregate spending shares), yet

underlying households may have heterogeneous preferences, which means the aggre-

gate price index (even if preferences are homothetic) will not necessarily correspond

to a cost-of-living index. Another practical issue is that price indices rely upon data

on economic transactions rather than consumption, and the two do not necessarily

coincide. This can be a particular problem for high frequency indices as households

may stockpile goods that they consume in future periods.10 Finally, when there is

product entry and exit (known as churn) the cost-of-living depends on (unobserved)

reservation prices, which are omitted from standard price indices.

10Diewert (2022) shows, for the example of a Törnqvist index, that chain drift bias arises if
the change in spending shares between two periods are correlated with prices in any other period.
This will be the case, for instance, if, when a product goes on sale, consumers stock up so that
when price returns to the regular level spending shares do not, as consumers draw down their
stocks.
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Non-homotheticities, seasonal preferences, aggregation, inter-temporal effects

and product churn are all reasons why a price index may fail the multiperiod identity

test (i.e., exhibit chain drift). Chain drift means the index, when chained, will fail

to revert to a previous level when all prices return to the former level, and it

can mean the index drifts upward or downward over time a way disconnected from

underlying prices. In high frequency indexes this problem can so severe as to render

them unusable.

Dissimilarity chain linking. One approach to minimizing chain drift bias, which

uses bilateral index number comparisons, is to construct chains of bilateral indexes

across periods that are closest to having proportional increases or decreases in prices

from each other. This requires a measure of ‘dissimilarity’ of price levels between

periods.11 Diewert et al. (2022) recommends a ‘predicted share measure of relative

price dissimilarity’ for the calculation of price indexes in cases where there is a high

rate of product churn.12 This approach is motivated by the multiperiod identity

test: bilateral indexes will satisfy this property when price changes across periods

are strictly proportional.

This measure uses hypothetical expenditure shares using prices in period τ but

quantities from period t to ‘predict’ expenditure shares in period t . For any good

n, this predicted share is

s̃n,t,τ =
pτnq

t
n

pτ ′qt

The predicted share measure of relative price dissimilarity between periods t and τ

is then

∆PS

(
pt, pτ , qt, qτ

)
≡

N∑
n=1

[sn,t − s̃n,t,τ ]
2 +

N∑
n=1

[sn,τ − s̃n,τ,t]
2

This measure takes on values between 0 and 2. It takes the value 0 if prices in period

τ are proportional to prices in period t (i.e pτ = λpt), as in this case sn,t = s̃n,t,τ

and sn,τ = s̃n,τ,t for all n.

This approach seeks to limit the degree of chain drift bias by only linking across

those periods that are closest to having proportional increases or decreases in prices

from each other. However, as we find in Section 4, it can still be associated with

substantial biases.

11This approach is also used in the context of international comparisons, identifying country
pairs that are most similar to each other. See Hill (1999) and Hill (2001).

12Diewert (2002) sets out a number of alternative possible dissimilarity measures.
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2.3 Multilateral index numbers

Another solution to chain drift bias is offered by multilateral index numbers, which

were first suggested as a solution to chain drift bias by Ivancic et al. (2011).13 A

multilateral index computed over all periods 1, . . . , T will satisfy the multiperiod

identify test. The first three use the superlative bilateral indexes defined in Section

2.1 (i.e., the Fisher, Törnqvist and Walsh indexes) as their building blocks, and thus

like them are consistent with a flexible representation of consumer preferences and

hence limit substitution bias. They are called the GEKS-Fisher index, CCDI index

and the GEKS-Walsh index respectively.14 In each case, the price level in period

t is given by a geometric mean of the corresponding bilateral index that compares

period t with all other periods τ = 1, . . . , T . Hence, the measured price level in

period t under the indexes is given by:

Pt
GEKS−F =

∏
τ

[
P τ,t
F

]1/T
Pt
CCDI =

∏
τ

[
P τ,t
T q

]1/T
Pt
GEKS−W =

∏
τ

[
P τ,t
W

]1/T
.

The fourth multilateral index number we consider is the GK index,15 which is an

implicit price index, defined as total expenditure divided by a volume or quantity

index, with ‘quality adjustment factors’ determining how many units of good m are

equivalent to a unit of good n. Unlike the other multilateral indexes we consider,

the GK index is not based on an underlying superlative bilateral index. Rather,

it is based on a linear preference model in which consumers view goods as perfect

substitutes. Diewert and Fox (2022) show the index is also consistent with Leontief

– or perfect complement – preferences. That is, it is only consistent with extreme

assumptions on consumer behaviour. The index is implicitly defined by the solution

to a set of equations that jointly determine price levels, Pt
GK , for t = 1, . . . , T and

quality adjustment factors, bn for n = 1, . . . , N . It is helpful to denote the total

quantity of good n across all time periods by qn ≡
∑

t q
t
n. The N + T equations

13Multilateral indexes are typically used in contexts such as international comparisons,
such as the World Bank’s International Comparisons Program (https://www.worldbank.org/en/
programs/icp). They were first suggested in a time series context by Balk (1981).

14The GEKS indexes are named after Gini (1931), Eltetö and Köves (1964) and Szulc (1964)
and the Caves-Christensen-Diewert-Inklaar (CCDI) index was developed by Caves et al. (1982)
and applied to a price index by Inklaar and Diewert (2016).

15Developed in Geary (1958) and Khamis (1970, 1972).
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that determine the quality adjustment factors and price levels are:

bn =
∑
t

(
qtn
qn

)(
ptn
Pt
GK

)
for n = 1, . . . , N

Pt
GK =

pt′qt

b′qt
for t = 1, . . . , T.

Each adjustment factor bn is a share-weighted average of inflation-adjusted prices

for each commodity n over all t periods.16 The final index is expenditure divided

by the sum of quality adjusted quantities purchased in each period.

For each of the multilateral index numbers, it is common to rebase the price levels

relative to the first period of date: P 1,t
i = Pt

i/P1
i , for i = GEKS−F,CCDI,GEKS−

W,GK. The comparison of prices in period t and t+1 is given by P t,t+1
i = Pt+1

i /Pt
i =

P 1,t+1
i /P 1,t

i .

2.4 Spliced price series

Suppose we use a multilateral index to compute price levels over a given time period,

1, . . . , T . If data for period T + 1 becomes available, re-computing the index over

1, . . . , T + 1 will lead to a revision of price levels over the initial T periods. NSIs

regard such revisions to past headline CPI levels as undesirable. Linking methods

provide a way to avoid this problem. A number of alternative methods for splicing

multilateral indexes calculated over rolling windows have been proposed, as follows.

The idea behind the rolling window splice is to compute an initial multilateral

index over periods t = 1, . . . , T . When a new period of data becomes available, a

new sequence can be computed over periods t = 2, . . . , T + 1. The price level for

period T + 1 computed with this new sequence can then be spliced to the original

series using the price levels computed in the two series for some chosen comparison

period. As each new period of data arrives, a new sequence of length T is computed

and this is used to splice the new data point to the spliced sequence. In this example,

the window length is given by T .

