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1 Introduction

Price indices rely on comparing prices of the same products in two comparison periods. How-
ever, with dynamic product assortments, a matched model approach that only takes into account
products available in the two comparison periods may not be fully satisfactory. In such a case,
the hedonic imputation approach can be a possible alternative. The idea is to impute a price
for the products that are only available in one of the two comparison periods. An imputed price
is typically obtained by estimating a semi-logarithmic hedonic multiple regression in order to
explain the relationship between the observed prices and a set of price determining characteris-
tics. In this paper, we are going to explore the use of Machine Learning (ML) for imputing such
missing prices in the context of multilateral price index methods.

ML methods can be seen as an alternative to a hedonic regression as both approaches eventually
allow estimating a missing price. The main objective of ML methods is to find the best possible
prediction for a price that can be learned from the data. While ML methods are nowadays con-
sidered in many fields, the application of the ML paradigm in the context of price statistics still
raises a number of practical and conceptual questions. On the one hand, there could be a case
for considering ML methods given the increasing availability of larger data sets such as scanner
data or web scraped data. The ML models are often more flexible than a linear regression. One
could argue that a more accurate price imputation will lead to a more accurate price index, and
that therefore, predictive accuracy could be preferred over model interpretability. On the other
hand, it can remain unclear how to best apply ML methods in the specific context of price indices.

There are already some examples of using ML methods for price statistics. Random forests
(Zeng, 2021) or neural networks (Cafarella et al., 2023) have been used to obtain price indices
from retail scanner data. Attempts have also been made to apply ML methods on products that
undergo rapid technological change, such as laptops (Zafar and Himpens, 2021) or multi-purpose
digital devices (Roche et al, 2022). ML can also be considered in the context of residential (Pic-
chetti, 2017) or commercial (Calainho, 2021) property prices.

In section 2, we first present the methodological framework in which we will work. We discuss the
methodology both from a price statistics and ML perspective. This methodological framework
is then applied on two data sets in section 3. We use an internal web scraped data set on
TVs and a public scanner data set on laptops5(Diewert and Shimizu, 2023). In section 4, we
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propose an operational process that starts with monthly incoming prices data and that ends
with a (multilateral) price index that could be published. Finally, our conclusions and some
open issues are summarized in section 5.

2 Methodology

2.1 Price Statistics

We denote the price and the quantity of the item i in period t by pti and qti respectively. The
expenditure for the item i in period t thus corresponds to eti = ptiq

t
i . Let Nt be the set of items

available in period t. The set of matched items that are available in the two comparison periods
t1 and t2 is denoted by Mt1,t2 = Nt1 ∩Nt2 . Moreover, let Nt1,t2 = Nt2 \Nt1 be the set of items
available in period t2 but not in period t1, and let Dt1,t2 = Nt1 \Nt2 be the set of items available
in period t1 but not in period t2.

As a starting point, we calculate a Törnqvist index on the matched items. This means that
the aggregate price change is derived only from the set of items that are available in the two
comparison periods.
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One issue with the matched Törnqvist index is that items that are available in only one of
the two comparison periods are ignored. This can lead to biased price indices if, for example,
products leave the assortment on a reduced price. We may also miss price changes between
essentially identically products that have been subject to a change in package size or weight
(relaunches). In order to overcome this limitation, we could estimate a price for an item in the
period in which it is not available. We denote an imputed price for item i in period t by p̂ti. This
leads us to the single imputation Törnqvist price index:

It1,t2IT =
∏

i∈Mt1,t2

(
pt2i
pt1i

)0.5∗

 e
t1
i∑

j∈Nt1
e
t1
j

+
e
t2
i∑

j∈Nt
e
t2
j



∏
i∈Dt1,t2

(
p̂t2i
pt1i

)0.5∗

 e
t1
i∑

j∈Nt1
e
t1
j

 ∏
i∈Nt1,t2

(
pt2i
p̂t1i

)0.5∗

 e
t2
i∑

j∈Nt2
e
t2
j

 (2)

In other words, our approach to dynamic item universe is to replace missing prices with im-
puted prices in order to obtain a full dataset for the two comparison periods. We then apply a
standard price index method (in our case, the Törnqvist index) to this augmented dataset. De
Haan (2011) investigated the link between the imputation Törnqvist index and the time dummy
hedonic index.

Let us now suppose that these imputed prices are available. In practical scanner data applica-
tions we use multilateral, rather than bilateral index methods. In a multilateral method, the
aggregate price change between two comparison periods is obtained from prices and quantities
observed in multiple periods, not only in the two comparison periods. One example is the GEKS
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or CCDI (Caves et. al., 1982) price index, which uses the bilateral Törnqvist price indices, ob-
tained between any two periods of a given time window T , as building blocks.

