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1. Problem 
With the advent of mul�lateral methods being used in compu�ng price indices from scanner data, 
the ques�on of choosing the “correct” index formula, window length and splicing method has gained 
unprecedent importance. This means that different �me series are generated and compared, be it 
against each other (De Haan, Hendricks, & Scholz, 2021; Chessa, Verburg, & Willenborg, 2017), a set 
of axioms (Eurostat, 2022) or a benchmark index (Chessa, 2019; Bialek & Bobel, 2019). However, the 
comparison of different �meseries is normally done using eyeballing; a measure of describing the 
degree of index similarity is missing. 

Unfortunately, standard textbooks seem not to deal with the problem of measuring the similarity of 
�me series in in a way that it matches the demands of a similarity measure for economic indices. 
However, there is literature about iden�fying “similar price and quan�ty structures” for interregional 
comparisons (Diewert, 2006). This is not the same, but a related problem, and the axioms used by 
Diewert (2006) can be translated into some that can help in tes�ng a similarity measure for �me 
series. They should be complemented by axioms that take into account the special nature of 
economic indices: especially in communica�ng them, the absolute values of the indices are only 
playing a minor role, while the focus is on change rates. This needs to be considered by the design of 
the similarity measure as well. 

The paper is organised as follows: in chapter 2, tradi�onal approaches that may point to similarity of 
�me series are shown and discussed. Then, in chapter 3, the similarity measure is developed by 
se�ng up axioms, proposing some measures and tes�ng them against the axioms. In chapter 4, I will 
apply the preferred similarity measure to some comparison problems of the literature. Contribu�ons 
and limita�ons are discussed in chapter 5. Chapter 6 concludes. 

2. Tradi�onal approaches and their drawbacks 
Before developing a new measure, it makes sense to evaluate exis�ng measures that may point to 
�me series similarity. As there are plenty of them,2 I will only discuss selected measures.  

2.1. Descrip�ve sta�s�cs: Mean and Variance 
In descrip�ve sta�s�cs, mean and variance are the most common metrics being used. One could 
argue that two �me series are similar when their mean and variance are similar. For example, sine 
and cosine have the same mean and variance. However, being put into the context of economic 
indices, one would not describe them as being similar as their gradients – or, in the world of discrete 
measures like price indices – their period-on-period percentage changes are different. In addi�on, 
given the economic growth over the last centuries and the long-term trend of infla�on, the 
assump�on of a stable mean and also a stable variance fails. Hence, we would get different results of 

 
1 Bernhard Goldhammer, Principal Economist-Sta�s�cian, European Central Bank, Directorate General Sta�s�cs, 
Division MOE, e-mail bernhard.goldhammer@ecb.europa.eu. Disclaimer: The views expressed in this paper are 
those of the author and do not necessarily reflect the views and policies of the European Central Bank or the 
Eurosystem. 
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a similarity analysis, if different �me ranges are being inves�gated. In addi�on, mean and variance 
have been developed for probability sta�s�cs. This means that the order of periods does not play a 
role. However, for economic indices, it plays a decisive role, as it determines period-on-period 
percentage changes. In conclusion, mean and variance are not suited as similarity measures for 
economic indices. The demand of having the same dynamics at the same point in �me for a measure 
of index similarity also rules out other possible similarity measures that allow one series lagging 
behind the other, like ARIMA models or cross-correla�ons, or tests on �me series sta�onarity. 

2.2. Bravais-Pearson correla�on coefficient 
The Bravais-Pearson correla�on coefficient, for two �me series X and Y, is defined as follows: 

𝑟𝑟 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑿𝑿,𝒀𝒀)
𝑠𝑠𝑠𝑠(𝑿𝑿)𝑠𝑠𝑠𝑠(𝒀𝒀)

 

It measures the strength and direc�on of a linear rela�onship between X and Y.3 So, the correla�on 
coefficient is invariant of linear transforma�ons.4 However, this is again not in line with the idea of a 
similarity measure for �me series in an economic sense, e.g. with the inten�on that similarity is 
present if period-on-period change rates are iden�cal, as linear transforma�ons will change the 
change rates. In addi�on, as it is independent of the order of periods (applying the same permuta�on 
to the members of X and Y will not change the correla�on coefficient), also does not account for the 
specific property of �me series that a natural order of the observa�on values exists. Therefore, the 
correla�on coefficient is also not a suitable measure for �me series similarity. 

  

 
3 Vogel (1999), p. 75: „Der Korrela�onskoeffizient… mißt die Stärke und die Richtung linearer Beziehungen 
zwischen zwei metrischen Merkmalen X und Y.“ 
4 Vogel (1999), p. 76. 
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3. Development of a similarity measure, especially for price indices 
3.1. Useful proper�es and axioms 

As we have seen, classical measures show weaknesses if being used as a similarity measure for �me 
series. Therefore, I will follow the axioma�c approach for the deriva�on of a similarity measure: 
beneficial proper�es will be defined, against which some possible measures of �me series similarity 
will be tested. This is done against the special background of economic indices that relate to a certain 
base period (whose index value is 100). 