More concretely, suppose we have a multilateral price series computed over t =

1, . . . , T , PO = (P1
O, . . . ,PT

O). For t ≤ T , the price level is ρt =
Pt
O

P1
O
. In the next

period, T + 1, we then compute a new multilateral sequence over the periods t =

2, . . . , T +1, PN = (P2
N , . . . ,PT+1

N ). The spliced price level for period T +1 is given

16The usual method for obtaining a solution to these two equations is to iterate between them.
However, Diewert and Fox (2022) derive an alternative method which is more efficient (p. 360,
footnote 24).
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by:

ρT+1(τ) = ρT (τ)×
PT+1
N /Pτ

N
PT
O/Pτ

O
,

where τ is the period used to link the series together. Different choices of τ corre-

spond to different forms of the rolling-window splice;

� τ = T is known as the movement splice (Ivancic et al. (2011))

� τ = 2 is known as the window splice (Krsinich (2016))

� τ = T
2
(or, when T is an odd number τ = T+1

2
) is known as the half splice

(de Haan (2015))

As each subsequent period of data, t = s+T (for s > 0), arrives, the most recent T

length multilateral sequence, PN ′ = (Pt−T+1
N ′ , . . . ,Pt

N ) is added to the spliced series

via the preceding period T length sequence PO′ = (Pt−T
O′ , . . . ,Pt−1

O ) and spliced price

level ρt−1(τ). Hence,

ρt+1(τ) = ρt(τ)×
Pt+1
N ′ /Pτ+s

N ′

Pt
O′/Pτ+s

O′
,

Without structure on the underlying price and quantity data, there is no obvious

reason for favoring any τ = 2, . . . , T . Rather than selecting one period, the mean

splice (Diewert and Fox (2022)) uses a geometric mean of all possibilities, leading

to normalized price level for calendar time t > T :17

ρt(τ̄) =
T∏

τ=2

(ρt(τ))
1

T−1

A final option considered is to select the splicing period using a dissimilarity

measure such as the predicted share measure of relative price dissimilarity discussed

above (i.e., setting τ = argminτ∈2...T ∆PS

(
pT + 1, pτ , qT + 1, qτ

)
). This identifies

the splicing period that is closest to being a proportional price change from the

final period of the new window.18 This type of approach was suggested, but not

pursued, by Diewert and Fox (2022). Hence, this paper presents the first evidence

of its empirical performance.

17The idea of using a mean splice was originally suggested, but not pursued, by Ivancic et al.
(2011), footnote 19, p. 33.

18An alternative would be to select the splicing period that is most similar to the final period
of the old window, i.e., period T . This is likely to yield very similar results when constructing
monthly indexes in practice however, as in most cases months T and T +1 will have similar price
structures.
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Alternative splicing methods include the fixed-base moving and expanding win-

dows and methods that splice on the published series (Chessa (2021)). We discuss

these approaches and their empirical performance in Appendix A.

All of these linking procedures avoid the need to revise past price levels. How-

ever, this comes at the cost of introducing chain drift into the price index. The

extent of the resulting bias depends on the window length and linking method cho-

sen, and the nature of the underlying price and quantity data. While a priori it

seems likely that a shorter window length will result in more bias, it is an empirical

question to what extent this is true. In addition, without empirical evidence, it is

unclear which linking method will perform best in practice. We provide this evi-

dence by comparing a multilateral index computed over all periods in our data with

the same index number computed with each of the linking procedures. The former

satisfies the multiperiod identity test and therefore does not suffer from chain drift

bias. The difference between the series provides an empirical quantification of the

extent to which linking introduces chain drift bias into the price index.

3 Scanner data

We use household scanner data from the Kantar FMCG At-Home Purchase Panel.

The data cover purchases of all fast-moving consumer goods (FMCG) – food, drink

(including alcohol), toiletries, non-prescription drugs, cleaning products, and pet

foods – brought into the home by a sample of households living in Great Britain

(i.e., the UK excluding Northern Ireland). Our data cover the period 2012–2019.

In each year, the dataset contains purchase records of around 30,000 households.

Participating households are typically present in the data for many months. Each

household records all barcodes that they purchase using a handheld scanner or mo-

bile phone app. For each transaction we observe quantity, expenditure, transaction

price and barcode characteristics (including product category).19

In total, our data include 296,829 unique barcodes and over 300 million transac-

tion, which are divided into product categories. In subsequent sections, we compute

price indexes for each of the 178 product categories that account for at least 0.1% of

total spending over 2012–2019.20 We compute monthly price indexes and treat bar-

19The combination of transaction-level prices and expenditures, and rich product and household
attributes, covered by scanner data have contributed to it now being widely used in economic and
social science researcher (see Dubois et al. (2022)). See Leicester and Oldfield (2009) for a detailed
description of the Kantar data, as well as comparisons with other UK data sources.

20We list the product categories in the Online Appendix. For each product category-year we
drop transactions for which expenditure, volume or their ratio is in the top or bottom percentile;
this does not affect our findings.

13



codes as the elementary products in the index. We compute elementary (monthly

barcode) prices by dividing the total monthly expenditure for the barcode by the

total monthly quantity.21

Our data are household scanner data, meaning they cover transactions made

by a sample of households. In contrast, retail scanner (or point-of-sale) data cover

all sales recorded in a sample of stores. Both data sources allow for close to real-

time measurement of prices and expenditures for a comprehensive set of products

in the fast-moving consumer good segment of the economy. Each type has its own

advantages – retail scanner data is likely to have less sampling variation if store

coverage is extensive, whereas household scanner data can include online purchases

and allow for calculation of inflation for different types of households. In practice,

there may be returns from combining both sources for inflation measurement.22

Traditionally, NSIs obtain data on prices from quotes gathered in-person by

collectors and combine this with survey data on expenditures (for instance, from

the Consumer Expenditure Survey in the US and the Living Cost and Food Survey

in the UK). These data have several limitations compared with scanner data, which

are reflected in the standard approach to CPI construction. First, price quotes

are collected for a limited set of products. Second, expenditure information is not

available for disaggregate products, but at a level similar to the product categories

in our scanner data.23 Third, the expenditure information is only available with

a significant lag (typically at least one year). Therefore, CPIs traditionally entail

taking unweighted averages over a relatively small number of price quotes to obtain

product category level prices, which in turn are weighted based on historic spending

patterns. Using large scanner datasets has many advantages in comparison, if the

problem of chain drift can be mitigated.24

21That is, we use monthly unit values as the prices for index construction. Diewert et al. (2016)
show that unit values should be calculated at the same frequency as the desired price index series
to avoid introducing upward bias.

22The use of either type of scanner data can lead to problems arising from product relaunches.
For example, if a product is withdrawn from the market and reintroduced with a changed charac-
teristic, such as a different package size, it is typically assigned a new barcode. Hence, the price
change between the old and the new version of the product is not captured when using product
identifiers such as barcodes. This problem has recently been studied in the context of multilateral
indexes by e.g. Van Loon et al. (2023) and Daalmans (2022). A difficulty is the need to identify
such relaunches when information on the characteristics of products is limited, as in the cause of
our data set. However, the problem with relaunches is thought to be more problematic for fashion
items and consumer electronics, rather than the types of products considered here.

