MIDPOINT-YEAR BASKET INDEX AS A PRACTICAL APPROXIMATION TO SUPERLATIVE INDEX

Masato Okamoto
Consumer Statistics Division
Statistics Bureau of Japan
19-1 Wakamatsu-cho
Shinjuku-ku, Tokyo 162-8668
e-mail: mokamoto2@stat.go.jp

Paper presented at the Sixth Meeting of the
International Working Group on Price Indices
Canberra, Australia, 2-6 April 2001

The opinions expressed in this paper are those of the author and do not represent official views of the Statistics Bureau of Japan.

According to Hill(1999), both the objective of measuring inflation and measuring the changes in the cost of living lead to the same kind of index formula in practice, provided that 'best practice' is followed. Furthermore, he proposed a kind of pure price index which uses the quantities in the third year intermediate between the base year and the observation year as contents in a basket instead of superlative indexes or pure price index which uses some average of the quantities in the base year and the observation year as contents in a basket.

Following his proposal, this paper presents the results of a test calculation for the 'midpoint-year basket index' defined as below using a dataset of 1995-base Japanese consumer price index. Shultz (1998) applied actually the identical formula named 'single year, mid-term basket index' to price and volume indices for final domestic demand and price index series of industrial production.

$$
\begin{equation*}
H=\frac{\sum q_{t / 2} p_{t}}{\sum q_{t / 2} p_{0}}=\frac{\sum \frac{w_{t / 2}}{I_{t / 2}} I_{t}}{\sum \frac{w_{t / 2}}{I_{t / 2}}} \tag{1}
\end{equation*}
$$

where $w_{t / 2}=p_{t / 2} q_{t / 2}, I_{t / 2}=\frac{p_{t / 2}}{p_{0}}, I_{t}=\frac{p_{t}}{p_{0}}$
0 is the base year, t is the observation year, $t / 2$ is the midpoint - year

In practice, the 'midpoint-year basket' $\left\{q_{t / 2}\right\}$ is taken as follows (See Annex 1).

- The observation year 1997, 1999 (‘single year’ cases)

The quantities in 1996, 1997 are used as contents in a basket respectively.

- The observation year 1996, 1998 ('plural year' cases)

As the 'midpoint-year' is between two calendar years 1995 and 1996, 1996 and 1997 respectively, the simple geometric mean or the simple arithmetic mean of the quantities in the two respective years are used as contents in a basket respectively.

As shown in the following chart and table, the 'midpoint-year basket index' is very close to superlative indexes and chained superlative indexes in comparison with Laspeyres index or chained Laspeyres index. In 1998 or 2000 ('plural year' cases), the 'midpoint-year basket index' using the simple geometric mean and that of the simple arithmetic mean of the quantities in 1996 and 1997, or 1997 and 1998 are almost the same.

It seems to be possible to use an arithmetic mean or a geometric mean of the quantities in all intermediate years between the base year and the observation year as contents in a basket instead of the quantities in a single year. In fact, as shown in the table on the next page, both indexes are very close to each other although it is not clear that one is better than the other. Thus, the index using some average basket in all intermediate years may be possibly applicable to the case that weight data for individual year are not sufficiently accurate but average weights for two or three years are sufficiently accurate.

Comparison of consumer price changes measured by different index formulas

Results of the test calculation for consumer price index (the overall index)

	Laspeyres	Paashe	Fisher	Tornqvist	Walsh	Edgeworth	mid-year basket		average basket of all intermediate years	
'95	100.000	100.000	100.000	100.000	100.000	100.000	100.000	100.000		
'96	100.162	100.061	100.111	100.112	100.112	100.111	$100.112^{\text {a) }}$	$100.111^{\text {b) }}$		
'97	101.844	101.618	101.731	101.738	101.739	101.731	101.715			
'98	102.523	102.095	102.309	102.318	102.322	102.311	$102.308^{\text {a) }}$	$102.306^{\text {b) }}$		
'99	102.169	101.492	101.830	101.857	101.862	101.835	101.844		$101.855^{\text {c) }}$	$101.853^{\text {d) }}$
'00	101.503	100.560	101.030	101.074	101.087	101.039	101.094	101.094	$101.078^{\text {c) }}$	$101.071^{\text {d) }}$

