



## **Evaluating different index methods** for short-term rentals

Ottawa Group on Price Indices Ottawa, 13-15 May 2024



STATBEL.FGOV.BE

Data collection

# Contents

Estimating a weight

Index methods

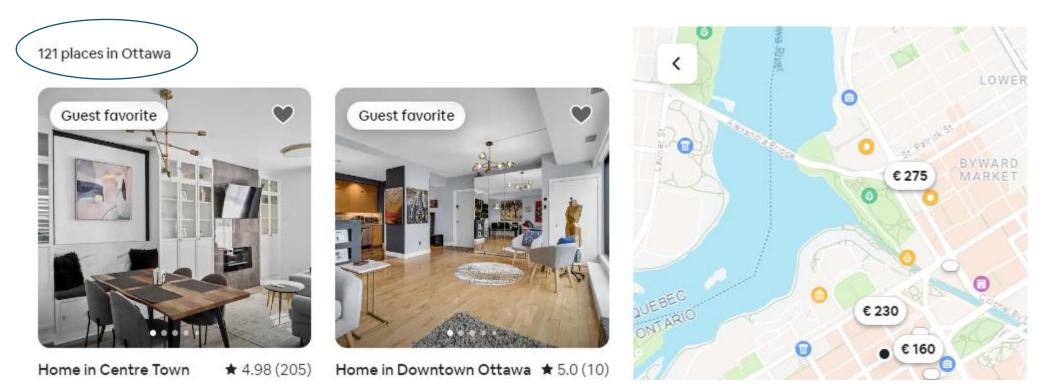
• Final remarks



## **Data collection**

## **Sample of cities**

- In 2018, analysis carried out to collect data for short-term rentals/short-stay accommodation:
  - Airbnb deemed most important
  - Web scraping as a data collection method
- Sample selection based on traditional tourism statistics and # of accommodations available
- 3 cities were sampled with # of accommodations > 1000 per month:
  - Brussels: : data starting from 2018 (with significant data gaps)
  - Antwerp & Ghent: data from 2020
- Covid-19 pandemic: lockdowns and travel restrictions  $\rightarrow$  useable data from November 2020 onwards

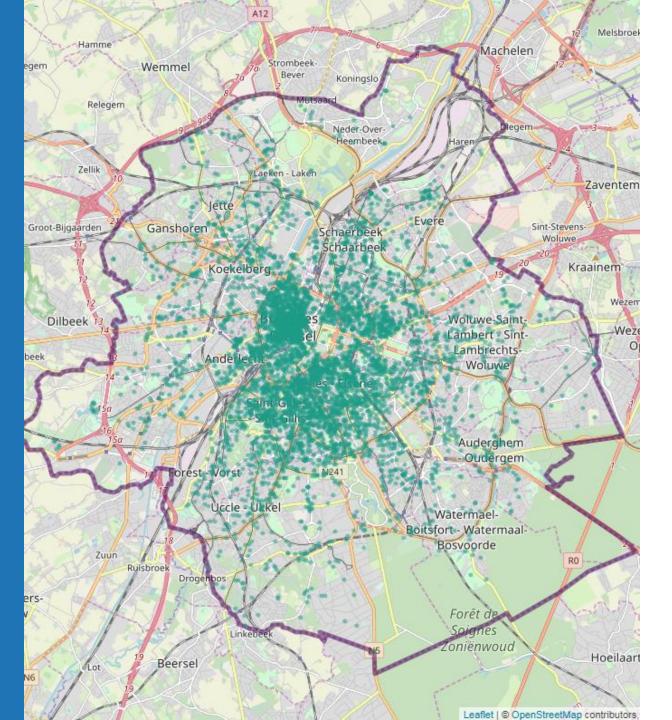

#### **Sample of cities**

- Confirmed representativity of sampled cities in 2021 based on tourism statistics data
- Eurostat information on short-stay accommodation offered via online collaborative economy platforms (= platform data)
- Agreement for tourism statistics with Airbnb, Booking.com, Tripadvisor and Expedia Group

|           | Total number of stays<br>(2019 data) | %      |
|-----------|--------------------------------------|--------|
| Belgium   | 820.703                              | 100,0% |
| Brussels  | 290.756                              | 35,4%  |
| Antwerp   | 84.996                               | 10,4%  |
| Ghent     | 53.952                               | 6,6%   |
| Charleroi | 6.101                                | 0,7%   |
| Liège     | 24.826                               | 3,0%   |
| Bruges    | 48.600                               | 5,9%   |
| Ostend    | 24.478                               | 3,0%   |