23Implicit expenditure weights for disaggregated items do arise in index construction through
sample selection, which is however typically updated infrequently.

24In explaining their adoption of multilateral methods in constructing the CPI, the Australian
Bureau of Statistics (2017) notes the following: “The advent of readily available transaction level
data then allows for an overhaul of traditional methodology, as the data constraint has been
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4 Comparing bilateral and multilateral indexes

One approach to calculating month-to-month indexes with high-frequency data is

to use a fixed-base Laspeyres index. In common with traditional CPIs this index

uses historic spending weights.25 However, when computed with scanner data, the

index has the advantage over traditional methods of being computed over thousands

of products and including product level weights. Figure 4.1 plots the evolution of

a fixed-base month-to-month Laspeyres index for all fast-moving consumer goods,

computed over the period 2012-19. The figure also plots the fixed-base superlative

Törnqvist and Fisher indexes – we omit the Walsh index, as the differences with

the Törnqvist are very small.

The superlative indexes register substantially different price changes to the

Laspeyres, which is indicative of substitution bias in the latter index. At the end of

the first year of data there is a difference of around five percentage points between

the Laspeyres and the superlative indexes, and this difference persists until the end

of the sample period. In the first half of data, the Fisher index exhibits much more

volatility than the Törnqvist and Walsh indexes, which is a theme of our results

(including the multilateral extensions of these indexes) and reflects the sensitivity

of the Fisher index to outlier price observations.

enormously relaxed. However, this opportunity for improved price index construction has been
somewhat offset by the complexities involved in the use of high-frequency data.”

25Most NSIs use a Laspeyres-type index in calculating the CPI, specifically the Lowe (1823)
index. For CPI construction, the quantity weights in this index are typically from a period before
either of the periods of the price vectors being compared, usually the period of the last expenditure
survey, or an imputed update of these weights.
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Figure 4.1: Fixed-base Laspeyres and superlative indexes
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Note: Figure shows index number values for the Laspeyers, Törnqvist and Fished fixed base indexes.
We omit the Walsh index as it is very similar to the Törnqvist index. Indexes are computed over
all fast-moving consumer goods.

All fixed-base indexes of this kind, whether superlative or not, run the risk of

becoming increasingly unrepresentative of consumer spending as the availability of

products changes across seasons and over time. Figure 4.2 is a histogram showing

the distribution of the share of spending across the 178 product categories in Decem-

ber 2019 allocated to products for which we observe positive spending in January

2012. The figure suggests there is significant product churn. For the median prod-

uct category, 32% of spending in December 2019 went on items that had positive

spending associated with them in January 2012.26 Product churn on this measure

is highest for moist wipes, machine wash products, cat food and fresh bacon joints.

26This fraction happens to be the same as the weighted mean share, i.e., the share of spending
on items in all product categories that were also bought in January 2012.
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Figure 4.2: Share of final period spending on products available in first period
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Note: Figure shows the distribution of the share of spending in the final period (December 2019)
that goes on products that were purchased in the first period (January 2012) across product cate-
gories.

Chained indexes help deal with product churn by only requiring products to be

available in the two periods being compared in each bilateral link of the chain, and

they also ensure that index weights reflect up-to-date spending patterns. However,

as discussed in Section 2.2, chaining of bilateral indexes when using high frequency

data can lead to significant chain drift. Figure 4.3(a) shows index values for three

indexes, a fixed-base Törnqvist, a Törnqvist that is chained from month-to-month

(‘period on period’) and the CCDI index, the multilateral analogue of the Törn-

qvist index, defined in Section 2.3. We calculate the indexes using all fast-moving

consumer goods. We include equivalent graphs for the Fisher and Walsh indexes,

which exhibit similar patterns, in the Online Appendix.

Figure 4.3(a) shows that chain drift is a significant problem for the Törnqvist

index. The chained Törnqvist index is 19 percentage points lower at the end of the

period than the fixed-base index and 18 percentage points lower than the multilat-

eral index. As these figures imply, the CCDI index is much closer in value to the

direct comparison fixed-base index than the chained Törnqvist index.

Panel (b) of Figure 4.3 replicates panel (a), but for a quarterly index. The

quarterly CCDI and fixed based Törnqvist index resemble their monthly counter-

parts (though smoothing over month-to-month changes in the index). The extent to

which the chained Törnqvist index diverges form the CCDI and fixed base indexes

17



is reduced at the quarterly frequency, however, it remains the case that the chained

index records much lower cumulative inflation.

Figure 4.3: Chain drift bias: CCDI vs bilateral Törnqvists

(a) Monthly index
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(b) Quarterly index
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Note: Figures show index number values for the CCDI multilateral index, the Törnqvist fixed base
index and a monthly chained Törnqvist index. The indexes are calculated across all fast-moving
consumer goods.

The monthly chained Törnqvist index for all items falls by 16 ppt over the

whole period, an implausibly large price change. Figure B3 in the Online Appendix

shows the distribution of cumulative price changes across all 178 product categories.

Individual product categories exhibit even more extreme price changes using this

measure. 10 product categories record price changes of less than -50% and above

20% for 9 products categories.

The CCDI index has an advantage over the fixed-based Törnqvist index in that

it does not require all the products included in the index to be available in the

base (first) period, and hence it avoids becoming as increasingly unrepresentative

over time. Nonetheless, Figure 4.3 shows that over 2012–2019 the CCDI and fixed-

base Törnqvist do provide a similar picture of fast-moving consumer good inflation.

However, in general, this need not be the case.

Panel (a) in Figure 4.4 shows the difference in the distribution of final period

values between the CCDI index and the chained and fixed-base Törnqvist indexes.

We also show values for chained Törnqvist indexes, where the chaining uses the

predicted share dissimilarity method. For this and subsequent plots, the ‘boxes’

show the lower quartile, median and upper quartiles of the distribution; the lower

‘whisker’ line shows lower quartile less 1.5 times the interquartile range; and the

upper whisker shows the upper quartile plus 1.5 times the interquartile range. The

remaining points are outlier values.
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Comparing the CCDI with the chained Törnqvist index suggests that, for most

products, chain drift is negative. 22 of 178 product categories have positive chain

drift bias when the Törnqvist is chained with the standard period-on-period ap-

proach.27 Differences between the CCDI and Törnqvist index chained using the

dissimilarity index are smaller but still substantial. The median average monthly

difference between the dissimilarity chained Törnqvist index is -0.09 ppt, compared

to -0.13 ppt for Törnqvist index that is chained period-on-period.

Figure 4.4: Average monthly difference between CCDI and bilateral Törnqvist in-
dexes by product
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(b) Differences with chained index (period on
period)
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Note: In panel (a), each box plot summarizes the distribution (across product categories) of differ-
ences in average monthly inflation rates between the CCDI index calculated over the whole period
and i) a bilateral Törnqvist chained period-on-period ii) a bilateral Törnqvist chained with us-
ing the predicted share dissimilarity approach and iii) a fixed-base Törnqvist. In panel (b), each
box plot summarizes the distribution of differences in average monthly inflation rates between the
period-on-period chained index bilateral Törnqvist, and i) a CCDI index calculated over the whole
period ii) a bilateral Törnqvist chained with using the predicted share dissimilarity approach and
iii) a fixed-base Törnqvist. We exclude outliers (the three products with the largest positive and
three largest negative amounts of chain drift bias) from each plot.