	chained Laspeyres	chained Paashe	chained Fisher	chained Tornqvist
$' 95$	100.000	100.000	100.000	100.000
'96	100.162	100.061	100.111	100.112
'97	101.817	101.652	101.734	101.736
'98	102.441	102.175	102.308	102.308
'99	102.072	101.721	101.896	101.897
'00	101.362	100.957	101.159	101.160

a) Using (9) in Annex 1.
b) Using (10) in Annex 1.
c) Geometric mean of baskets in all intermediate years is used as a fixed basket.The relevant formula is similar to (9) in Annex1.
d) Arithmetic mean of baskets in all intermediate years is used as a fixed basket.The relevant formula is similar to (10) in Annex1.

The 'midpoint-year basket index' is considered to be a good price index for practical uses because of its features listed below, in addition that it yields very close approximate to superlative indexes and chained superlative indexes:
(i) Quantities required for the index compilation are in the 'midpoint-year' earlier than the observation year. ${ }^{1)}$ Thus, the index compilation is feasible in countries where chained Laspeyres index is available.
(ii) The overall index can be expressed as a weighted arithmetic mean of sub-indexes. Thus, contribution of sub-item-groups to change in the overall index is available.

$$
\begin{align*}
& H=\frac{1}{\sum_{\text {alli } i} \frac{w_{t / 2, i}}{I_{t / 2, i}}} \sum_{G}\left(\sum_{i \in G} \frac{w_{t / 2, i}}{I_{t / 2, i}} \cdot \frac{\sum_{i \in G} \frac{w_{t / 2, i}}{I_{t / 2, i}} I_{t, i}}{\sum_{i \in G} \frac{w_{t / 2, i}}{I_{t / 2, i}}}\right)=\frac{\sum_{G} w_{G} H_{G}}{\sum_{G} w_{G}} \tag{2}\\
& \text { where } w_{G}=\sum_{i \in G} \frac{w_{t / 2, i}}{I_{t / 2, i}} \ldots \ldots . \text { a weight assigned to sub - group } G \\
& \quad H_{G}=\frac{\sum_{i \in G} \frac{w_{t / 2, i}}{I_{t / 2, i}} I_{t, i}}{\sum_{i \in G} \frac{w_{t / 2, i}}{I_{t / 2, i}}} \ldots . . . \text { 'midpoint - year basket index' for sub - group } G
\end{align*}
$$

(iii) Monthly index can be defined so as the annual simple arithmetic mean is equal to the (annual) 'midpoint-year basket index' as shown below.

$$
\begin{equation*}
H=\frac{\sum \frac{w_{t / 2}}{I_{t / 2}} I_{\text {year } t}}{\sum \frac{w_{t / 2}}{I_{t / 2}}}=\frac{1}{12}\left(\sum_{\substack{\text { month } m \\ \text { of yeart }}} \frac{\sum \frac{w_{t / 2}}{I_{t / 2}} I_{\text {month } m \text { of year } t}}{\sum \frac{w_{t / 2}}{I_{t / 2}}}\right) \tag{3}
\end{equation*}
$$

where $I_{\text {year } t}$ is the annual price index in year t,
$I_{\text {month } m \text { of year } t}$ is the monthly price index in month m of year t

$$
I_{\text {year } t}=\frac{1}{12} \sum_{\substack{\text { monh } \\ \text { of yeart }}} I_{\text {month } m \text { of year } t}
$$

(iv) The 'midpoint-year basket index' can be interpreted as the product of Laspeyres index with the base year $t / 2$ and the observation year t, and Paashe index with the base year 0 and the observation year $t / 2$. Obviously this property stands up at sub-index level

[^0](See (ii)). For this reason, addition of basic components can be carried out in intermediate years between the periodical base revision easily and more effectively in comparison with base-fixed basket indexes because weights for the Laspeyres index with the base year $t / 2$ can be revised while weights for the Paashe index with the observation year $t / 2$ remain un-revised.
\[

$$
\begin{equation*}
H=\frac{\sum \frac{w_{t / 2}}{I_{t / 2}} I_{t}}{\sum \frac{w_{t / 2}}{I_{t / 2}}}=\frac{\sum w_{t / 2}\left(\frac{p_{t}}{p_{t / 2}}\right)}{\sum w_{t / 2}} \frac{\sum w_{t / 2}}{\sum \frac{w_{t / 2}}{\left(\frac{p_{t / 2}}{p_{0}}\right)}} \tag{4}
\end{equation*}
$$

