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Abstract

This paper studies the problems of measuring economic growth under conditions of
high inflation. Traditional bilateral index number theory implicitly assumes that varia-
tions in the price of a commodity within a period can be ignored. In order to justify this
assumption under conditions of high inflation, the accounting period must be shortened
to a quarter, month or possibly a week. However, once the accounting period is less than
a year, the problem of seasonal commodities is encountered; i.e., in some subannual peri-
ods, many seasonal commodities will be unavailable, and hence the usual bilateral index
number theory cannot be applied. The present paper systematically reviews the problems
of index number construction when there are seasonal commodities and high inflation.
Various index number formulae are justified from the viewpoint of the economic approach
to index number theory by making separability assumptions on consumers’ intertemporal
preferences. We find that accurate economic measurement under conditions of high infla-
tion is very complex. Statistical Agencies should produce at least three different types of
index: (i) year over year “monthly” price and quantity indexes; (ii) a short term “month
to month” price index of nonseasonal commodities and (iii) annual Mudgett-Stone quan-
tity indexes that use the short term price index in (ii) to deflate the seasonal prices. In
section 8, it is shown how the annual Mudgett-Stone quantity indexes can be calculated
for moving years as well as for calendar years. These moving year indexes can be centered
and the centered indexes can serve as “monthly” seasonally adjusted indexes at annual
rates. In section 9, this index number method of seasonal adjustment is compared with
traditional time series methods of seasonal adjustment. The paper is also related to the
accounting literature on adjusting for changes in the general price level.

Key Words: Aggregation of commodities, consumer theory, index numbers, inflation,
seasonal adjustment, separability, time series.

JEL Classification Numbers: B23, C43, D11, D91, E31, M4
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1. Introduction

Ever since the German hyperinflation of the twenties, accountants1 have noted that

high inflation causes historical cost accounting measures of income and wealth to become

virtually useless. One way to restore credibility to business accounts would be is to deflate

current values by appropriate price indexes. However, the construction of price indexes

is not straightforward under conditions of high inflation–particularly when seasonal com-

modities are present. Recently, Hill (1995) addressed some of these problems in the context

of adapting the United Nations (1993) system of national accounts to high inflation situa-

tions. This paper can be regarded as an extension of Hill’s contributions, taking account

of seasonal commodities.

Before describing the contents of the paper, we address some preliminary questions.

What are seasonal commodities? They are commodities which are either (i) not

available during certain seasonsor (ii) are always available but there are fluctuations in

prices or quantities that are synchronized with the season or time of year.2

What are the sources of seasonal fluctuations in prices or quantities? There are two

main sources:3 (i) climate and (ii) custom. In the first category, fluctuations in temper-

ature, precipitation, wind and hours of daylight cause fluctuations in demand for things

such as ice skates, fuel oil, umbrellas, snow tires, seasonal clothing, and electricity. In

more generic terms, climatic changes cause fluctuations in energy demands, recreational
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activities, and food consumption patterns. In fact, seasonal fluctuations are present in

almost all sectors of most economies.

What are the implications of seasonality for index number theory? If we break the

year up into M seasons (e.g., M = 4 if the season is a quarter or M = 12 if the season is

a month, then the existence of type (i) seasonal commodities in the set of goods we are

aggregating over means the dimension of the commodity space will not be constant. Thus

it will be impossible4 to apply the usual bilateral index number theory.

Even if all commodities were available in all seasons, the existence of type (ii) seasonal

commodities may mean that bilateral indexes that are exact for an underlying utility

function cannot be justified5. The economic approach assumes that the seasonal aggregator

function is the same in each season being compared, which is not a reasonable assumption if

climate and customs interact with tastes. This suggests that type (ii) seasonal commodities

should be further classified into sub types (a) and (b).

A type (ii) seasonal commodity is defined to be of sub type (a) if its seasonal quantity

fluctuations can be rationalized by utility maximizing behavior over a set of seasons where

the prices fluctuate but the utility aggregator function remains unchanged, and of type (ii)

(b) if its quantity fluctuations cannot be rationalized by maximizing an unchanging utility

function over the periods in question.6 An example may be helpful. As harvest conditions

vary, the price of potatoes in my local supermarket varies and I purchase more potatoes
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as the price falls and less as it rises. On the other hand, the price of beer remains quite

constant throughout the year but my consumption greatly during the summer. Weather

shifts my seasonal demand functions for beer which is a type (ii) (b) seasonal commodity

and but not potatoes which are a type (ii) (a) seasonal commodity. The usual economic

approach to index number theory can be applied to type (ii) (a) seasonal commodities but

not to type (ii) (b) ones.