The differences between the CCDI and the fixed-base Törnqvist index are smaller

than for the chained indexes, but in some cases, they are still significant. In most

cases, these are product categories that have a high degree of product churn, re-

flecting bias arising from the fixed-base index becoming unrepresentative over time.

Differences between the CCDI index and the index chained using the dissimilar-

ity approach could in principle reflect biases with either index. Panel (b) of Figure

4.4 shows the differences between the period-on-period chained Törnqvist index and

27Prominent among these are fresh fruits. These account for three of the four product categories
with the most positive chain drift bias, which are citrus fruits, apples, chilled breads, pears.
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the other approaches. This shows that the dissimilarity approach to chaining tends

to yield results that are mostly very similar to chaining period-on-period, which as

we have seen tends to imply unrealistic price changes.

Figure 4.5: Monthly CCDI and bilateral Törnqvist indexes for Chocolate and con-
fectionery
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Note: Figure shows index number values for the CCDI multilateral index calculated over the whole
period, the Törnqvist fixed base index, a monthly chained Törnqvist index chained period-on-period,
and a Törnqvist index chained using the dissimilarity approach for the product Chocolate and
Confectionary.

Closer inspection of how this approach works in practice suggests that, in many

cases, the most similar period according to the dissimilarity measure is the immedi-

ately preceding period. Consequently, it is often similar to the chained period-on-

period index. To illustrate this aspect of the dissimilarity index, we show the time

paths of the different indexes for a particular product category – Chocolate and

Confectionery – in Figure 4.5. This category suffers from particularly high chain

drift bias (with the second highest difference between the CCDI index, or the fixed

base index, and the chained Törnqvist) and is also one for which the dissimilarity

index offers one of the greatest reductions in chain drift bias relative to the period-

on-period approach. Despite this, the reduction in chain drift bias when using the

dissimilarity chaining approach is limited. The index chained using the dissimi-

larity method largely tracks the value of the Törnqvist chained period-on-period

from 2012-2016, as the two indexes both chain on the same period. This continues

until 2016, when a different chaining period is selected and the two indexes start

to diverge. Figure 4.5 also highlights that, while the fixed-base index yields a simi-
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lar final value to the CCDI, its path over time is considerably more volatile. This

reflects the high seasonal churn in this product category.

4.1 Different multilateral indexes

In this section we quantify the difference in measured inflation across the four mul-

tilateral price indexes discussed in Section 2.3 – the CCDI, GEKS-Fisher, GEKS-

Walsh and GK indexes. In each case we compute the price index, for each product

category, calculated over the whole period, i.e. using all 96 year-months of the data.

As this does not entail any linking, the resulting indexes do not suffer from chain

drift. To summarize the difference in inflation rates, for each of the GEKS-Fisher,

GEKS-Walsh, and GK indexes, we compute the difference in average monthly price

changes up to the final period of data (December 2019) with that obtained with

the CCDI index.28 This yields three distributions of inflation differences (across

product categories), which we summarize as box plots in Figure 4.6.

The differences between the GEKS-Fisher and GEKS-Walsh indexes and the

CCDI index in the final period of data are small for almost all product categories,

which is perhaps unsurprising as the bilateral versions of these indexes approximate

each other to the second order. However, for a small number of product categories,

the difference is large. The GEKS-Fisher index records an average monthly inflation

rate 0.5 ppt smaller for chilled flavoured milk than the CCDI index, and an average

inflation rate 0.11 ppt smaller for ambient cakes and pastries. Cumulating these

differences across all 96 months imply differences in the final period indexes of 31

ppt and 13 ppt, respectively. The GEKS-Walsh index also gives a lower price change

than the CCDI for these items, yielding a 0.22 ppt smaller average monthly inflation

rate for chilled flavoured milk and 0.02 ppt smaller inflation rate for ambient cakes

and pastries. At the same time, the GEKS-Fisher index records an average monthly

inflation rate that is 0.11 ppt greater than the CCDI index for other vegetables,

while the GEKS-Walsh records an average monthly price change that is 0.02 ppt

greater than the CCDI index for this product category.

These occasional differences between the CCDI and other GEKS indexes appear

to reflect anomalously large price and quantity changes for particular items that

occur in a single month, which then have a persistent impact on the cumulative

index. Because the expenditure shares for these products change less than their

associated quantities and prices in these cases, the CCDI is less affected than the

28The average monthly inflation rate for a given index over the 96 months we consider is
calculated as the difference in x

1
95 − 1 where x is the final period value of the index.
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(quantity-based) GEKS Fisher and Walsh indexes. This suggests that the CCDI

can be less sensitive to certain measurement errors.29

The differences between the average monthly inflation rates calculated with the

GK and CCDI indexes are typically larger than they are for either the GEKS-Fisher

or GEKS-Walsh indexes; the 25th and 75th percentiles of differences are -0.01 ppt

and 0.02 ppt (compared with -0.002 and 0.002 ppt between GEKS-Fisher and CCDI

index, and -0.004 and 0.003 ppt between the GEKS-Walsh and CCDI index). The

GK index also records a much greater price increase for chilled flavoured milk than

the CCDI index (unlike the other indexes, which are both substantially smaller than

the CCDI). The GK index records an average monthly inflation rate that is 0.2 ppt

greater for this item than the CCDI index.

Figure 4.6: Average monthly inflation rates relative to CCDI index
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Note: Each box plot summarizes the distribution (across product categories) of differences in
average monthly inflation rates between the index named in the horizontal axis and the CCDI
index. Indexes are calculated using all 96 year-months of data.

Our results point towards the CCDI index being being preferred to the other

multilateral indexes for measuring inflation with high frequency data. The advan-

tage of the CCDI over the GK index is most substantial – while CCDI and the

29For example: in the case of chilled flavored milk, in a single month the CCDI index falls by
2.5% while the GEKS Walsh index falls by 7% and the GEKS Fisher by an implausible 43%. This
accounts for most of their final period differences. Closer inspection reveals this to be a case where
there was a sharp change in observed quantities for three products (perhaps due to a change in
the units of measurement being used). Expenditure levels remained relatively constant, implying
large price changes. As a share weighted index, the CCDI index was much less sensitive to these
changes that the quantity-weighted GEKS Fisher and GEKS Walsh indexes.
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GEKS indexes mostly agree, the GK index yields divergent results. This is perhaps

unsurprising: unlike the other indexes it is not based on an underlying superlative

bilateral index but rather is consistent with unrealistic assumptions on underlying

consumer preferences. The advantage of CCDI over the GEKS indexes is less clear-

cut, but our results suggest that the former is less sensitive to large outliers likely

to be driven by measurement error. In practice, NSIs are unable to use multilateral

indexes calculated over all periods for headline CPIs, as this would require histori-

cal revisions when new data periods arrive. Hence, next we consider rolling-window

versions of these indexes, which depend not only on the choice of index number

formula but also the linking method, i.e. the method used to splice together the

rolling windows.