There is not much literature on similarity of �me series. However, Diewert (2006) provides some 
similarity axioms, which have been developed for several cases like one or many variables and 
rela�ve and absolute dissimilarity. While his work was on the similarity of price and quan�ty 
structures for interregional comparisons, it is possible to transfer his axioms to �me series. For �me 
series like price indices, where rela�ve differences are more important than absolute differences, his 
axioms for “rela�ve dissimilarity indexes in the N variable case” (Diewert, 2006, pp. 11) can be 
applied. Let 𝑆𝑆(𝑿𝑿,𝒀𝒀) denote the similarity measure for the �me series X and Y with elements 𝑥𝑥𝑡𝑡 and 
𝑦𝑦𝑡𝑡. Both �me series are indices that have a base period whose index value is 100. Then, the following 
axioms can be deducted that represent beneficial proper�es of measures of �me series similarity:5 

A. Continuity: 𝑆𝑆(𝑿𝑿,𝒀𝒀) is a con�nuous func�on defined for all �me series X and Y (with 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 >
0). 

B. Identity: 𝑆𝑆(𝑿𝑿,𝜆𝜆𝑿𝑿) = 0 for all �me series X with 𝑥𝑥𝑡𝑡 > 0 and scalars 𝜆𝜆 > 0. 
C. Positivity: 𝑆𝑆(𝑿𝑿,𝒀𝒀) > 0 if 𝒀𝒀 ≠ 𝜆𝜆𝑿𝑿 for any 𝜆𝜆 > 0. 
D. Symmetry: 𝑆𝑆(𝑿𝑿,𝒀𝒀) = 𝑆𝑆(𝒀𝒀,𝑿𝑿) for all �me series X and Y (with 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 > 0). 
E. Proportionality: 𝑆𝑆(𝑿𝑿, 𝜆𝜆𝒀𝒀) = 𝑆𝑆(𝑿𝑿,𝒀𝒀) for all �me series X and Y with 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 > 0 and scalars 𝜆𝜆 >

0. 

In addi�on, Diewert (2006) also proposes axioms for “invariance to changes in the unit of 
measurement” and “invariance to the ordering of commodi�es”. They have not been transferred to 
our case, as they are either directly fulfilled or violated by the nature of economic indices and �me 
series:  

- “Invariance to changes in the unit of measurement” is already fulfilled, as we are looking at 
indices. Indices in economic sta�s�cs are already transforma�ons of the original 
measurement unit in such a way that they enable index con�nuity despite changes of the 
underlying measurement units. Good examples for that property are price indices, where the 
index con�nues even when the underlying currency of prices is changed.6 

- “Invariance to the ordering of commodi�es” is per se violated, as one fundamental 
characteris�c of a �me series is that the order of its values is important, as it represents the 
development over �me. 

When looking into the proper�es of �me series in general and price indices in par�cular, we can 
derive addi�onal important axioms: 

F. Correction for the number of time periods. The similarity measure should not depend on the 
number of �me periods included in the �me series. Let 𝑿𝑿,𝒀𝒀,𝑿𝑿� ,𝒀𝒀�  be �me series, 𝑿𝑿 and 𝑿𝑿� 
with the same value 𝑥𝑥𝑡𝑡 = 𝑥𝑥 for all periods, 𝒀𝒀 and 𝒀𝒀� with the same value 𝑦𝑦𝑡𝑡 = 𝑦𝑦 for all 

 
5 Cf. Diewert (2006), p. 12. 
6 A recent example is Croa�a accessing the euro area: while the Croa�an currency changed from Kuna to Euroa, 
the Croa�an HICP has  con�nued and enables price level comparisons without a break. 
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periods. 𝑿𝑿 and 𝑿𝑿� are defined for periods 1,…,T, as well as 𝒀𝒀 and 𝒀𝒀� for periods 1,…,T+1. Then, 
if this axiom is kept, 𝑆𝑆(𝑿𝑿,𝒀𝒀) = 𝑆𝑆�𝑿𝑿� ,𝒀𝒀�� . 

G. Focus on change rates. For economic indices, the index level itself is rather an arbitrary 
decision, depending e.g. on the choice of the base year. Therefore, 𝑆𝑆(𝑿𝑿,𝒀𝒀) = 0 if, for all 
periods t>1, 𝑥𝑥𝑡𝑡 𝑥𝑥𝑡𝑡−1⁄ = 𝑦𝑦𝑡𝑡 𝑦𝑦𝑡𝑡−1⁄ . This means that indices are defined as being similar if they 
have iden�cal period-on-period change rates. This axiom is similar, but more restric�ve than 
iden�ty axiom B, as it does not only define the outcome for a given input of two �me series, 
but also specifies that all �me periods later than t=1 need to be considered. As we will see, 
this has an impact on the performance of the proposed similarity measures in tes�ng the 
axioms. 

A�er having decided upon the proper�es a similarity measure for �me series should have, I will now 
propose three measures of index similarity, that are then tested against these proper�es.  

3.2. Proposal for similarity measures for price indices 
This paper is not meant to propose and test an exhaus�ve number of similarity measures; instead, it 
is a first approach of raising awareness for the problem and proposing first similarity measures. 
Further measures, with proper�es that may be beter, can be derived by future research. Therefore, I 
will focus on three measures of the family of average quadra�c distances that by their very nature 
already sa�sfy axiom A: 

A. Average quadratic distance of indices. This is based on the absolute index numbers. Let there 
be n �me periods 𝑡𝑡 = 1, … ,𝑇𝑇, and two indices (�me series) I and J. Then, similarity measure 
S1 is defined as follows: 

𝑆𝑆1 ≡
∑ (𝐼𝐼𝑡𝑡 − 𝐽𝐽𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

𝑛𝑛
 

B. Average quadratic distance of annual change rates. This is based on annual change rates. 
Therefore, it needs �me series that are at least 13 months long (under the precondi�on that 
we have a monthly �me series). Using the same nota�on as for S1, S2 is defined as follows: 