In general, the GEKS is based on the matched Törnqvist indices.

It1,t2 =
∏
k∈T

(
It1,kT ∗ Ik,t2T

) 1
|T | (3)

Alternatively, we could use the imputation Törnqvist indices as building blocks of the GEKS
index (see Lamboray, 2022). We call this the imputation GEKS or imputation CCDI (de Haan
and Daalmans, 2018).

It1,t2I =
∏
k∈T

(
It1,kIT ∗ Ik,t2IT

) 1
|T | (4)

With scanner data, all these indices can be calculated as both prices, quantities and character-
istics are available for each item in each period. With web scraped data, weights are typically
not available. In that case, we will assume that each item has the same expenditure6. Working
with equally weighted expenditures leads to the matched Jevons index IJ and the imputation
Jevons index IIJ . We can then naturally extend these Jevons indices to a multilateral context,
leading to the Jevons and Imputation Jevons variants of the GEKS index.

2.2 Machine Learning

In order to calculate an imputation GEKS index in practice, we need to impute missing prices.
We will investigate the use of ML methods to obtain these prices. We work with log prices
instead of prices as our target variable in order to be consistent with typical hedonic functions
that are applied in price statistics context.

We now consider the following generic function f , which explains log price with help of a set of
explanatory variables z.

ln
(
pti
)
= f (zi, t) + ϵti ∀i ∈ Nt,∀t ∈ [1, .., T ] (5)

Note that the model is not necessarily based on the economic approach to index number theory.
Instead, we follow a data-driven approach, where our goal is to estimate a function f , which
estimates log prices across periods as good as possible.

We estimate the model by pooling data from several periods (time window T ). This strategy
will allow to estimate models on bigger samples. Moreover, each item will have a unique im-
puted price for a given time window and a given month7. There are two types of time windows
that must be fixed: the time window (and related rolling or expanding strategy) used in the ML
method and the time window (and related rolling or expanding strategy) used in the price index.
The time window used for training the models can be equal, or larger, than the time window
that is used in the multilateral method. In our practical implementation, we will use identical
rolling time windows consisting of 12 months for both ML methods and the multilateral method.
The optimal window length from both ML and price statistics perspective deserves to be further
investigated, but would go beyond the scope of this initial analysis.

6Let us suppose that we fix the expenditure e = 1 for each item. As a consequence, an implicit quantity
variable will be estimated for each item as follows: qti =

1
pti

.
7In some approaches, the imputed price for an item depends on the choice of the two comparison periods (see

de Haan and Krsinich (2014)). This means that over a time window, the item can have different imputed prices.
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We would like to have a model that not only fits the initial data, but also allows making good
predictions on unseen data. A very complex model may perfectly fit known data but will perform
poorly on the unseen data. In order to evaluate the performance of a model, we randomly split
the data into a training set and a test set. First, the model is estimated using the training set.
The estimated model f̂TRAIN is then used to make predictions on the test set. The accuracy of
these predictions can be measured using Root Mean Squared Error (RMSE)8.

RMSE =

√√√√ ∑
(i,t)∈TEST

1

nTEST

(
ln(pti)− f̂TRAIN(zi, t)

)2
(6)

RMSE is an important measure in ML. The expected test set RMSE (the average over different
test sets) can be decomposed into three components (see James et al. (2013)): (i) a squared
bias of the learner, (ii) the variance of the learner and (iii) an irreducible error. This is referred
to as the bias-variance trade-off. In other words, the optimal (lowest) RMSE corresponds to a
good compromise between bias and variance.

Our data consists of price observations of different items for different time periods. When mak-
ing the random train-test split, we use time period as stratification variable. Suppose that we
would like to randomly select 20% of observations for the test set and 80% of observations for
the training set. We then require the 20-80 split to hold for each time period. This will make
sure that each time period is appropriately represented9.

We may want to repeat several times the split into a training and test sets. One common strat-
egy is to apply k-fold Cross-Validation. This means that we will split the entire data into k sets
of equal size. With k = 3, the data is split into 3 sets (S1, S2, S3), each set containing one third
of the initial data. First, we consider S1 to be the test set and S2-S3 to be the training set. We
then obtain a first RMSE1. Next, we use S2 to the test set and S1 and S3 to be the training set,
leading to RMSE2. Finally, we use S3 to be the test set and S1-S2 to be the training set, leading
to RMSE3. An estimate for the RMSE is calculated as the average of the RMSEk (k = 1, .., 3).
This idea is illustrated in Figure 1. For datasets of our size, it is a common choice to use either
5-fold or 10-fold cross validation.