5 Chain drift bias in spliced indexes

In this section, we quantify the chain drift bias that results from implementing the

different linking procedures for extending multilateral indexes that we discuss in

Section 2.4. We also show how chain drift bias changes with different window lengths

used in the rolling windows that are spliced together. We do this by comparing

average monthly inflation rates from spliced indexes, for a given multilateral index

number, with the non-spliced series computed using all 96 year-months of data. As

the latter satisfies the multiperiod identity test and is hence free of chain drift, this

provides a direct measure of chain drift bias in the spliced series. We undertake

this comparison for each product category for each of the CCDI, GEKS-Fisher,

GEKS-Walsh, and GK index numbers.

5.1 Splicing methods

We first hold the window length fixed at 25 months and compare different linking

methods: the window, half, movement and mean splices, and using the predicted

share measure of relative price dissimilarity to select the splicing period.30

In Figure 5.1 we show boxplots that summarize the distribution of differences

between spliced indexes, and the non-spliced index using all periods of data, across

product categories. Each of the four panels corresponds to a different multilateral

index number, and each boxplot within a panel corresponds to a different splicing

method. A few individual product categories exhibit a very high degree of chain drift

bias. To make the plots easier to read, we remove these extreme cases. Specifically,

30Additional results using the half-splice on the published series, fixed-base expanding window
and fixed-base moving window are reported alongside the mean splice in the Online Appendix.
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we remove the three product categories with the largest positive values of chain

drift, and the three product categories with the largest negative values, in each

plot.

Figure 5.1: Chain drift bias with different splicing methods (25 month window)
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(b) GEKS-Fisher
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(c) GEKS-Walsh
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(d) GK
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Note: Each box plot summarizes the distribution (across product categories) of differences in
average monthly inflation between the spliced index (over a 25 month window) using the linking
method named in the horizontal axis and the corresponding non-spliced index. We exclude the
products with the three largest positive and negative values for chain drift in each plot.

Panel (a) shows that the distribution of chain drift bias is relatively stable across

different splicing methods for the CCDI index. For each method, just under three

quarters of product categories exhibit negative chain drift bias, with the remainder

exhibiting positive bias. The median bias ranges from -0.02 ppt with the movement
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splice to -0.01 ppt with the mean and half splices, and the interquartile range of

biases ranges from 0.04 to 0.05 ppt. The median chain drift bias with the mean

splice implies a cumulative 1.3 ppt difference between the spliced and non-spliced

index by the final period.

Panels (b) and (c) show that results for the GEKS-Walsh and GEKS-Fisher

indexes are similar to those for the CCDI index. However, extreme cases of chain

drift bias appear more common when we calculate prices using the GEKS-Fisher

index.

Panel (d) shows that the GK index is more sensitive to the linking method

than the CCDI or GEKS indexes. In particular, the movement splice results in a

larger degree of chain drift bias for the GK index than for the other multilateral

index numbers. The median value of the average monthly chain drift bias for the

movement splice is -0.06 ppt, which is much greater than for other splicing methods.

The window splice also leads to larger dispersion in rates of chain drift bias under

the GK index than for other indexes. In addition, the most extreme outliers (not

shown in the plots) are much higher for the GK index than for the other indexes.

For instance, for the GK, seasonal biscuits have a chain drift bias of -0.99 ppt per

month with the window splice, and -0.64 ppt with the movement splice.31

Figure 5.1 provides the first empirical evidence on the use of the predicted share

dissimilarity method for splicing rolling window multilateral indexes. At least in

the first three panels, the performance is very similar to the other methods. These

results are more encouraging than for its use in chaining bilateral indexes; see

Figure 4.5 in Section 4.

Overall our findings suggest the CCDI and GEKS indexes are robust to the

choice of extension method, in the sense that the distribution of chain drift bias is

similar across them. Chain drift bias for GK index is more sensitive to the extension

method, with the half and mean splice producing the best results. The mean splice

avoids the risk of linking solely on a period which may happen to exhibit unusual

spending and price patterns, which is potentially problematic for the window, half

and movement splicing methods. For predicted share dissimilarity method, the

linking period is not known ex ante and will change between pairs of windows

being linked, making it hard to explain to users. Taken together with the empirical

evidence in Figure 5.1, the mean splice then seems to be the preferred choice.

31The index for seasonal biscuits also shows a lot of chain drift when calculated using the CCDI
index for example, but in this case it is much smaller: -0.05 ppt when calculated using the window
splice and -0.06 ppt when calculated with the movement splice. Using the mean or half splice
mitigates somewhat the extreme chain drift bias for this item with the GK index. The chain drift
bias is -0.28 ppt with the mean splice and -0.16 ppt with the half splice.
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5.2 Different window lengths

In Figure 5.2 we summarize the impact of different window lengths on average

monthly chain drift bias, in all cases using the mean splice. The figure is structured

similarly to Figure 5.1 – each panel represents a different index number, and within

each panel, the boxplots correspond to different window lengths. As before, we

exclude the products with the three largest positive and negative values for chain

drift in each case. In the case of the CCDI, GEKS-Fisher and GEKS-Walsh, we

also include the difference between the multilateral index computed over the full

period and their corresponding bilateral indexes; these are equivalent to calculating

the multilateral index with a window length of one month.

For all index numbers, longer windows lengths lead to considerably less chain

drift bias. For a 25 month window (the longest we consider), the distribution of

chain drift bias, under CCDI, GEKS-Fisher, GEKS-Walsh and GK are similar.

With a 25 month window, median average monthly chain drift bias is -0.01 ppt for

all indexes and the interquartile range is 0.04 ppt for the CCDI index, GEKS-Walsh,

GEKS-Fisher and 0.03 ppt for the GK index. In contrast, for a 13 month window,

under the CCDI index, the median chain drift bias is -0.02 ppt and the interquartile

range is 0.05 ppt. Cumulating across all months, the median bias from using a 13

month window with the CCDI index would be 1.7ppt compared to 1.3 ppt when

using a 25 month window.

Figure 5.2 also demonstrates that, while spliced indexes can exhibit chain drift

bias even with the longest window lengths we consider, it is noticeable that even

short window lengths perform considerably better than bilateral indexes. The me-

dian average monthly chain drift bias for the bilateral Törnqvist implied by this

measure is -0.13 ppt, around 10 times greater than the bias with a 25 month win-

dow length.
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Figure 5.2: Chain drift bias using different window lengths (using mean splice)

(a) CCDI
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(b) GEKS-Fisher
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(c) GEKS-Walsh
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(d) GK
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Note: Each box plot summarizes the distribution (across product categories) of differences in
average monthly inflation between the spliced index (using the mean spliced) computed over the
window length named in the horizontal axis and the corresponding non-spliced index. We exclude
the products with the three largest positive and negative values for chain drift in each plot. In the
case of the CCDI, GEKS-Fisher and GEKS-Walsh, we also include the chain drift bias associated
with their corresponding bilateral indexes (equivalent to using a window length of one month). The
GK index does not have a corresponding bilateral index.