𝑆𝑆2 ≡
1

𝑛𝑛 − 12
� �

𝐼𝐼𝑡𝑡
𝐼𝐼𝑡𝑡−12

−
𝐽𝐽𝑡𝑡

𝐽𝐽𝑡𝑡−12
�
2𝑇𝑇

𝑡𝑡=13

 

C. Average quadratic distance of monthly change rates. This similarity measure is based on 
monthly change rates. Therefore, it needs �me series that are, at least, two months long. 
Using the known nota�on, S3 is defined as follows: 

𝑆𝑆3 ≡
1

𝑛𝑛 − 1
��

𝐼𝐼𝑡𝑡
𝐼𝐼𝑡𝑡−1

−
𝐽𝐽𝑡𝑡
𝐽𝐽𝑡𝑡−1

�
2𝑇𝑇

𝑡𝑡=2

 

These three similarity measures will be tested against the axioms in the next chapter. 

3.3. Tes�ng of the measures against axioms: deriva�on of the preferred similarity 
measure 

Tes�ng the similarity measures against the axioms has been carried out; the proofs are shown in the 
appendix. Table 1 shows the results. 

  



5 
 

Goldhammer - A Measure for the Similarity of Time Series 

Table 1: Result of axiomatic tests for proposed similarity measures. 

Axiom S1 - indices S2 – annual change 
rates 

S3  - monthly change 
rates 

A. Con�nuity    
B. Iden�ty    
C. Posi�vity    
D. Symmetry    
E. Propor�onality    
F. Correc�on for 
number of periods 

   

G. Focus on change 
rates 

   

 

As we can see, S3 sa�sfies all axioms, while S1 fails most of them. S2 fails only the focus on change 
rates. So, with regard to the desired proper�es, S3 seems to be superior and will be used in the 
remainder of this paper by applying it to some problems of �me series comparison from the 
literature, focusing on price indices. 

3.4. Further considera�ons: addi�onal metrics to report when using S3 
While S3 seems to be a promising measure for �me series similarity, it should not be used without 
context. Therefore, when repor�ng it for two or more �meseries, some addi�onal informa�on should 
be provided as well: 

- Benchmark index (if more than two series are investigated). It can be shown that S3 is not 
transi�ve, so the choice of the benchmark index has an impact on the results. Therefore, it 
needs to be reported. 

- Length of time series. While the measure is designed to abstract from the �me series length 
by averaging over the number of �me periods, in order to enable the same interpreta�on of 
the value of S3 for long and short �me series, the length itself is an important addi�onal 
informa�on to the user. It tells us, if the shown degree of similarity was observed during a 
long or a short period, and so if the measure is more or less robust to adding an addi�onal 
observa�on period. 

- Absolute time range (if available). Especially when applied to economic indices, the similarity 
measure may yield different results depending on for which �me period it is actually 
calculated. Conjunctural developments may be a driving force for this issue. 

- Root S3. The interpretability of S3, as an averaged sum of squares, might be rather limited. In 
addi�on, for economic indices in general and price indices in par�cular, the differences found 
in period-to-period change rates will be in the dimension of 0.01 (i.e. 1 p.p.), which, when 
squared, amount to 0.0001. That looks very small, while represen�ng a 1 percentage points 
difference. Therefore, to get more meaningful numbers, we may calculate the root of S3: 

𝑅𝑅𝑆𝑆3 = �𝑆𝑆3 

 An interpreta�on of RS3 may draw upon its twin, the standard devia�on, as standard 
difference between the change rates of the two series. 

With these pre-condi�ons, I will now apply the similarity measure to problems from the literature. 
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4. Applica�on of the similarity measure to problems from the 
literature 

By thinking about possible applica�ons of the similarity measure S3 to the analysis especially of price 
indices, three use cases emerge: 

- Comparison of alterna�ve price indices with a benchmark 
- Comparison of two �me series 
- Finding imputa�ons for missing observa�ons for a �me series by comparing it to other ones 

and choosing the most “similar” index development, with which the missing observa�on can 
be imputed. 

4.1 Comparison of several �me series with a benchmark 
Especially with the advent of mul�lateral methods in the domain of consumer prices as a means of 
aggrega�ng transac�on data, it has become a major task of comparing �me series aggregated from 
the same microdata using different index formulas, comparison windows and splicing techniques.7 
However, a comparison for its own sake does not help for deciding on which compila�on method to 
choose, if no benchmark exists. The most likely best method is then the one that behaves most 
“similar” to the benchmark index. 

4.1.1 Many indices, differences look small – is that the case? 
A nice example can be found in Radjabov & Van Loon (2022). The authors compare several index 
compila�on methods for seasonal products. While they show a preference for the GEKS index, they 
do not discuss which of the splicing methods should be preferred; they rather show the sensi�vity of 
several mul�lateral price indices to splicing methods by providing the range of percentage changes 
that they compute with 9 different splicing methods. They conclude that “… GEKS price indices are 
less sensi�ve to a usage of different splices rather than GK and WTPD price indices …” and that “… 
FBMW price indices significantly deviate from benchmark price indices.” (Radjabov & Van Loon, 2022, 
S. 13). Applying the similarity measure S3 might provide addi�onal insights and would help in deciding 
which splicing method should be preferred. I have carried out such calcula�ons for their “sample 1” 
for Geary-Khamis (GK), ITGEKS, and Weighted Time-Product Dummy (WTPD) indices, as they are 
shown in their figure 2 (Radjabov & Van Loon, 2022, p. 14; see below).8 

  

 
7 For an overview, see (Eurostat, 2022). 
8 Many thanks to Lucien May, Bo�r Radjabov and Ken Van Loon for sharing the numbers with me. 
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Figure 1: The spliced Price Indices of Geary-Khamis, ITGEKS and WTPD Methods - figure 2 in Radjabov & Van Loon (2022, p. 
14)9 

 

From looking at the figures, one could get the idea that the results are rather similar. However, the 
scale points to significant differences between the methods, as already the benchmark index FULL 
has values in the range of 60 to 185 (depending on the index formula). So, also differences that look 
small in the figure may point to very dissimilar indices.  