In our analysis, we first consider a standard log linear model as a benchmark model. Let us
suppose that zi is a k-dimensional vector of k price determining characteristics for item i and
that dti is a time dummy variable that equals 1, if item i belongs to period t, and 0 otherwise.

fLIN (zi, t) = α̂+
∑
k

zki β̂
k +

∑
t

dtiγ̂
t + ϵti (7)

8Note that the exponential of RMSE can be linked to a price relative (observed price versus imputed price).
9We also experimented with block sampling to take product dimension into account. This means that each

item is treated as a “block”: all price observations of a given item are either in the training or in the test set. More
research is needed to understand how time and product dimensions can be best incorporated in a re-sampling
strategy.
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Figure 1: Illustration of 3-fold Cross-Validation (Bischl et al., 2024)

This model assumes a linear relationship between log-prices and characteristics. From a price
statistics perspective, this model is used in the hedonic time dummy index. Note that in our
context, we do not use the exponential of estimated parameter γt to derive a price index. In-
stead, we use it to estimate missing prices that are needed for calculation of bilateral Törnqvist
indices underlying the CCDI.

We compare the benchmark model fLIN to two common ML methods: Random Forest (Ho
1995, Breiman 2001) and XGBoost (Chen and Guestrin 2016). Random Forest is based on a
collection of decision trees. Each tree includes some randomness by selecting a sample of features
and observations, in order to reduce the correlation between different trees. XGBoost approach
does not grow multiple trees in parallel but grows multiple trees sequentially: the residual error
of one tree is the input of the next tree. Compared to the log-linear model, these models tend
to be more accurate. Specifically, they are more flexible by taking into account possible non-
linearities in the data. Issues such as multicollinearity or heteroscedasticity are less of a problem
for ML than for liner regressions. On the other hand, there is a risk that increased flexibility
can lead to overfitting. There is a computational cost in implementing these methods as well.
Finally, interpretability becomes much more difficult than with a log-linear model.

It is not straightforward how to incorporate time dimension in the models. Time is a critical
variable for us as we eventually aim to make price comparisons across “time”. In the log-linear
model, time is coded through dummy variables, allowing to capture a fixed time effect. We could
be tempted to use the same coding in XGBoost and Random Forest. However, the treatment
of time dimension may not be straightforward. Consider a time dummy variable for a given
period t. This variable splits the data into two parts: the observations from period t, and the
observations from all other periods of the time window. The second set is much larger than the
first set. Price observations from periods other than t may not be homogeneous. Hence, time
dummy variable is less likely to be selected as a splitting variable in a node of a tree in Random
Forest. Therefore, we prefer to code time in Random Forest as a single variable that takes values
1, 2, . . . T (referred to as label encoding). In this way, we also capture the order10 of the time
periods (period 1 precedes period 2, which precedes period 3, etc.).

ML methods can also incorporate weights. This is an interesting aspect from a price statistics
perspective as we would like to give more weight to observations that have higher economic im-
portance. In a ML setting, the model performs “better” with respect to observations that have a

10The treatment of time could be further refined in case of seasonality in the data, by applying cyclical encoding
that incorporates seasonality.
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higher weight. It may be desirable that the price imputations for well-sold products are “better”,
because they have a higher weight in the price index. For example in a log-linear model, it is
a common practice to use expenditure shares11 as weights. For Random Forest and XGBoost,
we prefer to work with expenditures instead of expenditure shares. In Random Forest, weights
are used when sampling the units to be used in a given tree. In other words, price observations
with a higher expenditure will appear more often in the trees underlying the Random Forest12.
In XGBoost, weights have an impact on the way that an observation affects the loss function.

ML methods such as Random Forest or XGBoost13 require fixing several hyperparameters (HPs).
The trained model thus depends on these parameters, which have to be selected in advance. In
other words, the final trained model depends on these HPs. In order to evaluate the performance
of a specific instance of HPs, we can again use Cross-Validation.

There are different strategies to find the “optimal” HPs. Grid search means that we would try
each possible combination of HPs. However, if the search space is large, this strategy can be
very time consuming. An alternative would be to use random search where we randomly pick,
for example, 10 instances which are then evaluated. There also exist more advanced methods.
The idea behind Bayesian optimization (see Section 4.2.3 in Bischl et al. (2023)) is to estimate
a relationship between HPs and performance using archive HPs and performance data points.
This will help the algorithm to select a new set of HPs that is likely to perform well. Once the
performance of these specific HPs has been evaluated, it will be added to the archive and the
relationship between HPs and performance is re-estimated.