5.3 Drivers of chain drift bias

The results from the previous section highlight the importance of using relatively

long window lengths for spliced multilateral index numbers to minimize the degree
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of chain drift bias. Chain drift biases decline noticeably from 7 months to 25 months

window lengths across all index number methods.

Here we assess under what circumstances chain drift bias is likely be a significant

issue. In particular, we consider how chain drift bias at different window lengths

relates to five possible drivers (all measured separately for each product category)

� Monthly churn: This is measured by the share of spending on products in

the current month that were not observed being purchased in the previous

month.

� Annual churn: This is measured by the share of spending on products

in the current year that were not observed being purchased in the previous

year. Run-out sales at the end of product life-cycles have been identified as a

potentially important cause of chain drift (Melser and Webster (2021)).

� Seasonality in pricing (‘weak seasonality’): We measure this by, for each

product category, estimating a regression of log price on product fixed effects

and month dummies. We measure the degree of seasonality in a product

category as the difference between the largest and smallest month dummy

from this regression.

� The frequency of price promotions: This is the percentage of transactions

each year that are observed with price promotions.

� The frequency of quantity promotions: This is the percentage of trans-

actions each year that are observed with quantity promotions (for example,

two-for-one offers).

Table 5.1 shows the distribution of these measures across product categories.

Monthly churn is highest for the category seasonal biscuits; on average, 14.6% of

spending each month were on products not observed purchased in the previous

month. It also exhibits the greatest annual rates of churn and seasonal pricing of

any product category. Annual churn is also high for products like chocolate and

air fresheners, while monthly churn is higher for seasonal products like vitamins,

minerals and skincare. Apart from seasonal biscuits, seasonal pricing is most im-

portant for soft fruits and fortified wines. Price promotions are most important for

‘mini portions’ of dairy products and healthy biscuits, while quantity promotions

are most common for fresh pasta and chilled processed poultry.

We assess the role these factors play in driving chain drift bias by undertaking

the following analysis. For each multilateral index number, we compute the absolute
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Table 5.1: Summary Statistics

Variable Mean Min Pctl. 25 Pctl. 75 Max

Monthly churn 2.49 0.24 1.24 3.15 14.55

Annual churn 8.95 1.28 5.32 11.96 38.64

Seasonal pricing 7.47 2.71 5.04 8.68 27.99

Price promotions 23.54 2.22 15.85 29.89 50.27

Quantity promotions 9.63 0.029 3.90 13.91 29.75

Note: Numbers for monthly and annual churn are % of spending. Numbers for seasonal pricing
are the maximum difference in average log-price between calendar quarters (conditional on product
fixed effects). Numbers for price and quantity promotions are share of transactions. Summary
statistics are across product categories.

value of the cumulative chain drift bias over all 96 months for a spliced series (using

the mean splice) computed over both a 7 and 25 month window. We regress this

variable on each of the potential drivers of chain drift bias summarized in Table 5.1.

In each regression, an observation is a product category (note, we drop the three

product categories with the highest degree of chain drift bias). Table 5.2 shows

results using a short window length (7 months) and Table 5.3 shows results using

a longer window length (25 months).

Using the 7 month window, higher rates of annual product churn are positively

and statistically significantly associated with chain drift bias. This is true for all

index numbers, and the effects are large. Each percentage point increase in the

annual product churn measure is associated with an increase in the absolute value

of cumulative chain drift bias of between 0.46 and 0.64 ppts (depending on the

index). There are also strong effects associated with seasonal pricing. A one log

point increase in the difference between peak and trough prices within each year is

associated with an increase in cumulative chain drift bias of between 0.39 and 0.48

ppt.

Using a 25 month window length however, the effects of seasonal pricing are

small and no longer statistically significant. Rather, it is higher rates of product

churn that are the main determinant of chain drift bias. Each percentage point

increase in annual churn is associated with between a 0.13 and 0.15 ppt increase

in chain drift for the CCDI, GEKS-Fisher and GEKS-Walsh indexes. This is large

relative to the overall bias at a window length of 25 months. The notable exception

to this pattern is the GK index, which appears more sensitive to differences in

monthly than annual churn. Each percentage point increase in annual churn leads

to a 0.06 ppt increase in chain drift bias for the GK, while each percentage increase

in monthly churn leads to an increase in chain drift bias of 0.14 ppt.
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The results suggest that product churn is a key determinant of chain drift bias.

Monthly and annual churn contribute to 88% of the total explained variance in chain

drift in the 25 month spliced CCDI index. Longer window lengths help to mitigate

the effects of annual churn for the CCDI and GEKS indexes, and the effects of

seasonality in pricing. High-frequency (monthly) churn appears to be a particular

problem for the GK index.

Table 5.2: Determinants of chain drift bias (7 month window length)

CCDI GEKS-Fisher GEKS-Walsh GK

(1) (2) (3) (4)

Monthly churn −0.023 0.005 0.016 0.015
(0.110) (0.117) (0.095) (0.099)

Annual churn 0.495∗∗ 0.477∗ 0.457∗∗ 0.639∗∗∗

(0.243) (0.257) (0.211) (0.217)

Pricing seasonality 0.479∗∗∗ 0.478∗∗∗ 0.424∗∗∗ 0.389∗∗∗

(0.107) (0.113) (0.092) (0.095)

Price promotions −0.105∗ −0.099 −0.086∗ −0.125∗∗

(0.059) (0.063) (0.051) (0.053)

Quantity promotions 0.030 0.031 0.019 0.024
(0.041) (0.043) (0.035) (0.037)

Observations 175 175 175 175
R2 0.202 0.181 0.213 0.220

Note: All indexes are extended using the mean splice. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 5.3: Determinants of chain drift bias (25 month window length)

CCDI GEKS-Fisher GEKS-Walsh GK

(1) (2) (3) (4)

Monthly churn 0.074 0.076 0.021 0.139∗

(0.108) (0.122) (0.103) (0.074)

Annual churn 0.149∗∗∗ 0.154∗∗∗ 0.129∗∗∗ 0.061∗

(0.046) (0.052) (0.044) (0.033)

Pricing seasonality 0.001 0.023 0.001 −0.028
(0.048) (0.053) (0.045) (0.033)

Price promotions −0.009 −0.021 −0.006 −0.023
(0.027) (0.030) (0.026) (0.018)

Quantity promotions −0.024 −0.038∗ −0.031∗ −0.001
(0.019) (0.021) (0.018) (0.012)

Observations 175 175 175 175
R2 0.110 0.100 0.085 0.073

Note: All indexes are extended using the mean splice. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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6 Conclusions

Accurate and timely inflation measurement is important for a wide range of eco-

nomic policies, particularly in times of high and volatile inflation. The increasing

availability of transaction level datasets means it is now possible to measure infla-

tion using high frequency data sources, meaning potentially faster data collection,

compiling and release of the CPI using far more information than traditionally has

been the case. Various methods for measuring inflation with such data have been

proposed and even implemented by NSIs, but to date there remains a paucity of ev-

idence systematically comparing them. Such empirical comparisons are important,

as each method can result in chain drift bias, which can be substantial.