Let’s have a look at the similarity measure S3 for this example. The calcula�ons of the similarity 
measure use the FULL index as benchmark.10 The results are shown in the following table and figure. 

  

 
9 Meaning of the abbrevia�ons of the splicing methods: 
FBMW: fixed base moving window; FULL: benchmark index (covers full period); HALF: half splice; HASP: half 
splice on published price indices; MEAN: mean splice; MESP: mean splice on published price indices; 
MOVEMENT: movement splice; Window: window splice; WISP window splice on published price indices. See 
the explana�ons in Radjabov & Van Loon (2022), p. 12. 
10 As suggested by Radjabov & Van Loon, p. 13: “Moreover, Figure 2 also provides full window (FULL) price 
indices, which are seen as benchmark price indices since they are “chain dri�” free.” 
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Table 2: S3 and RS3 for different splicing methods and different multilateral methods (source: ECB calculations based on 
Radjabov & Van Loon, 2022, sample 1). 

Index  FBMW HALF HALF 
PUB 

MEAN MESP MOVE-
MENT 

WINDOW WISP 

Geary-
Khamis 

Number 
of 
periods 

35 

S3 0.02369 0.00281 0.00326 0.00312 0.00314 0.00410 0.00280 0.00376 
RS3 0.15390 0.05300 0.05712 0.05585 0.05607 0.06401 0.05295 0.06136 

IT-
GEKS 

Number 
of 
periods 

35 

S3 0.02251 0.00139 0.00078 0.00172 0.00171 0.00338 0.00139 0.00117 
RS3 0.15004 0.03726 0.02797 0.04142 0.04137 0.05815 0.03728 0.03414 

WTPD Number 
of 
periods 

35 

S3 0.02141 0.00129 0.00083 0.00159 0.00159 0.00321 0.00128 0.00129 
RS3 0.14631 0.03591 0.02874 0.03985 0.03991 0.05662 0.03573 0.03585 

 

Figure 2: RS3 for different splicing methods and different multilateral methods (source: ECB calculations based on Radjabov 
& Van Loon, 2022, sample 1). 

 

Geary-Khamis IT-GEKS WTPD 

  

First, it can be directly seen that their claim on the FBMW splicing method is correct, as it is least 
similar to the benchmark index. However, when it comes to the sensi�vity regarding the splicing 
method, the finding is less clear for sample 1: IT-GEKS’ and WTPD’s similarity measures closely match 
for almost every splicing method, most pronounced differences are shown for the worst performing 
methods (FBMW and MOVE) only. However, the use of the similarity measure also enables us to draw 
a conclusion about which splicing method matches best the benchmark index: for IT-GEKS and WTPD, 
it is HASP; for Geary-Khamis, WINDOW and HALF show almost the same degree of similarity, but, in 
general, the level of similarity is worse compared to IT-GEKS and WTPD. So, it may be not only about 
the choice of the splicing method, it may be about the GK method itself.  
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4.1.2 Unveiling differences invisible in the figure 
Chessa (2019) compares different extension methods for mul�lateral methods, in order to find out 
which extension method is superior for the calcula�on of scanner-data based indices. A special 
aten�on is given to finding chain-dri� free extension methods. A main finding is that both methods 
with a fixed base and methods that use splicing on published indices are to be recommended. Out of 
the many comparisons shown by him,11 the two shown in the following figure will be examined using 
S3. 

Figure 3: two cases from Chessa (2019, ppt, slide 28, left panel, and slide 30, right panel). 

 

The benchmark, in both cases, is the “full period” index. From eyeballing, one would say that the 
series on the le� panel are almost iden�cal; in the right panel, the “HS [half splice] on published 
indices” seems to match the “full period” index more closely than the “13 months” index.12 

Let us apply S3 to these two cases, also using the “full period” index as benchmark.13 The results are 
shown in the following table and figure. 

Table 3: S3 for two cases from Chessa (2019, ppt, slide 28, left panel, and slide 30, right panel; source: ECB calculations). 

Case  13 months HS on published indices 

Supermarkets Number of periods 47 

S3 0.0000027 0.0000032 

RS3 0.0016390 0.0017914 

Sugar and confec�onary 
(supermarkets) 

Number of periods 47 

S3 0.0000275 0.0000281 

RS3 0.0052435 0.0052993 

 

  

 
11 Not only in the paper. In the presenta�on, he was showing even more comparisons, one of which is used for 
this paper. See Chessa (2019, ppt). 
12 For the sake of completeness, it should be men�oned that Chessa used the Geary-Khamis index for these 
comparisons. 
13 Many thanks to Tony Chessa for making the data available. 
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Figure 4: RS3 for two cases from Chessa (2019, ppt, slide 28, left panel, and slide 30, right panel; source: ECB calculations). 

