

KEYWORDS – Classification, COICOP, Machine Learning

I. DATA DESCRIPTION AND GOAL

i. Context

- Study on 1 hard discounter scanner data in 2023.
- 265 672 distinct EAN (European Article Number = barcode)
- 42 775 products (16%) representing almost 63% of the expenditure can be classified into COICOP using our current process for scanner data :

Figure 1: Process to classify scanner data with the dictionary from our external provider

- 11 072 products among the 42 775 are in reality assigned a custom item "99.9.9.9 : unfollowed", they represent 13.9% of the total expenditure • We will try to classify the unclassified data into COICOP using its label.
- *ii. Data cleaning process*
- EAN cleaning: convert to 8 or 13 digit numbers by adding or removing digits. If a label is shared by several EAN, we regroup them.
- Label cleaning: convert to ASCII, remove stopwords (le, la ..), lemmatization and construction of indicators (500g -> #WEIGHT).

II. MODEL AND METHODOLOGY

i. FastText

- Short training time
- Designed to handle noisy texts, including spelling errors
- Interesting performance compared to other state-of-art methods
- Gives a list of possible classification with a probability for each one :

$$p(C_k \mid x) = \frac{p(x \mid C_k)p(C_k)}{\sum_{i=1}^{K} p(x \mid C_i)p(C_i)} = \frac{e^{a_k(x)}}{\sum_{i=1}^{K} e^{a_i(x)}}$$
(1)

with :

$$a_k(x) = \log(p(x \mid C_k)p(C_k)) = \log(p(C_k \mid x)), \forall k \in \{1, .., K\} \quad (2)$$

ii. Model Training

- Training and test sample following a 80%/20% random partition
- The model was trained to predict a 6 digit COICOP and only at this level.

iii. Unlabeled data description and sampling

- 220 000 unlabeled products are too much to classify manually. • Our strategy was to stratify according to the following two variables in
- order to minimize variance in each stratum:
- the amount of expenditure the product represents
- an indicator of the confidence of the model in its prediction (the difference of the two best prediction probabilities).

the variable of interest:

$$R =$$

where:

- *k* is an article.
- EAN) sold during the year 2023.
- in 2023.
- (level to be defined) or not.

for the total sample S as

with :

Our resources	allowed	us	to	cl	

expenditure	Confidence	Sample size	Number of	Sampling ra-	
	of the model		EAN in the	tio	
	prediction		stratum		
[0,5e+04)	[0,0.1)	177	71429	0.25 %	
[0,5e+04)	[0.1,0.9)	116	75665	0.15 %	
[0,5e+04)	[0.9,1]	104	61097	0.17 %	
[5e+04,2e+06)	[0,0.1)	844	4494	18.78 %	
[5e+04,2e+06)	[0.1,0.9)	651	2489	26.16 %	
[5e+04,2e+06)	[0.9,1]	394	1556	25.32 %	
[2e+06,7.32e+07]] [0,0.1)	209	209	100 %	
[2e+06,7.32e+07]] [0.1,0.9)	266	266	100 %	
[2e+06,7.32e+07]	[0.9,1]	240	240	100 %	

Table 1: Sample Distribution after the allocation of the 3 000 products to manualy label according to each stratum expenditure

https://ottawagroupmeeting.vfairs.ca

Ongoing work - Classification of scanner data into COICOP : a machine learning approach.

A. Montbroussous and M. Monziols (Consummer Price Index Division)

The expenditure share of scanner data correctly classified by the model is

$$\frac{\sum_{k \in U} CA_k \times z_k}{\sum_{k \in U} CA_k} \tag{3}$$

• *U* represents the sampling universe of the articles (represented by their

• CA_k is the cumulative expenditure of the article k in our scanner data

• $z_k \in \{0, 1\}$ whether the EAN is classified into the right COICOP item

Figure 2: Expenditure share according to the number of observation.

With the given samples for each stratum S_h , we defined our estimator of R

$$\hat{R} = \sum_{h} W_h \hat{R}_h \tag{4}$$

Figure 3: Distribution of expenditure according to the model confidence

lassify 3 000 products:.

iv. Manual classification in practice

- using LabelStudio, see Figure 4
- 10 classifiers (200-400 product each)
- Only 1 classifier per product
- Manually assign a COICOP 6 digit item