\]

Supposing prices are observed on continuous time basis, and prices and quantities change smoothly, it can be proved by purely mathematical operations that the following CES type indexes which uses quantities at the midpoint-period $t / 2$ are second order differential approximations to superlative indexes and Divisia index at the base period 0 with respect to time (See Annex 2). ${ }^{2)}$ In case of $\sigma=0$, this CES type index can be regarded as the 'midpointperiod basket index'. The 'midpoint-year basket index' is a kind of the 'midpoint-period basket index' on a discrete time basis. Thus, the 'midpoint-year basket index' is probably a good price index from a theoretical viewpoint also.
'midpoint - period method' CES type index

$$
\begin{align*}
& H=\left(\frac{\sum \frac{w_{t / 2}}{I_{t / 2}-\sigma} I_{t}^{1-\sigma}}{\sum \frac{w_{t / 2}}{I_{t / 2}^{1-\sigma}}}\right)^{\frac{1}{1-\sigma}} \tag{5}\\
& \text { where } \sigma \neq 1
\end{align*}
$$

Apart from practical uses, it is a matter of interest which type of index formula incorporated with the 'midpoint-year method' is the best from a theoretical viewpoint. This question seems to be difficult to answer. However, there might be some relation between price elasticity of demand and choices of index formulas. Supposing $w_{t}=w_{0} I_{t}^{l-\sigma}$ - i.e. constant elasticity, (5) is identical to the following base-fixed CES type index, chained CES type index, a superlative index defined as (11) in Annex 2 and its chained-index version. It is also identical to Divisia index if prices and quantities are observed on continuous time basis. Thus, if choosing an appropriate σ, (5) may be optimal.

[^1]base - fixed CES type index
\[

$$
\begin{equation*}
M=\left(\frac{\sum w_{0} I_{t}^{1-\sigma}}{\sum w_{0}}\right)^{\frac{1}{1-\sigma}} \tag{6}
\end{equation*}
$$

\]

where $\sigma \neq 1$

Although the assumption given on the preceding paragraph looks unrealistic, according to a test calculation, all three indexes - base-fixed, chained and 'midpoint-year method' CES type indexes - can be regarded as good approximations to chained superlative indexes seemingly if choosing an appropriate σ around 0.75 or higher, where difference between basefixed and chained CES type index is about the smallest, as shown in the chart on the next page. Furthermore, this choice of σ results in that 'midpoint-year method' CES type index becomes a slightly better approximation to chained superlative indexes in comparison with the 'midpoint-year basket index' $(\sigma=0)$. It may be possible to find more relevant and complicated index formula such as (18) in Annex 2, seeking an appropriate estimate of price elasticity for each subgroup. However, as any σ between 0 through 1 gives a sufficiently accurate approximation, the necessity of search for appropriate price elasticity parameters for practical uses instead of the 'midpoint-year basket index' $(\sigma=0)$ is likely to be weak. One notable fact obtained from the test calculation is that the 'midpoint-year method' yields better approximations to chained superlative indexes in comparison with superlative indexes in the observation year 1999 and 2000 - periods relatively far from the base year 1995. It may be attributable to a feature of the 'midpoint-year method'. That is, the 'midpoint-year method' index can be regarded as a kind of chained index consists of two indexes linked at the 'midpoint-year'.

Several types of combination of the 'midpoint-year method' with chain index method may be conceivable. A test calculation shows the following chained 'midpoint-year basket index' - the product of the 'midpoint-year basket index' with the base year 1995 and the observation year 1997, and that of the base year 1997 and the observation year 1999 - yields a slightly closer approximation to chained superlative indexes.

$$
\begin{equation*}
\text { chained } H(1999: 1995)=\frac{\sum \frac{w_{1996}}{I_{1996}} I_{1997}}{\sum \frac{\sum \frac{w_{1998}}{I_{1998}} \frac{I_{1999}}{I_{1997}}}{I_{1996}}} \cdot \frac{\sum \frac{w_{1998}}{I_{1997}}}{\frac{I_{1998}}{I_{1997}}}=101.870 \tag{7}
\end{equation*}
$$

where the base year is 1995, the observation year is 1999.