 

Supermarkets Sugar and confec�onary (supermarkets) 

 

Not surprising, the similarity measures show that the series for “supermarkets” are more similar than 
those for “sugar and confec�onary”. What is more surprising is that, for “sugar and confec�onary”, 
the differences in similarity between 13 months and HS on published indices are only marginal, 
despite the divergence visible in the chart. And they are even smaller than those for supermarkets. 
This is an example of how relying on visible evidence only may be misleading. 

It should be noted that, in the paper, Chessa (2019, p. 9, p. 16) uses not only visualisa�on, but also 
several sta�s�cs to judge the similarity of two indices, notably mean, minimum and maximum of the 
differences between the year-on-year indices. That may point to further research on having a 
comprehensive set of indicators for judging index similarity. 

4.2 Comparison of two �me series 
In the paper “A Comparison of Weighted Time Dummy Hedonic and Time-Product Dummy Indexes”, 
De Haan et al. (2021) show an example for the comparison of two �me series (see Figure 5). They 
describe the different results obtained by using different index formula on the same raw (scanner) 
data. This is a quite interes�ng case, as the two indices diverge fully a�er some periods, even with 
different signs of the change rate; for later periods it is then hard to judge if they s�ll behave in a 
similar manner, as the magnitudes of the indices are substan�ally different. 

Figure 5: TPD and TDH Index - Figure 2 in De Haan et al. (2021), p. 406. 

 

Next to calcula�ng the similarity measure for the whole �me range, it might be interes�ng to 
calculate it for some parts of the �me range only:  

0.0000000

0.0010000

0.0020000

0.0030000

0.0040000

0.0050000

0.0060000

R
S3

0.0000000

0.0010000

0.0020000

0.0030000

0.0040000

0.0050000

0.0060000

R
S3

13 months 
HS on published indices 



11 
 

Goldhammer - A Measure for the Similarity of Time Series 

- The beginning – periods 2-11: rather similar trend of the �me series, but devia�ng period-on-
period change rates. 

- Time of divergence – periods 12-14: Different sign of the p-o-p change rates, and increasing 
difference in absolute index numbers, leading to different index levels. 

- Parallelism at different levels – periods 16-50: small differences in the p-o-p change rates, but 
already very different index levels should s�ll lead to a small similarity measure S3. 

The results for these three �me ranges as well as the whole �me range have been calculated14 and 
can be found in Table 4. 

Table 4: S3 measures based on TPD and TDH series from de Haan et al. (2021, p. 406); source: ECB calculations.. 

Time range 2-11 12-14 15-50 Total 
Length of �me 
series 

10 3 36 49 

S3 0.002613 0.033528 0.000101 0.00266 
RS3 0.05112 0.183107 0.010079 0.05158 

 

The results show, in total, a substan�al dissimilarity between the two series. The interpreta�on of RS3 
as some kind of average distance in p.p. of growth rates would see 5.1 p.p. “standard distance”, which 
is a lot. And, as the analysis by �me ranges show, this is not only due to the �me of divergence 
(RS3=0.18) and the already diverging beginning, but also to the parallelism at different levels: while 
eyeballing suggests rather similar growth rates, RS3=0.01 suggest 1 p.p. differences in growth rates 
per period, which is a lot. It can be concluded that the series are not similar and may yield very 
different infla�on rates – and that being applied to the same underlying data.15 

4.3 Selec�ng a �me series for the imputa�on of missing values 
Another use case for the applica�on of S3 is the imputa�on of missing values. If an observa�on value 
for a �me series in a certain �me period is not available, the development of which other �me series 
should be taken for imputa�on? This is a ques�on that frequently occurs in official sta�s�cs, be it 
because of late repor�ng of respondents or because of an exhaus�on of the sample frame for a 
par�cular stratum. 

As an example, the ECB gets data from the European Commission on prices of agricultural 
commodi�es 16 and calculates agricultural price indices out of it. As the price data are o�en 
incomplete, imputa�ons are needed. Currently, this is done using the correla�on coefficient of the 
period-to-period percentage changes of the series of absolute prices.  

In the example below, for the Italian series on prices for durum wheat, a series for imputa�on is 
sought. Figure 6 shows the period-on-period percentage changes of the absolute prices17 for durum 
wheat for Italy and other countries in southern Europe. Note that these are from a �me range 
between August 2004 and March 2024; they show the periods in which data was available for all 
countries in (at least) two consecu�ve months. 

 
14 Many thanks to Jan de Haan for providing the numbers underlying Figure 5. 
15 The reasons for that behaviour are well explained in De Haan et al. (2021). 
16 Data source: European Commission (2024). 
17 As no quality and quan�ty adjustment is done, the series of absolute prices per ton are prety similar to a 
price index, with the excep�on of not referring to a par�cular base period. The month-on-month percentage 
changes, however, are the same as they were for a price index based on these absolute prices. 
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Figure 6: monthly percentage changes of prices for durum wheat for southern European countries. Benchmark series: Italy. 
Source: European Commission, ECB calculations. 

 

While the current implementa�on in the ECB’s produc�on system uses the correla�on coefficient, 
whose drawbacks as a measure for similarity have been discussed in chapter 2.2, I have also 
calculated S3 and RS3 for the example.  

Table 5: Correlation coefficient, S3 and RS3 (source: ECB calculations). 