In this paper we help fill this evidence gap by providing a systematic quantita-

tive comparisons between the competing methods for measuring month-to-month

inflation using long-run transaction (scanner) data that covers the 178 product cate-

gories that comprise the fast-moving consumer good segment of the economy. These

comparisons include proposed methods that have had until now limited empirical

applications or none at all.

We find that the CCDI multilateral index, with a 25 month rolling window and

a mean splice for linking, is the preferred approach. We also provide evidence on the

determinants of chain drift bias for spliced multilateral indexes, which we believe

in novel to the literature. We find that product churn (i.e., entry and exit) is a key

determinant of chain drift bias.

There are several potential avenues for future research in this area. One out-

standing question concerns variation in chain drift bias across months within a price

series. In our analysis, we focus on an average measure of monthly chain drift bias

over a long time period, but the variance of the bias across months (for a given aver-

age bias) and how this varies across low and high inflation periods also impacts the

reliability of the index as a real-time inflation measure. In addition, future work

could assess the impact of disappearing products on the behavior of multilateral

indexes, as well as the use of imputation methods for temporarily missing products.
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Appendix:
For online publication

Inflation measurement with high frequency data

Kevin J. Fox, Peter Levell, Martin O’Connell
May, 2024

A Alternative splicing approaches

In this appendix we describe and evaluate several alternative splicing methods (in
particular splicing on the published series, the fixed-base moving window and fixed-
base expanding window) that have been proposed in the literature.

Slicing on the published series. An alternative to the rolling window splice is
to splice on the published series. In particular, when a new data point in period
t = s+ T becomes available, the corresponding new sequence P = (Pt−T+1, . . . ,Pt)
can be directly spliced onto the published series ρ1, . . . , ρt−1. Let τ be the link
period (e.g., the movement, window, or half splice), then the price level for period
t+ 1 is given by:

ρt+1(τ) = ρτ+s(τ)
Pt+1

Pτ+s

Chessa (2021) suggests implementing this method with the half splice.

The fixed-base moving window. An alternative to the rolling window approach
is to link the current price level, computed on the most recent multilateral sequence,
with the spliced series based on a period that is fixed in calendar (rather than
relative) time. This is known as the fixed-base moving window (FBMW). Denote
by t a link period defined in calendar time. Under the FMBW, the spliced price
level in period t is given by:

ρt = ρt
Pt
t

Pt

t

,

The fixed-base expanding window. The fixed-base expanding window (FBEW),
is similar to the fixed-based moving window, but rather than each multilateral se-
quence being of T periods long, it expands the window each period to include the
latest period of data.

For example, with monthly data, and a December base month, the window used
to compute the new data point in January includes only December and January.
In February, it will include December, January and February, and so on until it
includes all months in a given window.

Figure A1 plots the distribution of monthly chain drift biases associated with
the half-splice on the published series, FBEW and FBMW approaches.
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Figure A1: Chain drift bias with different splicing methods (25 month window)

(a) CCDI
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(b) GEKS-Fisher
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(c) GEKS-Walsh
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(d) GK
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Note: Each box plot summarizes the distribution (across product categories) of differences in
average monthly inflation between the spliced index (over a 25 month window) using the linking
method named in the horizontal axis and the corresponding non-spliced index. We exclude the
products with the three largest positive and negative values for chain drift in each plot.

B Additional Figures
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Table B1: Product categories (1)

Annual spending
share (%)

mean min max

Bakery
Ambient Cakes and Pastries 1.45 1.40 1.52
Morning Goods 1.62 1.49 1.76
Total Bread 1.74 1.59 2.04
Chilled Breads 0.16 0.14 0.17
Chilled Cakes 0.33 0.29 0.35
Dairy
Butter 0.85 0.74 1.02
Cheddar 1.59 1.51 1.70
Continental Ex.Blue 0.49 0.39 0.56
Eggs 0.84 0.78 0.88
Fresh Cream 0.34 0.32 0.38
Fromage Frais 0.28 0.16 0.34
Margarine 0.64 0.52 0.85
Mini Portions 0.13 0.11 0.16
Semi-skimmed milk 1.42 1.33 1.50
Skimmed milk 0.37 0.35 0.40
Territorials Ex.Blue 0.23 0.21 0.25
Total Milk 0.51 0.48 0.60
Total Processed 0.34 0.33 0.36
Total Soft White 0.24 0.23 0.25
Whole milk 0.64 0.59 0.71
Yoghurt 1.63 1.58 1.65
Yoghurt Drinks And Juices 0.29 0.28 0.32
Fresh fruit and vegetables
Apples 0.84 0.80 0.86
Bananas 0.60 0.57 0.63
Brassicas 0.61 0.58 0.67
Chilled Prepared Fruit and Veg 0.95 0.82 1.05
Citrus 0.76 0.71 0.83
Legumes 0.21 0.18 0.23
Nuts - fruit 0.22 0.14 0.28
Other Vegetables 0.89 0.80 0.95
Pears 0.22 0.19 0.24
Potatoes 1.20 1.02 1.48
Root Crops 0.84 0.76 0.95
Salads 1.78 1.66 1.91
Soft Fruit 2.25 1.88 2.55
Tropical Fruits 0.49 0.40 0.55
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Table B2: Product categories (2)

Annual spending
share (%)

mean min max

Fresh meat and fish
Chilled Prepared Fish 0.20 0.17 0.24
Shellfish 0.19 0.18 0.22
Wet/Smoked Fish 0.87 0.75 0.97
Chilled Burgers and Grills 0.28 0.23 0.32
Chld Frnkfurter/Cont Ssgs 0.15 0.13 0.16
Fresh Bacon Joint 0.25 0.23 0.26
Fresh Bacon Rashers 0.95 0.87 1.03
Fresh Bacon Steaks 0.13 0.12 0.15
Fresh Beef 2.17 2.07 2.26
Fresh Flavoured Meats 0.15 0.13 0.16
Fresh Lamb 0.53 0.48 0.57
Fresh Pork 0.78 0.67 0.88
Fresh Sausages 0.70 0.68 0.74
Chilled Processed Poultry 0.38 0.32 0.43
Cooked Poultry 0.51 0.48 0.54
Fresh Poultry 2.31 2.26 2.34
Chilled prepared
Chilled Desserts 0.69 0.66 0.71
Chilled Dips 0.18 0.14 0.22
Chilled Pizza and Bases 0.52 0.47 0.55
Chilled Prepared Salad 0.32 0.28 0.35
Chilled Ready Meals 2.53 2.21 2.77
Chld Sandwich Fillers 0.13 0.12 0.15
Cooked Meats 2.34 2.24 2.47
Fresh Pasta 0.16 0.13 0.17
Fresh Soup 0.11 0.10 0.12
Other Chilled Convenience 0.28 0.21 0.31
Fresh Meat and Veg Pastry 0.97 0.89 1.01
Frozen meat
Frozen Fish 0.95 0.90 0.99
Frozen Sausages 0.11 0.09 0.11
Frozen Poultry 0.39 0.33 0.44
Frozen Meat Products 0.18 0.16 0.20
Frozen Pizzas 0.57 0.51 0.63
Frozen Potato Products 0.85 0.82 0.89
Frozen Processed Poultry 0.53 0.49 0.56
Frozen Ready Meals 0.77 0.73 0.84
Frozen Savoury Bakery 0.22 0.21 0.23
Frozen Vegetables 0.59 0.58 0.62
Frozen Vegetarian Prods 0.22 0.19 0.26
Other Frozen Foods 0.16 0.15 0.18
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Table B3: Product categories (3)