In practice, we use the following strategy in order to find the optimal HPs:

• In a first step, we apply random search or Bayesian optimization to explore the default
search space (see Table 1).

• In a second step, we try to reduce the search space by setting the values of some HPs to
a default value.

• In a third step, we then use (local) grid search for a limited number of HPs (for example
only 1 or 2 HPs) in a reduced search space (around those values that were shown to lead
to good results).

Table 1: Default List of Hyperparameters to be tuned in MLR3 Package

Method Hyperparameters

Random Forest mtry, num_trees, replace, sample_fraction

XGBoost alpha, lambda, eta, nrounds, max_depth, subsample, colsample_bylevel,
colsample_bytree

We are now ready to introduce the methodology of nested resampling (see Section 4.4 in Bischl
et al. (2023) and Bischl et al. (2024)) which aims at correctly estimating accuracy of the method
while at the same time optimizing HPs. We need to distinguish the tuning process from the

11Note that in ML paradigm, expenditure shares must be re-calculated for a given train-test split. In practice,
this means specifying a “pipeline” that first calculates expenditure shares and then trains an expenditure share
weighted log-linear model. This “pipeline” is then applied to a given training dataset.

12The sampling fraction is a hyperparameter of Random Forest. By setting this parameter close or equal to 1,
the impact of weights vanishes.

13See also https://xgboost.readthedocs.io/en/stable/parameter.html for an overview of the parameters
of the XGBoost method.
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process used to evaluate performance of the model. Under this setup, there are two levels of
resampling. The “outer” re-sampling is used to estimate the accuracy of a method. Each loop of
the outer re-sampling consists of a specific train-test split. The model obtained from the (outer)
training data is evaluated on the (outer) test data. We use several train-test splits in order to
avoid the problem of one such split being too specific. For each loop (that is, for each train-test
split of the outer training data set), we use a different set of HPs. These HPs are optimized with
respect to the “outer” training data only. This means that the “outer” training dataset is again
split into an “inner” training and an “inner” test set in order to evaluate a specific instance of
HPs. This setup is illustrated in Figure 2, using 3-fold Cross-Validation for outer re-sampling
and 4-fold Cross-Validation for inner re-sampling.

Figure 2: Illustration of Nested Resampling (Bischl et al., 2024)

3 Results

ML models can be used for both web-scraped (unweighted) and transaction (weighted) data.
We illustrate these methods and the resulting price indices for one internal web-scraped dataset
on TVs and a publicly available Japanese transaction dataset on laptops (Diewert and Shimizu,
2023).

Both data sets are characterized by high item churn. After six month, only around 45% of
the items are still available on average in both datasets. Moreover, product generally enter the
assortment at a high price and leave it at a discount. Figure 3 illustrates both aspects.
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Figure 3: Dynamics of the assortments (each line corresponds to a product and the
“level” is the relative price of an item compared to its average price over the whole
window)

Product characteristics are available for both data sets. Before applying a model, these variables
must be transformed appropriately. This treatment is often referred to as “feature engineering”
in the ML litterature. The target variable, price, is log transformed as it is a standard approach
in hedonic price imputation. In case of laptops dataset, several product characteristics (CLOCK,
MEN, SIZE, PIX, CPU) and brands are dummified, just as the time variable. Note that for
the ML models (Random Forests, XGBoost) it is strictly speaking not necessary to transform
these product characteristics as heteroscedasticity is not an issue, in contrast to linear models.
However, brand needs to be dummified as label encoding is generaly not meaningfull14.

Similar variable transformations are done for the web-scraped television dataset. For ML meth-
ods, we additionally keep time as a numeric vector, which is particularly relevant for Random
Forests.

In order to rank different ML methods and a standard time dummy hedonic model according
to their prediction performance on unseen data, we use nested resampling and the RMSE as a
performance measure. We use 5-fold Cross-Validation for the outer and 10-fold Cross-Validation

14If the first brand is encoded as 1, the second as 2, etc. there should be an ordinal relationship between the
brands, which is usually not given. An alternative would be to do target encoding of the brand variables, which
means replacing a brand by its average price in the data set.
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for the inner resampling layers. HP tuning is done via a Bayesian optimizer. Training and test
data sets are stratified according to the month variable. This is conveniently done using the
benchmark() functionality of the mlr3 package.15 In Annex 1 we illustrate how to use mlr3
packages to implement nested resampling.