Country 
comparison 

IT vs. ES IT vs. CY IT vs. GR IT vs. PT 

Number of �me 
periods 

26 

Correla�on 
coefficient 

0.7262 -0.12559 0.24096 0.40496 

S3 0.000670 0.007147 0.001875 0.001057 

RS3 0.025893 0.084542 0.043297 0.032512 

In this example, both S3 and the correla�on coefficient detect the same series (the one from Spain) as 
most suited for imputa�on. While the correla�on coefficient also shows that the series from Cyprus 
may even move in the opposite direc�on than the Italian one, the RS3 measure provides an indica�on 
about the magnitude of differences in month-on-month change rate that can be expected when 
impu�ng with the respec�ve country series. 

5. Discussion 
From the calcula�on examples above, it can be seen that the similarity measure S3 proposed in this 
paper enables a beter judgement about the similarity of �me series than previous methods. It avoids 
the pi�alls of visualiza�on and also helps to judge the similarity of �me series at different numerical 
levels. A main advantage for its applica�on to economic indices is that it takes into account the 
period-on-period change rates, which are o�en in the focus of communica�ng these numbers, 
instead of the absolute index levels. As such a measure did not exist before, it may contribute to the 
discussion about preferred index formulas and imputa�on methods. 

However, some limita�ons should be acknowledged: the measure is based on differences in p-o-p 
change rates, that might be in permille dimensions mostly. As these numbers are being squared, the 
resul�ng measure might be a very small, which complicates the interpreta�on of the similarity 
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measure. I have proposed RS3 as a first remedy, also with a possible interpreta�on of “root mean 
squared difference”. Further research may strive for a standardised measure in the spirit of the 
correla�on coefficient, who is a benchmark in this regard.  

Another issue is that this “calculated” similarity may not be sufficient to finally judge about the 
suitability of the “most similar index” to approximate a benchmark index. It may be advisable to use 
addi�onal metrics, as, for example, shown in Chessa (2019). Further research may be aimed at 
developing a consistent framework of metrics for this purpose. 

6. Conclusion 
So far, judging the similarity of �me series in general and economic indices in par�cular relied on 
visualiza�on and some descrip�ve sta�s�cs, methods that are prone to error or not suited for the 
mater. The proposed similarity measure S3 has desirable proper�es, and its applica�on to use cases 
from the literature or current prac�ce shown in this paper already helped gaining new insights. It 
might therefore contribute to the discussion about economic indices and, in par�cular, help to 
iden�fy the most suitable index formula and splicing method for the use of scanner data. Being a first 
proposal, it leaves room for future research, like the formula�on of different similarity measures with 
even beter proper�es, for example regarding the dimension of the measure, and iden�fying a set of 
indicators that, being shown together, enable a true comparison of �me indices: relying on just one 
indicator may always fall short for describing complex rela�onships. Altogether, the similarity 
measure S3 enables more evidence-based comparison of �me series and also imputa�on of missing 
values, and I hope to see it more o�en in the future than charts overloaded with lines, from which a 
conclusion is hard to draw. 
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Appendix 
Proofs for axiom tes�ng 
Axiom B: Iden�ty 
S1:   

𝑆𝑆1(𝑿𝑿,𝜆𝜆𝑿𝑿) =
∑ (𝑥𝑥𝑡𝑡 − 𝜆𝜆𝑥𝑥𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

𝑛𝑛
=
∑ 𝑥𝑥𝑡𝑡2(1− 𝜆𝜆)2𝑇𝑇
𝑡𝑡=1

𝑛𝑛
 

As the index values are posi�ve, this term is 0 only in the special case when 𝜆𝜆 = 1, so the property is 
not kept by S1.  

S2: 

 𝑆𝑆2(𝑿𝑿,𝜆𝜆𝑿𝑿) = 1
𝑛𝑛
∑ � 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−12
− 𝜆𝜆𝑥𝑥𝑡𝑡

𝜆𝜆𝑥𝑥𝑡𝑡−12
�
2

=𝑇𝑇
𝑡𝑡=13

1
𝑛𝑛
∑ � 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−12
− 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−12
�
2

= 0𝑇𝑇
𝑡𝑡=13  q.e.d. 

S3: 

 𝑆𝑆3(𝑿𝑿,𝜆𝜆𝑿𝑿) = 1
𝑛𝑛
∑ � 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−1
− 𝜆𝜆𝑥𝑥𝑡𝑡

𝜆𝜆𝑥𝑥𝑡𝑡−1
�
2

𝑇𝑇
𝑡𝑡=2 = 1

𝑛𝑛
∑ � 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−1
− 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−1
�
2

𝑇𝑇
𝑡𝑡=2 = 0 q.e.d. 

Axiom C: Posi�vity 
As S1, S2, and S3 are constructed as an averaged sum of square numbers, which are by defini�on 
posi�ve or 0. The case “0” is achieved for cases of the iden�ty axiom for S2 and S3, and for S1 only if 
X = Y. So, S1, S2, and S3 all keep the posi�vity axiom. 

Axiom D: Symmetry 
Let us define a and b in the following way, with 𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡 being strictly posi�ve members of the �me 
series X,Y: 

- For S1: 𝑎𝑎 = 𝑥𝑥𝑡𝑡 ,𝑏𝑏 = 𝑦𝑦𝑡𝑡 
- For S2: 𝑎𝑎 = 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−12
, 𝑏𝑏 =  𝑦𝑦𝑡𝑡

𝑦𝑦𝑡𝑡−12
 

- For S3: 𝑎𝑎 = 𝑥𝑥𝑡𝑡
𝑥𝑥𝑡𝑡−1

, 𝑏𝑏 =  𝑦𝑦𝑡𝑡
𝑦𝑦𝑡𝑡−1

 

So, without limita�on, we can write: 

 𝑆𝑆1,2,3(𝒀𝒀,𝑿𝑿) = ∑ (𝑏𝑏−𝑎𝑎)2𝑇𝑇
𝑡𝑡=1

𝑛𝑛
= ∑ (−1)2(−𝑏𝑏+𝑎𝑎)2𝑇𝑇

𝑡𝑡=1
𝑛𝑛

= ∑ (𝑎𝑎−𝑏𝑏)2𝑇𝑇
𝑡𝑡=1

𝑛𝑛
= 𝑆𝑆1,2,3(𝑿𝑿,𝒀𝒀) q.e.d. 