In the 2000 Japanese CPI revision, the 'midpoint-year basket index' will be added to a set of supplementary indexes, which includes chained Laspeyres index and indexes for the specific household groups, and it will be compiled annually. As for 'plural year' cases explained on page 2, formula (10) shown in Annex 1, which uses the simple arithmetic mean of quantities in two respective years as the 'midpoint-year basket', will be adopted taking it consideration that the possibility of monthly compilation in the future and the treatment for seasonally variable weights used for categories of fresh foods.

Comparison of indexes using 'midpoint-year method' with CES and superlative indexes

Difference from chained Tornqvist

	$\sigma=0$					$\sigma=0.5$				
	Laspeyres	chained Laspeyres	midpointyear ${ }^{\text {a) }}$	Fisher	chained Fisher	base-fixed	chained	midpointyear ${ }^{\text {a) }}$	superlative ${ }^{\text {c) }}$	chained ${ }^{\text {d) }}$ superlative
'97	0.108	$0.108 \quad 0.081-0.021$	-0.021	-0.005 -0.002		$0.039 \quad 0.031$		-0.013	0.000	0.000
'98	$0.215 \quad 0.133$		0.000	0.001	0.000	0.063	$0.033-0.018$		0.007	0.000
'99	$0.272 \quad 0.175$		-0.053	-0.067	0.000	0.106	0.051	-0.024	-0.048	0.000
'00	0.342 0.202		-0.066	-0.130	-0.001	0.121	0.050	-0.019	-0.098	0.000
	$\sigma=0.7$					$\sigma=0.75$				
	base-fixed	chained	midpointyear ${ }^{\text {a) }}$	superlative ${ }^{\text {c) }}$	chained ${ }^{\text {d) }}$ superlative	base-fixed	chained	midpointyear ${ }^{\text {a) }}$	superlative ${ }^{\text {c) }}$	chained ${ }^{\text {d) }}$ superlative
'97	$0.011 \quad 0.010$		-0.011	0.001	0.000	0.004	0.005	-0.010	0.001	0.000
'98	$0.002-0.007$		-0.025	0.009	0.000	-0.014	-0.016	-0.027	0.009	0.000
'99	$0.038 \quad 0.002$		-0.013	-0.044	0.000	0.021	-0.011	-0.011	-0.043	0.000
'00	$0.028-0.011$		-0.001	-0.091	0.000	0.005	-0.026	0.003	-0.090	0.000
	$\sigma=0.9$					$\sigma=1$				
	base-fixed	chained	midpointyear ${ }^{\text {a) }}$	superlative ${ }^{\text {c) }}$	chained ${ }^{\text {d) }}$ superlative	geometric- mean	chained geometricmean	midpoint- year ${ }^{\text {b) }}$	Tornqvist	chained Tornqvist
'97	-0.018 -0.010		-0.008	0.002	0.000	-0.033	-0.021	-0.006	0.002	0.000
'98	-0.060 -0.046		-0.032	0.010	0.000	-0.091	-0.066	-0.036	0.010	0.000
'99	-0.031 -0.048		-0.003	-0.040	0.000	-0.067	-0.072	0.002	-0.039	0.000
'00	-0.067 -0.072		0.015	-0.087	0.000	-0.115	-0.103	0.021	-0.086	0.000

a) As for 1996, 1998, geometric-mean of weights and elementary indexes for 1995 and 1996, 1996 and 1997
are used for 'midpoint-year' weights and indexes respectively.
b) As for 1996, 1998, arithmetic-mean of weights for 1995 and 1996, 1996 and 1997 are used for 'midpoint-year' weights respectively.
c) Index formula defined as (11) in Annex 2 is used.
d) Chained-index version of (11)

REFERENCES

Hill, T. P. (1999), Inflation, the Cost of Living and the Domain of a Consumer Price Index, Joint ECE/ILO Meeting on consumer price indices, Geneva, Nov. 1999.

Diewert W. E. (1981), ‘The Economic Theory of Index Numbers’, pp. 163-208 in Essays in the Theory and Measurement of Consumer Behaviour, ed. Angus Deaton, Cambridge, Cambridge University Press.

Shultz, Bohdan (1998), Effects of Using Various Macro-Index Formulae in Longitudinal Price and Volume Comparisons, the Fourth Meeting of the International Working Group on Price Indices, Washington, Apr. 1998.