Annual spending
share (%)

mean min max

Cupboard ingredients
Ambient Soup 0.35 0.31 0.40
Baked Bean 0.41 0.38 0.46
Canned Fish 0.56 0.54 0.59
Canned Hot Meats 0.18 0.15 0.21
Canned Pasta Products 0.12 0.10 0.15
Canned Vegetables 0.13 0.13 0.14
Cold Canned Meats 0.14 0.12 0.16
Prepared Peas and Beans 0.15 0.15 0.16
Tinned Fruit 0.17 0.16 0.18
Tomato Products 0.27 0.27 0.28
Food Drinks 0.21 0.18 0.22
Instant Coffee 0.91 0.88 0.98
Liquid/Grnd Coffee and Beans 0.39 0.26 0.48
Tea 0.54 0.49 0.61
Breakfast Cereals 1.89 1.72 2.09
Honey 0.11 0.10 0.11
Preserves 0.16 0.15 0.18
Ambnt Salad Accompanimet 0.28 0.27 0.29
Sour and Speciality Pickles 0.13 0.13 0.13
Table Sauces 0.30 0.29 0.31
Ambient Rice and Svry Noodles 0.58 0.57 0.59
Dry Pasta 0.25 0.22 0.27
Instant Hot Snacks 0.15 0.13 0.18
Packet Soup 0.13 0.10 0.15
Ambient Cooking Sauces 0.84 0.73 0.96
Cooking Oils 0.36 0.34 0.37
Ethnic Ingredients 0.22 0.20 0.24
Flour 0.12 0.10 0.14
Herbs and Spices 0.20 0.18 0.22
Meat Extract 0.40 0.39 0.42
Home Baking 0.52 0.48 0.55
Sugar 0.30 0.24 0.42
Confectionery
Cereal and Fruit Bars 0.38 0.36 0.41
Childrens Biscuits 0.15 0.14 0.16
Chocolate Biscuit Bars 0.44 0.40 0.47
Confectionery and Other Exclusions 0.19 0.18 0.21
Crackers and Crispbreads 0.37 0.35 0.38
Everyday Biscuits 0.34 0.31 0.37
Everyday Treats 0.40 0.37 0.42
Healthier Biscuits 0.24 0.21 0.25
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Table B4: Product categories (4)

Annual spending
share (%)

mean min max

Savoury Biscuits 0.15 0.13 0.18
Seasonal Biscuits 0.13 0.12 0.14
Special Treats 0.16 0.14 0.17
Frozen Confectionery 0.35 0.32 0.40
Total Ice Cream 1.03 0.94 1.16
Chocolate Confectionery 2.47 2.38 2.60
Sugar Confectionery 0.74 0.72 0.75
Crisps 1.00 0.96 1.07
Nuts - savoury 0.26 0.23 0.28
Savoury Snacks 1.03 0.95 1.14
Drinks
Chilled Flavoured Milk 0.12 0.11 0.13
Chilled Fruit Juice and Drink 0.71 0.63 0.79
Ambient One Shot Drinks 0.37 0.29 0.43
Ambiennt Fruit Yoghurt Drinks 0.39 0.30 0.51
Bottled Colas 0.56 0.52 0.61
Bottled Lemonade 0.11 0.09 0.14
Bottled Other Flavours 0.43 0.41 0.47
Canned Colas 0.53 0.49 0.60
Canned Other Flavours 0.27 0.24 0.31
Mineral Water 0.45 0.35 0.53
Total Fruit Squash 0.60 0.56 0.65
Alcohol
Beer and Lager 1.68 1.63 1.76
Cider 0.54 0.52 0.57
Fabs 0.12 0.10 0.13
Fortified Wines 0.23 0.19 0.26
Sparkling Wine 0.46 0.33 0.54
Spirits 2.51 2.32 2.76
Wine 3.26 3.21 3.34
Household goods
Bath and Shower Products 0.41 0.39 0.42
Deodorants 0.46 0.42 0.50
Liquid Soap 0.16 0.15 0.17
Skincare 0.58 0.55 0.64
Hair Colourants 0.18 0.15 0.20
Hair Conditioners 0.20 0.19 0.21
Shampoo 0.33 0.32 0.34
Oral Analgesics 0.20 0.19 0.23
Vitamins.Minerals/splmnts 0.35 0.32 0.37
Air Fresheners 0.36 0.33 0.39
Batteries 0.25 0.24 0.26
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Table B5: Product categories (5)

Annual spending
share (%)

mean min max

Bin Liners 0.18 0.16 0.21
Bleaches and Lavatory Cleaners 0.28 0.27 0.30
Cleaning Accessories 0.14 0.13 0.15
Fabric Conditioners 0.43 0.36 0.47
Facial Tissues 0.25 0.25 0.26
Household Cleaners 0.42 0.41 0.43
Household Food Wraps 0.24 0.24 0.25
Kitchen Towels 0.40 0.38 0.40
Machine Wash Products 0.99 0.87 1.09
Toilet Tissues 1.29 1.25 1.34
Wash Additives 0.12 0.11 0.14
Washing Up Products 0.51 0.46 0.54
Mouthwashes 0.18 0.16 0.19
ToothPastes 0.39 0.38 0.40
Total Toothbrushes 0.20 0.18 0.21
Feminine Care 0.23 0.20 0.25
Incontinence Products 0.11 0.07 0.16
Moist Wipes 0.20 0.15 0.25
Razor Blades 0.21 0.17 0.25
Cat Litter 0.16 0.15 0.16
Cat and Dog Treats 0.55 0.47 0.62
Dog Food 0.56 0.53 0.60
Total Cat Food inc.Bulk 1.42 1.31 1.50
Total Dry Dog Food 0.14 0.11 0.16

Note: Authors’ calculations based on the Kantar FMCG At-Home Purchase Panel for 2012-2019.
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Figure B1: Chain drift bias: GEKS Walsh vs Bilateral Walsh
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Note: Figure shows index number values for the GEKS-Walsh multilateral index, the Walsh fixed
base index and a monthly chained Walsh index. The indexes are calculated across all fast-moving
consumer goods.

Figure B2: Chain drift bias: GEKS Fisher vs Bilateral Fisher
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Note: Figure shows index number values for the GEKS-Fisher multilateral index, the Fished fixed
base index and a monthly chained Fisher index. The indexes are calculated across all fast-moving
consumer goods.
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Figure B3: Distribution of cumulative inflation rates for the Törnqvist index with
different chaining methods
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Note: Figure shows the distribution of cumulative price changes from January 2012 to December
2019 across 178 product categories calculated using the bilateral Törnqvist index using different
monthly chaining methods.
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