Figure 4: Performance (RMSE) for different learners via Nested Resampling (12
months of data)

Figure 4 shows the performance of the different learners (Linear Model, Random Forest and
XGBoost) for the two data sets. For each learner, the five displayed RMSE correspond to eval-
uations of a model done on five different outer test sets (see figure 2). Each model is trained
on the inner training set and hyperparameter optimization (HPO) is done using 10-fold Cross-
Validation (CV).

It is apparent that ML methods perform better on unseen data than linear time dummy hedonic
models for both web scraped and transaction data set. For the web scraped dataset, XGBoost
performs slightly better than Random Forest, while there is hardly any difference for the laptops
data set. It is reasonable to assume that a method, which produces more accurate price predic-
tions for unseen data, should also produce more reliable price imputations for items after they
leave or before they enter the market. This result thus suggests that ML methods produce more
accurate results for price imputations used for imputation indices, by minimizing estimation
variance.

Alternative resampling schemes could also be used for the above analysis, going beyond the use
of a simple time-variable stratification. For example, one could require that all observations of
a given item are either in the test or training data set, which would mean that when evaluating
a model on an outer test, we would evaluate it on completely unseen products in the training
set (a strategy known as block resampling). While the latter approach would still show that
ML methods perform better than linear models, the differences would be less pronounced. Our
view is that block resampling is inappropriate as one never imputes a price of a completely
unseen product in practice. However, the simple approach we illustrated here might produce
overoptimistic results. The design of relevant resampling schemes for price statistics requires
further research as one might overestimate the performance of ML methods by using a too naïve
approach.

15https://mlr3book.mlr-org.com/chapters/chapter3/evaluation\_and\_benchmarking.html
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In order to use ML for price imputation, it must be trained on the full data set. To do this
we must first find out the optimal HPs, which is one of the most challenging parts for any ML
method, both in terms of time and expertise required. We first run a Baysean optimizer, using
10-fold CV. This tuning round generally produces acceptable results already. To fine-tune the
results even further, we do a local grid search around some of optimal HPs found. In case of
Random Forests, a local grid search reduces to a 2-dimensional grid search for the HPs mtry
and sample_fraction (see Table 1). For other HPs, default values are taken. The Bayesian
optimizer output indeed allows one to fix the HP replace, and the HP num_trees must just
be large enough to converge16. XGBoost has many more parameters to optimize (see Table 1)
and for the finetuning we focus on colsample_bylevel, subsample, eta while keeping the values
of the other parameters fixed (they were already found using Baysean optimizer). Note that for
XGBoost, several different HP combinations may produce very similar results and they are all
equally valid HPs for index computation. Generally, similar mean RMSE can be attained for
different Random Forests and XGBoost learners.

Figure 5 shows how grid search allows to fine-tune hyperparameters. A minimum is found for
mtry=0.284 (share of randomly selected columns used for a given tress) and sample_fraction=0.967
(share of line randomly sampled for each tree) (minimal RMSE=0.0895).

Figure 5: Hyperparameter Optimization Surfaces for Random Forest (transaction
laptop dataset) (without replacement, number of trees is 1000)

Once optimal HPs have been computed, ML methods and linear model are trained on full dataset
using corresponding hyperparameters. The trained model is then used to impute prices needed
for bilateral Törnqvist or Jevons indices. We use the same data for training models as for com-
puting multilateral indices (12 months).

Figures 6 and 7 show several transitive multilateral price indices for the webscraped televison
data set and the transaction Laptop data set.

• GEKS-Jevons index, respectively GEKS-Törnqvist index

• GEKS-imputation Jevons indices, respectively GEKS-imputation Törnqvist indices, for
several imputation methods (time dummy hedonic model, Random Forest and XGBoost)

• Predicted Share Similarity Linked Index (PS) (Laptop data only, see Diewert and Shimizu
(2023))

16Increasing the number of trees in a Random Forest doesn’t make the model prone to overfitting.
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In Annex 2 we illustrate how to use mlr3 packages to implement HP optimization in practice
and how to use optimal HPs to impute prices.

Figure 6: Multilateral Indices for the webscraped televisions data set

The GEKS-Jevons index is downward biased due to the lifecycle effects for this kind of consumer
goods. Imputation indices correct for this downward bias by imputing prices once some products
leave the sample with a reduced price.