#### **Scraped data**

- Every search result on Airbnb is limited to a maximum of 270 accommodations (15 pages of 18 accommodations)
- By focusing on areas on the map or by using filters we can apply an iterative procedure to get all available listings in a city




#### **Scraped data**

## STATBEL

Detailed information available per accommodation

#### What this place offers Entire home in Ottawa, Canada 6 guests · 3 bedrooms · 4 beds · 1.5 baths PIQ Garden view Kitchen Ś Wifi 러 Dedicated workspace Guest One of the most loved homes ouesi favorite 🏓 4.98 205 on Airbnb, according to guests Free parking on premises 50 inch HDTV with \*\*\*\*\* <u>Reviews</u> B Amazon Prime Video, C Apple TV, Disney+, Fire TV, Netflix Hosted by Melissa Superhost · 7 years hosting 0 Free washer - In unit 0 Free dryer - In unit ₩ Central air conditioning Bathtub ╘ Top 10% of homes ሧ This home is highly ranked based on ratings, reviews, and reliability. Show all 59 amenities 凸 Dedicated workspace A common area with wifi that's well-suited for working. Ħ Free cancellation before Jun 4 Overall rating Cleanliness Accuracy Check-in Communication Location Value Get a full refund if you change your mind. 5.0 5.0 5.0 5.0 4.8 4.9 ۲. ۲ Q $\square$ $\bigcirc$ $\oslash$ Ļ



## Scraped data

- Type of property: house, apartment, ...
- Characteristics : max number of guests, bedrooms, bathrooms, ...
- Amenities: wifi, dryer, free parking, ...
- Calendar information: price, minimum number days for a stay
- Host information: response time, superhost, ...
- Rating information: cleanliness, accuracy, ...
- Location information: neighbourhood, geo-

#### coordinates



## Estimating a weight

## **Estimating a weight**

- Airbnb transactions for Belgium are carried out through their Luxembourg and Irish subsidiaries:
  - No VAT number, no tax representative, no annual accounts declared
- No other Airbnb related administrative data available in Belgium:
  - Rental income is in most cases untaxed
  - No registration required for a host with administrative authority
- Not captured as a separate accommodation services category in Belgian national accounts (implicitly captured in imputed rents for OOH)
- Own estimation using price X volume approach

## **Estimating a weight**

# STATBEL

 Price for a stay = ((price per night + fee for additional guest) x number of nights + cleaning fee) x service charge

|                      |       | 2020    |                             |  |
|----------------------|-------|---------|-----------------------------|--|
|                      | Price | Stays   | Expenditure = price * stays |  |
| Brussels             | 338 € | 97.653  | 33.013.608 €                |  |
| Antwerp              | 427 € | 32.165  | 13.723.995 €                |  |
| Ghent                | 434 € | 27.255  | 11.835.124 €                |  |
| Charleroi            | 254 € | 3.245   | 823.937 €                   |  |
| Liège                | 327 € | 13.581  | 4.436.355 €                 |  |
| Bruges               | 491 € | 19.095  | 9.383.845 €                 |  |
| Ostend               | 475 € | 20.538  | 9.756.546 €                 |  |
|                      |       |         |                             |  |
| Total (excl. cities) | 389 € | 223.706 | 86.928.636 €                |  |
| Total (incl. cities) |       |         | 169.902.046 €               |  |

- Deduct +-25% for business stays → depending on the year: consumption expenditure is around 0,1% to 0,15% of total household consumption.
- Experimental results, since not everything has been analyzed (e.g., intermediate consumption)



