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[. DATA DESCRIPTION AND GOAL

i. Context
« Study on 1 hard discounter scanner data in 2023.
« 265 672 distinct EAN (European Article Number = barcode)
« 42775 products (16%) representing almost 63% of the expenditure can be
classified into COICOP using our current process for scanner data :

Dictionnaire conversion

Identifiant famille Coicop

7831 01.1.421
5629 01.1.1.31
Données de caisse
Nom du produit EAN Chiffre d"affaires Enseigne Date Identifiant famille Coicop
Lait demi-&crémé 1234567890123 1500 EcoShop 15-01-23 7831 01.1.421
Pain complet 43210123 12000 PrixMini 18-02:23 5629 011131
Produit hard discount 0000000012345 750 DiscountPlus 071123 ~ Imconnu | Inconnmu
Référentiel Circana
EAN Caractéristiqgues du produits Identifiant famille
1234567890123 Enrichi en vitamine D

7831

43210123 Faible indice glycémique 5629

Figure 1: Process to classify scanner data with the dictionary from our ex-
ternal provider

« 11 072 products among the 42 775 are in reality assigned a custom item
“99.9.9.9.9 : unfollowed”, they represent 13.9% of the total expenditure
« We will try to classify the unclassified data into COICOP using its label.

ii. Data cleaning process
« EAN cleaning: convert to 8 or 13 digit numbers by adding or removing
digits. If a label is shared by several EAN, we regroup them.
« Label cleaning: convert to ASCIL, remove stopwords (le, la ..), lemmati-
zation and construction of indicators (500g -> #WEIGHT).

. MODEL AND METHODOLOGY

i. FastText

« Short training time

 Designed to handle noisy texts, including spelling errors

« Interesting performance compared to other state-of-art methods

« Gives a list of possible classification with a probability for each one :
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(1)

with :
ai(z) = log(p(z | Cp)p(Cy)) = log(p(Cy, | z)), Yk € {1,.., K} (2)

ii. Model Training
« Training and test sample following a 80%/20% random partition
 The model was trained to predict a 6 digit COICOP and only at this level.

iii. Unlabeled data description and sampling
« 220 000 unlabeled products are too much to classify manually.
 Our strategy was to stratify according to the following two variables in
order to minimize variance in each stratum:
« the amount of expenditure the product represents
« an indicator of the confidence of the model in its prediction (the
difference of the two best prediction probabilities).
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learning approach.
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The expenditure share of scanner data correctly classified by the model is
the variable of interest:

B ZkEU CAIC X 2L
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where:

« k is an article.

« U represents the sampling universe of the articles (represented by their
EAN) sold during the year 2023.

« CA, is the cumulative expenditure of the article £ in our scanner data
in 2023.

« z;, € {0,1} whether the EAN is classified into the right COICOP item
(level to be defined) or not.
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Figure 2: Expenditure share according to the number of observation.

With the given samples for each stratum S}, we defined our estimator of R
for the total sample S as

R=) Wik, (4)
h
with :
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Figure 3: Distribution of expenditure according to the model confidence

Our resources allowed us to classify 3 000 products:.

iv. Manual classification in practice
- using LabelStudio, see Figure 4

« 10 classifiers (200-400 product each)
 Only 1 classifier per product
« Manually assign a COICOP 6 digit item
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Figure 4: Label Studio screenshot with the use of a taxonomy for COICOP

. RESULTS

i. Test sample

Confidence of the |Share of expenditure | Share of observation

model prediction well classified well classified

[0,0.1) 36.6 % 475 %
[0.1,0.9) 87.52 % 81.89 %
[0.9,1] 98.84 % 98.92 %
TOTAL 97.37 96.58 %

Table 2: Share of expenditure well predicted for the test sample at the
COICQOP 6 digit level, including the classified into 99.9.9.9.9