The imputation GEKS index with imputations from a time dummy hedonic model has signifi-
cantly higher cumulative price changes compared to indices with Random Forest and XGBoost
imputations. This result suggests that, even though the fit of the time dummy hedonic model
is good (R2=0.9174), it might overstate the price changes. We have indeed seen that Random
Forests and XGboost are able to predict unseen data more precisely and that one should expect
imputation to be more reliable.

Figure 7: Multilateral indices for the Laptop transaction data set (OLS is used for
the linear imputations based on a time dummy hedonic index)
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For the Laptop data set, cumulative price changes for Imputation indices are again higher than
the GEKS-Törnqvist Index. There are however hardly any differences between imputation in-
dices using Random Forest and XGBoost imputations. Both indices are, for this 12 month
window, close to the Predicted Share Similarity Linked index. Diewert and Shimizu suggested
the latter to be the preferred index for this data set (Diewert and Shimizu, 2023).

Figure 8 shows imputed prices for two products to illustrate typical price trends for different
imputation methods. For a time dummy hedonic model, almost all imputed prices are equal, with
except of a multiplicative time-independent factor. In a time dummy hedonic model, the time
dummy variable does indeed not interact with item features, leading to relatively rigid behavior.
Even though this allows average residuals per month to be equal to zero, imputed price evolution
can deviate significantly in several cases, leading to inappropriate price comparisons (see second
graph in figure 8). This leads to a higher index using a linear model in the imputation GEKS
index. ML algorithms take into account item features and time in a more flexible manner. This
leads to product specific price evolutions. Moreover, price trends of imputed prices tend to
better fit to trends of observed prices. Note that ML algorithms are not overfitting and perform
better than hedonic linear models on unseen data (see Figure 4).

Figure 8: Imputed prices and real transaction prices for selected products (imputed
prices for the linear hedonic model take into account expenditure shares)

Figure 9: Spliced multilateral GEKS (Imputation) indices for the Laptop transac-
tion data set (12 months window, window splicing) and Predicted Share Similarity
index

When looking at longer time periods, (spliced) imputation indices (with Random Forest and
XGBoost imputations) and the Predicted Share Similarity Linked Index deviate significantly.
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Figure 9 shows that both indices begin to diverge from the month 13 on. This can be related
to the assortment, as in month 13 a significant amount of new products appears (see Figure
4), leading to sparse matching between month 13 and any month before. The Predicted Share
Similarity Linked index is thus based on a relatively small number of matched products. Im-
putation indices, on the other hand, take into account additional information coming from the
item features in order to overcome this sparse matching between month 13 and previous months.

4 Process

In order to implement the ML based imputation methodology in a CPI production environment,
we propose a division of the process into three distinct parts (see Figure 10): data management,
machine learning and price statistics. A separate expert can manage each part. A data scientist
could be in charge of the ML part, aiming for finding the best possible model. A price statis-
tician could be in charge of the price statistics part, aiming for calculating and validating the
price indices. MLFlow17 is an open source tool that acts as the technical link between the ML
and the price statistics environment.

Part 1: Data Source

After obtaining data for a given month t (scanner data or web scraped data), we first apply
data cleaning. This may include identifying and removing outliers, or imputing missing prod-
uct characteristics. We then pool the data for a given month with the data from the previous
months, using for exampling a rolling time window strategy. This cleaned and pooled data is
then the input of the second (Machine Learning) and third (Price Statistics) part.

Part 2: Machine Learning

The first step is to apply feature engineering by transforming the input data. We then apply CV
in order to find the optimal HPs for XGBoost and/or Random Forest. We then train a model
using the best HPs on the entire data (one Random Forest model, one XGBoost model). These
final models are then stored in MLFlow. As a side product, the HP optimization also provides
some accuracy measures18 that we can store in MLFlow (see Figure 10). We use the R package
MLR3 to implement these calculations (see Annex 1 and Annex 2). We also use the R package
mlflow for interacting with MLFlow.

Part 3: Price Statistics

The price statistician can now select the model they would like to use for price imputation.
Subsequently, this model is used to impute missing prices on the pooled data. This augmented
data (observed and imputed prices) can afterward be used to calculate a price index (for example
a GEKS index). The resulting indices can then be spliced with previously calculated indices,
and integrated into the CPI to obtain higher-level indices. We use the R package IndexNumR
to calculate the GEKS indices. We also use the R package MLFlow for interacting with MLFlow.