In the case of the year 1997, 1999:

$$
\begin{equation*}
H=\frac{\sum q_{m} p_{t}}{\sum q_{m} p_{0}}=\frac{\sum p_{m} q_{m} \frac{p_{t} / p_{0}}{p_{m} / p_{0}}}{\sum p_{m} q_{m} \frac{1}{p_{m} / p_{0}}}=\frac{\sum \frac{w_{m}}{I_{m}} I_{t}}{\sum \frac{w_{m}}{I_{m}}} \tag{8}
\end{equation*}
$$

where m is 1996, 1997 respectively.

In the case of the year 1996, 1998:

$$
\begin{equation*}
H=\frac{\sum \sqrt{q_{m} q_{m+1}} p_{t}}{\sum \sqrt{q_{m} q_{m+1}} p_{0}}=\frac{\sum \sqrt{p_{m} q_{m} p_{m+1} q_{m+1}} \frac{\frac{p_{t}}{p_{0}}}{\sqrt{\frac{p_{m}}{p_{0}} \frac{p_{m+1}}{p_{0}}}}}{\sum \sqrt{p_{m} q_{m} p_{m+1} q_{m+1}} \frac{1}{\sqrt{\frac{p_{m}}{p_{0}} \frac{p_{m+1}}{p_{0}}}}}=\frac{\sum \sqrt{\frac{w_{m}}{I_{m}} \frac{w_{m+1}}{I_{m+1}}} \cdot I_{t}}{\sum \sqrt{\frac{w_{m}}{I_{m}} \frac{w_{m+1}}{I_{m+1}}}} \tag{9}
\end{equation*}
$$

where $m, m+1$ are 1995 and 1996,1996 and 1997 respectively
or

$$
\begin{equation*}
H=\frac{\sum\left(q_{m}+q_{m+1}\right) p_{t}}{\sum\left(q_{m}+q_{m+1}\right) p_{0}}=\frac{\sum p_{m} q_{m} \frac{p_{t} / p_{0}}{p_{m} / p_{0}}+p_{m+1} q_{m+1} \frac{p_{t} / p_{0}}{p_{m+1} / p_{0}}}{\sum p_{m} q_{m} \frac{1}{p_{m} / p_{0}}+p_{m+1} q_{m+1} \frac{1}{p_{m+1} / p_{0}}}=\frac{\sum\left(\frac{w_{m}}{I_{m}}+\frac{w_{m+1}}{I_{m+1}}\right) I_{t}}{\sum \frac{w_{m}}{I_{m}}+\frac{w_{m+1}}{I_{m+1}}} \tag{10}
\end{equation*}
$$

where $m, m+1$ are 1995and 1996, 1996and 1997 respectivdy.

Annex 2. Relation between superlative indexes and midpoint-period basket index

We assume prices and quantities consumed by households change smoothly. Define the following superlative price indexes $S(t: 0)$, and CES type price indexes $H(t: 0)$ which uses prices and quantities at the midpoint-period $t / 2$:

$$
\begin{equation*}
S(t: 0)=\left(\frac{\sum \mathrm{s}_{0} I_{t^{\frac{r}{2}}}}{\sum \frac{s_{t}}{I_{t} \frac{r}{2}}}\right)^{\frac{1}{r}}=\left(\frac{\sum \mathrm{s}_{0} I_{t}^{1-\sigma}}{\sum \frac{s_{t}}{I_{t}^{1-\sigma}}}\right)^{\frac{1}{2(1-\sigma)}} \tag{11}
\end{equation*}
$$

or superlative index derived from any (flexible) linear homogeneous unit cost function $c(p)$ as follows

$$
\begin{equation*}
S(t: 0)=\frac{c\left(p_{t}\right)}{c\left(p_{0}\right)}=\frac{c\left(p_{0} I_{t}\right)}{c\left(p_{0}\right)}, \frac{1}{\frac{c\left(p_{0} I_{t}\right)}{c\left(p_{0}\right)}} \frac{\partial \frac{c\left(p_{0} I_{t}\right)}{c\left(p_{0}\right)}}{\partial I_{t}}=\frac{s_{t}}{I_{t}} \tag{12}
\end{equation*}
$$

or the following index derived from any positive second-order-differentiable function f, g satisfied with $f(1)=g(1)=1$