Projects / Classif Hard-discount dans COICOP / Labeling

#33 🔠 + 🔊 adrien.montbroussous@insee.fr #I-rdw 🗾		
Classer ce label dans un poste COMTE #LABEL #MATURATION 2295340004360		
'01.1.4.5.3 - Fromage à pâte pressée ×		
Click to add 🔨		
Search		
🗸 📄 '01 - Produits alimentaires et boissons non alcoolisées 🛛 102		
> 🗌 '01.1.1 - Pain et céréales 13		
> 🗌 '01.1.2 - Viande 20		
> 🗌 '01.1.3 - Poissons et fruits de mer 7		
 i01.1.4 - Lait, fromage et œufs 12 		
01.1.4.1.1 - Lait entier		
'01.1.4.2.1 - Lait demi-écrémé ou écrémé		
'01.1.4.3.1 - Lait longue conservation, en poudre ou concentré		
🗌 '01.1.4.4.1 - Yaourt		
🗋 '01.1.4.5.1 - Fromage frais		
🗌 '01.1.4.5.2 - Fromage à pâte molle et à pâte persillée		
✓ '01.1.4.5.3 - Fromage à pâte pressée		
'01.1.4.5.4 - Fromage de chèvre		
'01.1.4.5.5 - Fromage fondu		
□ '01.1.4.6.1 - Crème fraîche et autres crèmes		
H 11 1 4 6 2 Descarte lactée et autres produite laitiere n.e.s. + Add		

Figure 4: Label Studio screenshot with the use of a taxonomy for COICOP

III. RESULTS

i. Test sample

Confidence of the	Share of expenditure	Share of observation		
model prediction	well classified	well classified		
[0,0.1)	36.6 %	47.5 %		
[0.1,0.9)	87.52 %	81.89 %		
[0.9,1]	98.84 %	98.92 %		
TOTAL	97.37	96.58 %		

Table 2: Share of expenditure well predicted for the test sample at the COICOP 6 digit level, including the classified into 99.9.9.9

ii. Unlabeled data

Confi-	Share of	COICOP 6	COICOP 5	COICOP 4	COICOP 2
dence of	expendi-	Digit level	Digit level	Digit level	Digit level
the model	ture				
prediction					
[0,0.1)	34.36 %	15.6 ± 2.35	30.69 ±	56.48 ±	62.64 ±
		%	2.41 %	2.48 %	3.39 %
[0.1,0.9)	38.74 %	50.05 ±	73.91 ±	91.6 ± 3.1	93.56 ±
		2.79 %	3.18 %	%	1.05 %
[0.9,1]	26.9 %	72.36 ±	85.11 ±	97.75 ±	98.73 ±
		2.49 %	3.99 %	4.18 %	0.79 %
TOTAL	100%	41.44 ±	61.7 ± 1.83	80.83 ±	82.39 ±
		1.51 %	%	1.86 %	1.42~%

Table 3: Share of expenditure well predicted for the unlabeled data (without observation classified into '99.9.9.9 - unfollowed') according to the COICOP level checked at the confidence interval of 95%

The gaps between the share of expenditure well predicted at 4, 5 and 6 digit level are quite important. The highest the confidence of the model in its prediction, the better the expenditure is classified.

Ottawa group 18th Meeting, 2024, Ottawa

Figure 5: Classification of '05 - Clothing and footwear'

- Clothing is not followed in our current scanner data
- An important number of articles manually classified into clothing aren't classified into "unfollowed" by the model

Unfollowed - 594
ALCOHOLIC BEVERAGES AND TOBACCO - 13 FURNISHINGS, HOUSEHOLD EQUIPMENT AND ROUTINE HOUSEHOLD MAINTENANCE - 5 FURNISHINGS, HOUSEHOLD EQUIPMENT AND ROUTINE HOUSEHOLD MAINTENANCE - 5
FOOD AND NON-ALCOHOLIC BEVERAGES - 1,515
FOOD AND NON-ALCOHOLIC BEVERAGES - 902

Figure 6: Classification of '01 - Food and non alchoolic beverages

- "01 FOOD AND NON-ALCOHOLIC BEVERAGES" products are mostly classified into the right division or unfollowed.(Figure 6)
- Some products are wrongly classified into the division "01 FOOD AND NON-ALCOHOLIC BEVERAGES " (Figure 5)

IV. CONCLUSION

i. About the results

- Global results at our target level are not satisfying at this stage: only a bit more than 40% of expenditure is well-classified.
- The gaps between the performance of the classification at 4, 5 and 6 digit level are quite important
- Hard to expect that effect on indexes is not huge given the misclassifying rate.

ii. About our prediction strategy

- A finer definition of the classifying rules based on the product dictionary could lead to better prediction
- Removing impossible to classify products (like products labeled "non food") at the beginning could help the model.
- Certain label cleaning steps are counterproductive : the gender written in some clothing products is replaced by a "#gender" tag which does not allow us to classify in the right 6 digit COICOP code.
- Manual classification before training the model could be useful

iii. About labelisation strategy

- Developing knowledge of the nomenclature is necessary to be efficient and precise in the manual verification
- Double annotation could be useful to identify easy to classify products and hard ones.
- Issues on specifics articles have to be analyzed (fish, meat, wine...)