Integrating the proposed division of the process is straightforward with MLFlow, an open source
tool renowned for its robust framework for efficient ML lifecycle management. MLFlow pro-
vides centralized storage capabilities for ML models and associated artefacts. It also provides
a user-friendly interface for tracking and monitoring model performance (see Figure 11), which

17See https://mlflow.org/
18Strictly speaking, we would need to apply nested resampling to estimate the accuracy. However, for practical

reasons, we only do HP optimization in a production environment.
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facilitates continuous improvements and decision-making throughout the experimental phase.
One distinguish feature of MLFlow is its provision of unique model access for production en-
vironment. This includes features such as versioning and staging functionalities, which enables
the collaboration and knowledge sharing across teams.

In practice, we interact with MLFLow in the following way each month:

• We store various models (together with their performance and hyperparameters) that were
trained in month t based on data from the periods t, t-1, . . . t-12

• We select our preferred model which we then register. Each period we thus register a new
model

• We access the registered model for period t in order to make the imputations on data from
the periods t, t-1, . . . t-12

Figure 10: Overview of the process
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Figure 11: Monitoring model performance in MLFlow

5 Conclusions and open issues

We have investigated the use of ML methods for making price imputations that can be inte-
grated in price indices for items that are missing.

We first evaluated the performance of ML methods. We have seen that XGBoost and Ran-
dom Forest have significantly lower RMSE compared to a standard linear regression. We prefer
Random Forest over XGBoost as the HPs can be more easily optimized for the former, rather
than for the latter. Moreover, the use of weights was crucial to add robustness to the results of
XGBoost, while weights tend to play a less important role in Random Forest. The entry cost to
the field of machine learning was reduced by relying on existing tools (e.g. MLR3 collection of
packages).

The choice of an imputation method also has an impact on the final prices indices. Both Random
Forest and XGBoost based price indices are relatively similar, but on our datasets they tend to
decrease more than price indices that are based on linear regressions. Finally, we have suggested
a process for using ML methods in a production environment. We believe it is important to
distinguish the ML part from the price statistics part.

We have identified some open issues that should be further investigated when combining ML
and Price Statistics:

• The choice of re-sampling strategy impacts the evaluation of performance of the model and
HP optimization. What would be the most appropriate re-sampling strategy in context of
prices statistics data that includes time and product dimensions? For example, we may
include a stratification (by period or by product) in the resampling design, or we may link
together observations of the same period or the same product

• Time plays a crucial role in our context as we are interested in price changes across time.
One should further examine how time should be best encoded in ML models in order to
properly capture the panel aspect in our data. This becomes increasingly relevant for
“longer” time windows
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• Feature engineering is often a crucial aspect in ML. We have only done some basic transfor-
mations of the available characteristics. There could be some potential to further optimize
the models through feature engineering

• While it is common to work with expenditure weights in price statistics, it remains unclear
if weight information should also be used when training ML models. The treatment of
weights also depends on the specific ML method that is applied

• The ML models aim at imputing individual prices. However, our final objective is to
measure aggregated price change. One should better understand the relationship between
imputations for an individual price and the corresponding price index. For example, how
does the bias-variance trade-off propagates to bilateral and multilateral the price indices?

• We have aligned our re-training strategy to the rolling time window strategy applied in
multilateral methods. It still remains to be seen what is the best time window over which
ML models should be trained and how should these time windows be adjusted when data
of the last period becomes available.
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Annex 1 – Nested resampling

# Load packages
library(dplyr); library(mlr3); library(mlr3verse); library(mlr3learners); library(mlr3fselect); library(mlr3tuning);
library(mlr3misc); library(xgboost); library(mlbench); library(ranger); library(mlr3mbo)

##########################################################

######### PART 1 - DATA SOURCE ##################################

##########################################################

# Import your data here
# Choose your time window

# The following variables need to be in your data:

# lnP: logarithm of price
# PERIOD: Time periods (1,2,3,etc.)
# E: Expenditure (in case of transaction data only)

# Transform your data (create dummies out of time vector, brand, etc.)

# Dataset which will be used in the Machine Learning part is called mydata

##########################################################

######### PART 2 - MACHINE LEARNING - NESTED RESAMPLING ###############

##########################################################

# Define the cross validation strategies
# inner_cv = rsmp("cv", folds = 10) # inner loop for nested CV
# outer_cv = rsmp("cv", folds = 5) # outer loop for nested CV
inner_cv = rsmp("cv", folds = 5) # inner loop for nested CV
outer_cv = rsmp("cv", folds = 3) # outer loop for nested CV
set.seed(555)