$$
\begin{equation*}
H(t: 0)=\left(\frac{\sum \frac{s_{t / 2}}{I_{t / 2}^{\frac{r}{2}}} I_{t}^{\frac{r}{2}}}{\sum \frac{s_{t / 2}}{I_{t / 2}^{\frac{r}{2}}}}\right)^{\frac{2}{r}}=\left(\frac{\sum \frac{s_{t / 2}}{I_{t / 2}^{1-\sigma} I_{t}^{1-\sigma}}}{\sum \frac{s_{t / 2}}{I_{t / 2}^{1-\sigma}}}\right)^{\frac{1}{1-\sigma}} \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
H(t: 0)=\frac{L(t: t / 2)}{L(0: t / 2)}=\frac{f^{-1}\left(\sum s_{t / 2} f\left(\frac{I_{t}}{I_{t / 2}}\right)\right)^{\alpha}}{f^{-1}\left(\sum s_{t / 2} f\left(\frac{1}{I_{t / 2}}\right)\right)^{\alpha}} \cdot \frac{g^{-1}\left(\sum s_{t} g\left(\frac{I_{t}}{I_{t / 2}}\right)\right)^{1-\alpha}}{g^{-1}\left(\sum s_{0} g\left(\frac{1}{I_{t / 2}}\right)\right)^{1-\alpha}} \tag{14}
\end{equation*}
$$

where $r=2(1-\sigma) \neq 0, I_{\bullet}=\frac{p_{\bullet}}{p_{0}}, s_{\bullet}=\frac{p_{\bullet} q_{\bullet}}{\sum p_{\bullet} q_{\bullet}}$.

$$
L(t: 0)=f^{-1}\left(\sum s_{0} f\left(I_{t}\right)\right)^{\alpha} \cdot g^{-1}\left(\sum s_{t} g\left(I_{t}\right)\right)^{1-\alpha}
$$

${ }^{3)}$ See Diewert's paper such as Diewert(1981).
(13) can be regarded as the 'midpoint-period basket index' in the case: $r=2$ or $\sigma=0 . L(t: 0)$ equals to (11) in the case: $f(x)=x^{r / 2}, g(x)=1 / x^{r / 2}$ and $\alpha=1 / 2$. We can obtain the following results by differentiating (11), (12), (13) and (14) with respect to time t at the base period 0 .

$$
\begin{align*}
&\left.\frac{d S}{d t}\right|_{t=0}=\left.\frac{d H}{d t}\right|_{t=0}=\left.\sum s_{0} \frac{d I_{t}}{d t}\right|_{t=0} \\
&\left.\frac{d^{2} S}{d t^{2}}\right|_{t=0}=\left.\frac{d^{2} H}{d t^{2}}\right|_{t=0} \\
& \quad=\left(\left.\sum s_{0} \frac{d I_{t}}{d t}\right|_{t=0}\right)^{2}+\left.\sum s_{0} \frac{d^{2} I_{t}}{d t^{2}}\right|_{t=0}+\left.\left.\sum \frac{d s_{t}}{d t}\right|_{t=0} \frac{d I_{t}}{d t}\right|_{t=0}-\sum s_{0}\left(\left.\frac{d I_{t}}{d t}\right|_{t=0}\right)^{2} \tag{15}
\end{align*}
$$

or

$$
\begin{array}{r}
\left.\frac{d^{2} \ln S}{d t^{2}}\right|_{t=0}=\left.\frac{d^{2} \ln H}{d t^{2}}\right|_{t=0}=\frac{d}{d t}\left(\left.\sum s_{t}\left(\frac{d \ln I_{t}}{d t}\right)\right|_{t=0}\right. \\
\left.\operatorname{using} \frac{d I_{t / 2}}{d t}\right|_{t=0}=\left.\frac{1}{2} \frac{d I_{t}}{d t}\right|_{t=0},\left.\frac{d s_{t / 2}}{d t}\right|_{t=0}=\left.\frac{1}{2} \frac{d s_{t}}{d t}\right|_{t=0} \\
\left.\frac{d^{2} I_{t / 2}}{d t^{2}}\right|_{t=0}=\left.\frac{1}{4} \frac{d I_{t}}{d t}\right|_{t=0},\left.\frac{d^{2} s_{t / 2}}{d t^{2}}\right|_{t=0}=\left.\frac{1}{4} \frac{d s_{t}}{d t}\right|_{t=0} \\
\sum s_{t}=1, \sum \frac{d s_{t}}{d t}=0, \sum \frac{d^{2} s_{t}}{d t^{2}}=0, I_{0}=1
\end{array}
$$