Axiom E: Propor�onality 
S1: 

𝑆𝑆1(𝑿𝑿, 𝜆𝜆𝒀𝒀) =
∑ (𝑥𝑥𝑡𝑡 − 𝜆𝜆𝑦𝑦𝑡𝑡)2𝑇𝑇
𝑡𝑡=1

𝑛𝑛
=
∑ (𝑥𝑥𝑡𝑡2 − 2𝜆𝜆𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 𝜆𝜆2𝑦𝑦𝑡𝑡2)𝑇𝑇
𝑡𝑡=1

𝑛𝑛

=
1
𝑛𝑛
�(𝑥𝑥𝑡𝑡2 − 2𝜆𝜆𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 2𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 − 2𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 𝜆𝜆2𝑦𝑦𝑡𝑡2 + 𝑦𝑦𝑡𝑡2 − 𝑦𝑦𝑡𝑡2)
𝑇𝑇

𝑡𝑡=1

=   
1
𝑛𝑛
�(𝑥𝑥𝑡𝑡2 − 2𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 𝑦𝑦𝑡𝑡2) 
𝑇𝑇

𝑡𝑡=1

+  
1
𝑛𝑛
�(−2𝜆𝜆𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 2𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 𝜆𝜆2𝑦𝑦𝑡𝑡2 − 𝑦𝑦𝑡𝑡2) 
𝑇𝑇

𝑡𝑡=1

= 𝑆𝑆1(𝑿𝑿,𝒀𝒀) +
1
𝑛𝑛
�(−2𝜆𝜆𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 2𝑥𝑥𝑡𝑡𝑦𝑦𝑡𝑡 + 𝜆𝜆2𝑦𝑦𝑡𝑡2 − 𝑦𝑦𝑡𝑡2) 
𝑇𝑇

𝑡𝑡=1

 

 => S1 does not sa�sfy axiom E.  
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S2: 

𝑆𝑆2(𝑿𝑿,𝜆𝜆𝒀𝒀) = 1
𝑛𝑛
∑ � 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−12
− 𝜆𝜆𝑦𝑦𝑡𝑡

𝜆𝜆𝑦𝑦𝑡𝑡−12
�
2

=𝑇𝑇
𝑡𝑡=13

1
𝑛𝑛
∑ � 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−12
− 𝑦𝑦𝑡𝑡

𝑦𝑦𝑡𝑡−12
�
2

= 𝑆𝑆2(𝑿𝑿,𝒀𝒀)𝑇𝑇
𝑡𝑡=13  q.e.d. 

S3: 

𝑆𝑆3(𝑿𝑿,𝜆𝜆𝒀𝒀) = 1
𝑛𝑛
∑ � 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−1
− 𝜆𝜆𝑦𝑦𝑡𝑡

𝜆𝜆𝑦𝑦𝑡𝑡−1
�
2

𝑇𝑇
𝑡𝑡=2 = 1

𝑛𝑛
∑ � 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−1
− 𝑦𝑦𝑡𝑡

𝑦𝑦𝑡𝑡−1
�
2

𝑇𝑇
𝑡𝑡=2 = 𝑆𝑆3(𝑿𝑿,𝒀𝒀) q.e.d. 

Axiom F: Correc�on for the number of �me periods 
The axiom can be tested by calcula�ng 𝑆𝑆�𝑿𝑿� ,𝒀𝒀��, as defined in the axiom. These �me series have n+1 
�me periods 𝑡𝑡 = 1, … ,𝑇𝑇 + 1.  

S1: 

𝑆𝑆1�𝑿𝑿� ,𝒀𝒀�� =
∑ (𝑥𝑥 − 𝑦𝑦)2𝑇𝑇+1
𝑡𝑡=1
𝑛𝑛 + 1

=
(𝑛𝑛 + 1)(𝑥𝑥 − 𝑦𝑦)2

𝑛𝑛 + 1
= (𝑥𝑥 − 𝑦𝑦)2 =

𝑛𝑛
𝑛𝑛

(𝑥𝑥 − 𝑦𝑦)2 =
∑ (𝑥𝑥 − 𝑦𝑦)2𝑇𝑇
𝑡𝑡=1

𝑛𝑛
= 𝑆𝑆1(𝑿𝑿,𝒀𝒀) 

q.e.d. 

S2: 

Without limita�on: n, in this case, is the number of periods from 𝑡𝑡 = 13 to 𝑇𝑇. 

𝑆𝑆2�𝑿𝑿� ,𝒀𝒀�� =
1

𝑛𝑛 + 1
� �

𝑥𝑥
𝑥𝑥
−
𝑦𝑦
𝑦𝑦
�
2

=
𝑇𝑇+1

𝑡𝑡=13

0 

𝑆𝑆2(𝑿𝑿,𝒀𝒀) =
1
𝑛𝑛
� �

𝑥𝑥
𝑥𝑥
−
𝑦𝑦
𝑦𝑦
�
2

=
𝑇𝑇

𝑡𝑡=13

0 

So, 𝑆𝑆2�𝑿𝑿� ,𝒀𝒀�� = 𝑆𝑆2(𝑿𝑿,𝒀𝒀)  q.e.d. 