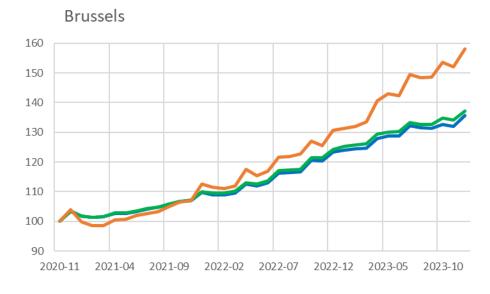
## **Index methods**

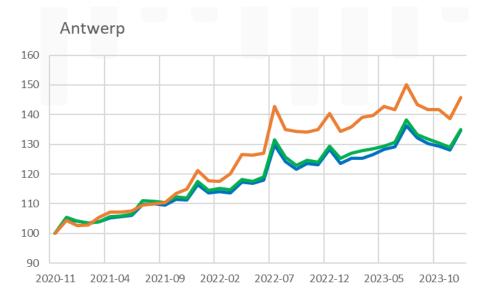
#### **Matched model indices**

## STATBEL

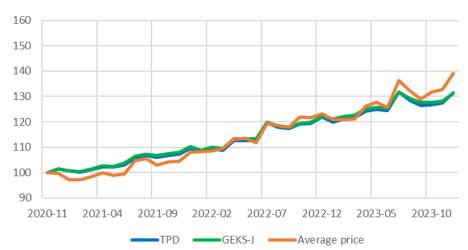
Traditional method of matching items to compile a price index

• Airbnb accommodation have unique identifiers  $\rightarrow$  can be used to match same accommodation


• Time product dummy index: 
$$\ln p_i^t = \alpha + \sum_{t=1}^T \delta^t D_i^t + \sum_{i=1}^{N-1} \gamma_i D_i + \varepsilon_i^t$$


• GEKS-Jevons index:  $P_{GEKS-J}^{0,t} = \prod_{l=0}^{T} (P_{J}^{0l} P_{J}^{lt})^{(1/T+1)}$ 

Compared with a simple average price


#### Matched model indices vs average price

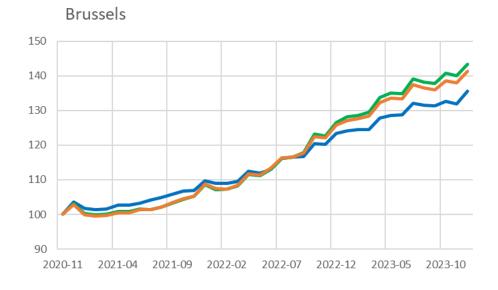
# STATBEL

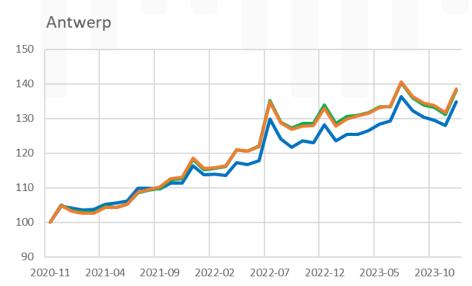


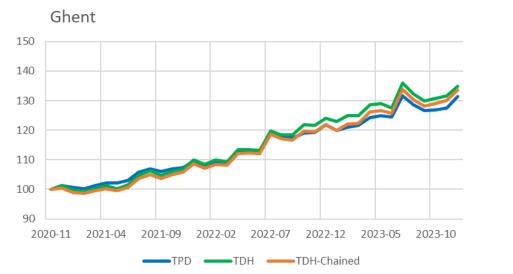


Ghent




#### **Matched model indices**


- However, new listings appear, and others disappear
- Not taken into account in matched model indices
- Examined 3 methods to "solve" this problem:
  - Hedonic methods
  - Combining a matched model index with hedonic imputations
  - Stratification


### **Hedonic indices**

- Detailed characteristics can be used for hedonics
- R<sup>2</sup> was on average between 0.76 and 0.82 with and did not differ that much from city to city
- 2 time dummy hedonics methods:
  - TDH with all periods pooled in the same regression → drawback: fixity of the parameters and without product churn the index does not equal a matched index
  - Chained TDH where two adjacent periods are pooled together → drawback: fewer observations are used which might cause unstable coefficients
- Log-linear specification (OLS estimated):  $\ln p_i^t = \alpha + \sum_{t=1}^T \delta^t D_i^t + \sum_{k=1}^K \beta_k z_{ik} + \varepsilon_i^t$