Obviously (13) and (14) are also second order differential approximations to Divisia index defined as follows at the base period 0 . Index $H(t: 0)$ can be described as 'flexible' because it satisfies the equation on the right side in (15) and (16) without imposing any condition with respect to relations between prices $\left\{p_{t}\right\}$ and quantities $\left\{q_{t}\right\}$. Prices $\left\{p_{t}\right\}$ dose not need to be related with quantities $\left\{q_{t}\right\}$ by a concave unit cost function or a concave aggregator function.

$$
\operatorname{Divisia}(t: 0)=\exp \left(\int_{0}^{t} \sum \frac{s_{t}}{I_{t}} \frac{d I_{t}}{d t} d t\right)
$$

(13) converges on the following geometric-mean type index which uses weights at the midpoint-period $t / 2$ when r approaches 0 or σ approaches 1 . This index is also a second order differential approximation to superlative indexes with respect to time at the base period 0 .

$$
\begin{equation*}
H(t: 0)=\prod I_{t}^{s_{t / 2}} \tag{17}
\end{equation*}
$$

(13) and (14) can be further generalized as follows.
$H(t: 0)=\left(\frac{\left.\sum_{k} a_{t / 2, k}\left(\sum \frac{s_{t / 2}}{I_{t / 2}^{1-\sigma_{k}}} I_{t}^{1-\sigma_{k}}\right)^{\frac{1-\delta}{1-\sigma_{k}}}\right)^{\frac{1}{1-\delta}} a_{t / 2, k}\left(\sum \frac{s_{t / 2}}{I_{t / 2}^{1-\sigma_{k}}}\right)^{\frac{1-\delta}{1-\sigma_{k}}}}{)^{\frac{1}{1-2}}}\right.$
or

$$
\begin{equation*}
H(t: 0)=\frac{f^{-1}\left(\sum_{k} a_{t / 2, k} f\left(\phi_{k}^{-1}\left(\sum s_{t / 2} \phi_{k}\left(\frac{I_{t}}{I_{t / 2}}\right)\right)\right)\right)^{\alpha}}{f^{-1}\left(\sum_{k} a_{t / 2, k} f\left(\phi_{k}^{-1}\left(\sum s_{t / 2} \phi_{k}\left(\frac{1}{I_{t / 2}}\right)\right)\right)\right)^{\alpha}\left(\sum_{k} a_{t, k} g\left(\varphi_{k}^{-1}\left(\sum s_{t} \varphi_{k}\left(\frac{I_{t}}{I_{t / 2}}\right)\right)\right)\right)^{1-\alpha}\left(\sum_{k} a_{0, k} g\left(\varphi_{k}^{-1}\left(\sum s_{0} \varphi_{k}\left(\frac{1}{I_{t / 2}}\right)\right)\right)\right)^{1-\alpha}} \tag{19}
\end{equation*}
$$

where σ_{k} : price elasticity of demand for basic components in subgroup $k(\neq 0)$,
$\delta:$ price elasticity of demand for subgroups $(\neq 0)$
s_{0} : share of basic component in subgroup k at period \bullet
$a_{\bullet, k}$: share of subgroup k in the total consumption at period \bullet
$f, \mathrm{~g}, \phi_{k}, \varphi_{k}$: any positive second - order - differentiable function

$$
\text { satisfied with } f(1)=g(1)=\phi_{k}(1)=\varphi_{k}(1)=1
$$

As well as (13) and (14), (18) and (19) are also second order differential approximations to superlative indexes with respect to time at the base period supposing prices and quantities change smoothly - i.e. both satisfy with (15) and (16).

[^0]: ${ }^{1)}$ In the year after the base year, the 'midpoint-year basket index' cannot be calculated timely. Thus, the index compilation procedures possibly have to be changed in some way if the 'midpoint-year basket index' is adopted. For example, the base revision is to be carried out two years after the base year or later.

[^1]: ${ }^{2)}$ We need to somewhat forget about the reality such as the existence of seasonal changes in this argument.