ii. Unlabeled data

Confi- Share of | COICOP 6 | COICOP 5 | COICOP 4 | COICOP 2

dence of [ expendi- | Digit level | Digit level | Digit level | Digit level

the model | ture

prediction

[0,0.1) 34.36 % 15.6 £ 2.35| 30.69 +156.48 *+|62.64 +
% 2.41 % 2.48 % 3.39 %

[0.1,0.9) 38.74 % 50.05 +173.91 +191.6 £ 3.1|93.56 +
2.79 % 3.18 % %o 1.05 %

[0.9,1] 26.9 % 72.36 + | 85.11 +197.75 + | 98.73 +
2.49 % 3.99 % 4.18 % 0.79 %

TOTAL 100% 41.44 +161.7 £ 1.83 | 80.83 * | 82.39 +
1.51 % Yo 1.86 % 1.42 %

expenditure | Confidence |Sample size | Number of | Sampling ra-
of the model EAN in the tio
prediction stratum
[0,5e+04) [0,0.1) 177 71429 0.25 %
[0,5e+04) [0.1,0.9) 116 75665 0.15 %
[0,5e+04) [0.9,1] 104 61097 0.17 %
[5e+04,2e+06) [0,0.1) 844 4494 18.78 %
[5e+04,2e+06) [0.1,0.9) 651 2489 26.16 %
[5e+04,2e+06) [0.9,1] 394 1556 25.32 %
2e+06,7.32e+07]  [0,0.1) 209 209 100 %
2e+06,7.32e+07]  [0.1,0.9) 266 266 100 %
2e+06,7.32e+07| [0.9,1] 240 240 100 %

Table 1: Sample Distribution after the allocation of the 3 000 products to
manualy label according to each stratum expenditure
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Table 3: Share of expenditure well predicted for the unlabeled data (with-
out observation classified into ‘99.9.9.9.9 - unfollowed’ ) according to the
COICOP level checked at the confidence interval of 95%

The gaps between the share of expenditure well predicted at 4, 5 and 6 digit
level are quite important. The highest the confidence of the model in its pre-
diction, the better the expenditure is classified.

ALCOHOLIC BEVERAGES AND TOBACCO - 22

FURMISHINGS, HOUSEHOLD EQUIPMENT AND ROUTINE HOUSEHOLD MAINTENANGE - 2 ==
MISCELLANEOUS GOODS AND SERVICES - 32

TRANSPORT - 3 ==

FOOD AND NON-ALCOHOLIC BEVERAGES - 97

CLOTHING AND FOOTWEAR. - 393

Unfollowed - 237

Figure 5: Classification of ‘05 - Clothing and footwear’

« Clothing is not followed in our current scanner data
« An important number of articles manually classified into clothing aren’t
classified into “unfollowed” by the model

Unfollowed - 594

ALCOHOLIC BEVERAGES AND TOBACCO - 13 ==
FURNISHINGS, HOUSEHOLD EQUIFMENT AND ROUTINE HOUSEHOLD MAINTEMANGE - 5 ==
MISCELLANEOUS GOODS AND SERVICES - 1 —

FOOD AND NON-ALCOHOLIC BEVERAGES - 1,515

FOOD AND NON-ALCOHOLIC BEVERAGES - 902

Figure 6: Classification of ‘01 - Food and non alchoolic beverages’

« 701-FOOD AND NON-ALCOHOLIC BEVERAGES ” products are mostly
classified into the right division or unfollowed.(Figure 6)

« Some products are wrongly classified into the division ” 01 - FOOD AND
NON-ALCOHOLIC BEVERAGES ” (Figure 5)

IV. CONCLUSION

i. About the results

« Global results at our target level are not satisfying at this stage: only a
bit more than 40% of expenditure is well-classified.

« The gaps between the performance of the classification at 4, 5 and 6 digit
level are quite important

« Hard to expect that effect on indexes is not huge given the misclassify-
ing rate.

ii. About our prediction strategy

« A finer definition of the classifying rules based on the product dictionary
could lead to better prediction

« Removing impossible to classify products (like products labeled “non
food”) at the beginning could help the model.

« Certain label cleaning steps are counterproductive : the gender written
in some clothing products is replaced by a “#gender” tag which does not
allow us to classity in the right 6 digit COICOP code.

« Manual classification before training the model could be useful

iii. About labelisation strategy
« Developing knowledge of the nomenclature is necessary to be efficient
and precise in the manual verification
« Double annotation could be useful to identify easy to classify products
and hard ones.
- Issues on specifics articles have to be analyzed (fish, meat, wine...)
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