# Define the task, we want to predict log price
mytask= as_task_regr(mydata, target = "lnP")

# Add the time period as a stratification variable when resampling
mytask$col_roles$stratum="PERIOD"

# Alternative resampling strategies could be defined here
# Take account of weights in ML alg. (in case of web-scraped data this can be ignored)

# mytask$col_roles$weight="E"

# We need to exclude the Expenditure variable from the set of features, that is we define a reduced set.
# Drop also the product identifier JAN

mytask$select(names(mydata %>% select(-E, -JAN, -lnP)) )

# Define the tuning strategy for xgboost (inner resampling)
xgb_tuned = AutoTuner$new(learner = lts(lrn("regr.xgboost")),
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resampling= inner_cv,
measure=msr("regr.rmse"),
tuner = tnr("mbo"),
terminator= trm("evals", n_evals = 20),
store_models = TRUE)

# Define the tuning strategy for random forest (inner resampling)
rf_tuned = AutoTuner$new(learner = lts(lrn("regr.ranger")),

resampling= inner_cv,
measure=msr("regr.rmse"),
tuner = tnr("mbo"),
terminator= trm("evals", n_evals = 20),
store_models = TRUE)

# Define the benchmarking (outer resampling)
bm_design = benchmark_grid(

tasks = mytask,
learners = c(lrn("regr.lm"),

rf_tuned,
xgb_tuned),

resamplings = outer_cv
)

# Evaluate performance of models via nested resampling
bmr = benchmark(bm_design, store_models = TRUE)

# Plot the models
autoplot(bmr, measure = msr("regr.mse"), type = "boxplot")
autoplot(bmr, measure = msr("regr.rmse"), type = "boxplot")
autoplot(bmr, measure = msr("bias"), type = "boxplot")
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Annex 2 – Hyperparameter optimization and model estimation

# Load packages
library(dplyr); library(mlr3); library(mlr3verse); library(mlr3learners); library(mlr3fselect); library(mlr3tuning);
library(mlr3misc); library(xgboost); library(mlbench); library(mlr3misc); library(ranger); library(DiceKriging)

##########################################################
######### PART 1 - DATA SOURCE – HPO ##############################
##########################################################

# Import your data here
# Choose your time window

# The following variables need to be in your data:

# lnP: logarithm of price
# PERIOD: Time periods (1,2,3,etc.)
# E: Expenditure (in case of transaction data only)

# Transform your data (create dummies out of time vector, brand, etc.)

# Data set which will be used in the ML part is called mydata

##########################################################
######### PART 2 - MACHINE LEARNING – HPO ##########################
##########################################################

# Define the task, we want to predict log price
mytask= as_task_regr(mydata, target = "lnP")

# Add the time period as a stratification variable when resampling
mytask$col_roles$stratum="PERIOD"

# Take account of weights in ML alg. (in case of transaction data only)
mytask$col_roles$weight="E"

# We need to exclude the Expenditure variable from the set of features,that is we define a reduced set.

mytask$select(names(mydata %>% select(-E,-lnP)) )

# Define the Cross -Calidation strategy
cv10 = rsmp("cv", folds = 10)
set.seed(555)

# We search for optimal HPs for Random Forest using mbo instance_rf_mbo = tune(
tuner = tnr("mbo"),
task = mytask,
learner = lts(lrn("regr.ranger")),
resampling = cv10,
measure =msr("regr.rmse"),
term_evals = 20)

# Fine tuning can be done using a grid search
# design = data.table(expand.grid(sample.fraction=seq(0.2, 1, length.out = 10),
# mtry.ratio =seq(0.2, 1, length.out = 20),
# replace = FALSE,
# num.trees=1000))
#
# instance_rf_grid_search = tune(
# tuner = tnr("design_points", design = design),
# task = mytask,
# learner = lts(lrn("regr.ranger")),
# resampling = cv10,
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# measure =msr("regr.rmse"))

# Now we do the the final model. We run the tuning on the full data
# We use random forest
final_learner_rf = lts(lrn("regr.ranger"))

final_learner_rf$param_set$values = instance_rf_mbo$result_learner_param_vals

final_learner_rf$train(mytask)

##########################################################
######### PART 3 - PRICE STATISTICS ###############################
##########################################################

### Imputation GEKS

# STEP 1: we create an augmented dataframe
# This augmented data set containes features (including features related to time)
# For items whose price is to impute
# We call this dataset items_to_impute

# STEP 2: We estimate the price with Random Forest
predicted_price=final_learner_rf$predict_newdata(items_to_impute)
items_to_impute$imputed_price_rf=exp(predicted_price$response)

# STEP 3: An imputation GEKS can now be computed
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