S3: 

Without limita�on: n, in this case, is the number of periods from 𝑡𝑡 = 2 to 𝑇𝑇. 

𝑆𝑆3�𝑿𝑿� ,𝒀𝒀�� =
1

𝑛𝑛 + 1
��

𝑥𝑥
𝑥𝑥
−
𝑦𝑦
𝑦𝑦
�
2

=
𝑇𝑇+1

𝑡𝑡=2

0 

𝑆𝑆3(𝑿𝑿,𝒀𝒀) =
1
𝑛𝑛
��

𝑥𝑥
𝑥𝑥
−
𝑦𝑦
𝑦𝑦
�
2

=
𝑇𝑇

𝑡𝑡=2

0 

So, 𝑆𝑆3�𝑿𝑿� ,𝒀𝒀�� = 𝑆𝑆3(𝑿𝑿,𝒀𝒀)  q.e.d. 

Axiom G: Focus on change rates 
S1: 

We already know that S1 fails to sa�sfy axiom B (iden�ty). However, for every pair of �me series 
(𝑿𝑿, 𝜆𝜆𝑿𝑿) with 𝜆𝜆 > 0, 𝜆𝜆 ≠ 1, the period-on-period change rates are iden�cal: 

𝜆𝜆𝑥𝑥𝑡𝑡
𝜆𝜆𝑥𝑥𝑡𝑡−1

=
𝑥𝑥𝑡𝑡
𝑥𝑥𝑡𝑡−1

 

As 𝑆𝑆1(𝑿𝑿,𝜆𝜆𝑿𝑿) ≠ 0 for 𝜆𝜆 > 0, 𝜆𝜆 ≠ 1, axiom G is not sa�sfied by S1.  
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S2: 

It is a well-known fact from seasonal adjustment prac�ce that �me series, that have the same annual 
change rates, do not necessarily have the same monthly change rates. Here is an example: 

For this proof, the nota�on is the following: Let 𝑥𝑥𝑚𝑚𝑡𝑡 be the (strictly posi�ve) value of �me series 𝑿𝑿 in 
month m (1,…,12) of year t (0,…T). Then, we can construct a �me series 𝒀𝒀 with members 𝑦𝑦𝑚𝑚𝑡𝑡 by 
using monthly factors 𝜆𝜆𝑚𝑚 > 0,≠ 1, that are the same for every year, but different for every month: 

𝑦𝑦𝑚𝑚𝑡𝑡 = 𝜆𝜆𝑚𝑚𝑥𝑥𝑚𝑚𝑡𝑡 

In such a situa�on, S2 would give us 

𝑆𝑆2(𝑿𝑿,𝒀𝒀) =
1
𝑛𝑛

� �
𝑥𝑥𝑚𝑚𝑡𝑡

𝑥𝑥𝑚𝑚,𝑡𝑡−1 −
𝑦𝑦𝑚𝑚𝑡𝑡

𝑦𝑦𝑚𝑚,𝑡𝑡−1�
2𝑇𝑇

𝑡𝑡=1,𝑚𝑚=1

=
1
𝑛𝑛

� �
𝑥𝑥𝑚𝑚𝑡𝑡

𝑥𝑥𝑚𝑚,𝑡𝑡−1 −
𝜆𝜆𝑚𝑚𝑥𝑥𝑚𝑚𝑡𝑡

𝜆𝜆𝑚𝑚𝑥𝑥𝑚𝑚,𝑡𝑡−1�
2𝑇𝑇

𝑡𝑡=1,𝑚𝑚=1

=
1
𝑛𝑛

� �
𝑥𝑥𝑚𝑚𝑡𝑡

𝑥𝑥𝑚𝑚,𝑡𝑡−1 −
𝑥𝑥𝑚𝑚𝑡𝑡

𝑥𝑥𝑚𝑚,𝑡𝑡−1�
2𝑇𝑇

𝑡𝑡=1,𝑚𝑚=1

= 0 

However, the monthly change rates are different by the ra�o of 𝜆𝜆𝑚𝑚 and 𝜆𝜆𝑚𝑚−1: 

𝑦𝑦𝑚𝑚𝑡𝑡

𝑦𝑦(𝑚𝑚−1),𝑡𝑡 =
𝜆𝜆𝑚𝑚𝑥𝑥𝑚𝑚𝑡𝑡

𝜆𝜆𝑚𝑚−1𝑥𝑥(𝑚𝑚−1)𝑡𝑡 

So, axiom G is not sa�sfied by S2.  

S3: 

S3 is already defined using the monthly indices: 

𝑆𝑆3(𝑿𝑿,𝒀𝒀) ≡
1
𝑛𝑛
��

𝑥𝑥𝑡𝑡
𝑥𝑥𝑡𝑡−1

−
𝑦𝑦𝑡𝑡
𝑦𝑦𝑡𝑡−1

�
2𝑇𝑇

𝑡𝑡=2

 

So, S3 will only be equal to 0 if, for every �me period t=2,…T: 

𝑥𝑥𝑡𝑡
𝑥𝑥𝑡𝑡−1

=
𝑦𝑦𝑡𝑡
𝑦𝑦𝑡𝑡−1

 

This is exactly the defini�on of axiom G. q.e.d. 
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