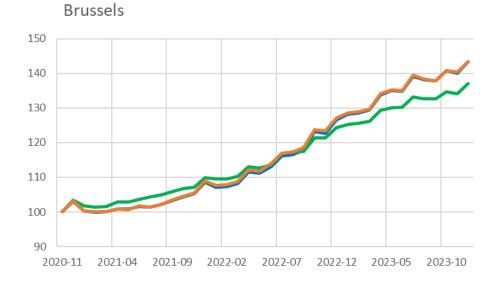
#### **Hedonic indices vs TPD**

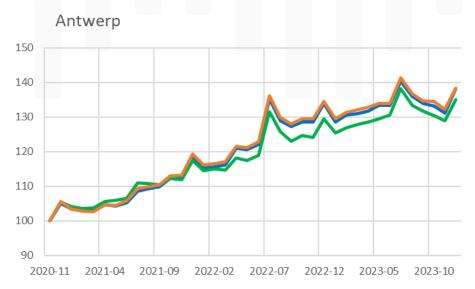




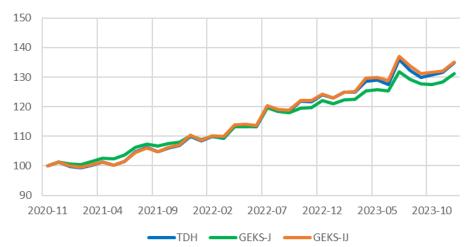


**Imputation Jevons GEKS** 


• Combining matching and imputations, imputation Jevons GEKS:  $P_{GEKS-IJ}^{0,t} = \prod_{l=0}^{T} \left( P_{IJ}^{0l} P_{IJ}^{lt} \right)^{\left( \frac{1}{T+1} \right)}$ 


• With imputation Jevons index: 
$$P_{IJ}^{0,t} = \prod_{i \in U_M^{0,t}} \left(\frac{p_i^t}{p_i^0}\right)^{0.5(N_0+N_t)} \prod_{i \in U_D^{0,t}} \left(\frac{\hat{p}_i^t}{p_i^0}\right)^{0.5(N_0)} \prod_{i \in U_N^{0,t}} \left(\frac{p_i^t}{\hat{p}_i^0}\right)^{0.5(N_t)}$$

- With  $\hat{p}_i^t$  and  $\hat{p}_i^0$  as imputed prices for new and disappeared accommodations  $\rightarrow$  with bilateral time dummy hedonic method
- Drawbacks: many bilateral regressions, fewer observations might cause unstable coefficients
- Advantage compared to (chained) TDH: without product churn, the index is equal to a matched index

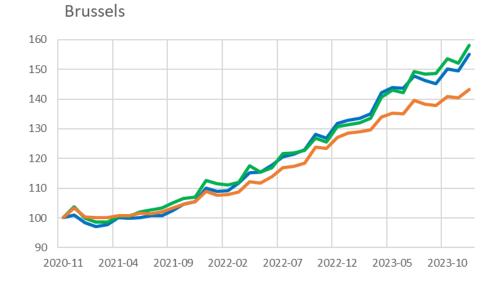

#### **Imputation Jevons GEKS**

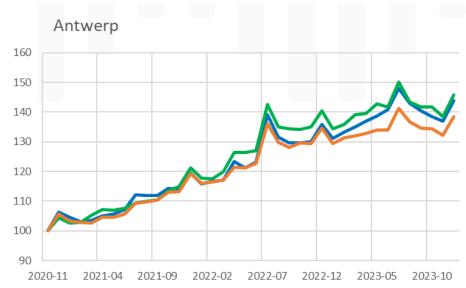
## STAT**BEL**



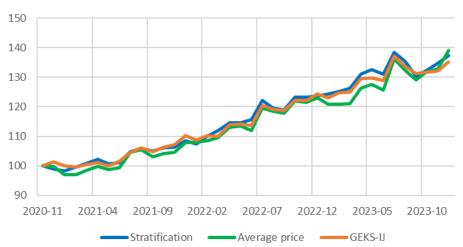


Ghent





## **Stratification**

- Stratification:
  - accommodations are attributed to a strata based on characteristics
  - the price of new and disappeared accommodations is directly compared within the same strata
- Aggregation of the strata indices gives the global index
- Drawback of stratification is a potential unit value bias, because:
  - Limited # of variables can be used
  - All variables used for stratification are treated as categorical
- To determine the variables for stratification we used MARS


## **Stratification**

# STATBEL





Ghent





### **Final remarks**

- Experimental estimation of consumption expenditures > 0,1%
- Sufficient characteristics information can be scraped from the Airbnb website
- Index methods
  - Matched indices : downward bias in our sample
  - TDH performs a bit better than a bilateral chained TDH
  - Imputation Jevons GEKS index quite similar results to TDH, but might be preferred
  - Stratification: unit value bias
- It is possible to compile a reliable index
- Future work: impact of splicing or extension methods





## Thank you!

Ken Van Loon ken.vanloon@economie.fgov.be



STATBEL.FGOV.BE