The problem of index number construction when there are seasonal commodities has

a long history; e.g., see Flux (1921; 184-185), Crump (1924; 185), Bean and Stine (1924),

Mudgett (1955), Stone (1956), Rothwell (1958), Zarnowitz (1961), Turvey (1979) and Balk

(1980a), (1980b) (1980c) (1981). However, what has been missing is an exposition of the

assumptions on the consumer’s utility function7 that are required to justify a particular

formula. In the present paper, we will systematically list separability assumptions8 on in-

tertemporal preferences that can be used to justify various seasonal index number formulae

from the viewpoint of the economic approach to index number theory.9

We now set out the general model of consumer behavior that we will specialize in sub-

sequent sections. Suppose that there are M seasons in the year and the Statistical Agency

has collected price and quantity data on the consumer’s purchases for 1+T years.10 Suppose

further that the dimension of the commodity space in each season remains constant over

the T +1 years; i.e., season m has Nm commodities for m = 1, . . . , M . For season m of year
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t, we denote the vector of positive prices facing the consumer by ptm ≡ [ptm
1 , ptm

2 , . . . , ptm
Nm

]

and the vector of commodities consumed in by qtm ≡ [qtm
1 , qtm

2 , . . . , qtm
Nm

]. It will prove

convenient to have notation for the annual price and quantity vectors, so we define these

by:

pt ≡ [pt1, pt2, . . . , ptM ]; qt ≡ [qt1, qt2, . . . , qtM ]; t = 0, 1, . . . , T. (1)

To apply the economic approach to index number theory, it is necessary to assume that

the observed quantities of qtm
n are a solution to an optimization problem involving the

observed prices ptm
n . We follow Fisher (1930), Hicks (1946; 121-126) and Pollak (1989;

72) and assume that the intertemporal quantity vector [q0, q1, . . . , qT ] is a solution to the

following intertemporal utility maximization problem:

maxx0,x1,...,xT {U(x0, x1, . . . , xT ) : ΣT
t=0δtp

t · xt = W} (2)

where xt ≡ [xt1, xt2, . . . , xtm] and each seasonal quantity vector xtm has the dimensionality

of qtm, pt · xt ≡ ΣM
m=1p

tm ·xtm and ptm · xtm ≡ ΣNm
n=1p

tm
n xtm

n , U is the consumer’s intertem-

poral preference function (assumed to be continuous and increasing), δt > 0 is an annual

discount factor and “wealth” W is the consumer’s current and expected future discounted

“income” viewed from the perspective of the beginning of year 0. If the consumer can

borrow and lend at a constant annual nominal interest rate r, then δ0 ≡ 1 and

δt = 1/(1 + r)t, t = 1, 2, . . . , T. (3)
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Since we are assuming that the quantity vector [q0, q1, . . . , qT ] is a solution to (2), it must

satisfy the intertemporal budget constraint in (2) so we can replace W by

W ≡ ΣT
t=0δtp

t · qt. (4)

Our assumptions are admittedly unrealistic. The consumer is assumed to: (i) know

future spot prices pt; (ii) know his or her future income streams; (iii) be able to freely bor-

row and lend between years at the same rates and (iv) have unchanging tastes over years.

Under these assumptions, the consumer at the beginning of year 0 chooses a sequence of

annual consumption plans, qt, t = 0, 1, . . . , T , and sticks to them.

The economic approach to index numbers requies strong assumptions. Some advan-

tages of this approach are: (i) it allows for substitution in response to changes in the prices;

(ii) it provides a concrete framework which can be used to assess operational alternatives

that occur when a Statistical Agency constructs an index number11 and (iii) it leads to

definite recommendations about the choice of functional forms for index number formulae

which can then be evaluated from other perspectives, such as the test approach.

Having made our basic economic assumptions (namely that the observed sequence

of annual quantity vectors [q0, q1, . . . , qt] solves (2) with W defined by (4)), now make

additional assumptions on the structure of the intertemporal utility function U .

In section 2, we show how (2) can be specialized to yield the annual indexes first

proposed by Mudgett (1955; 97) and Stone (1956; 74-75). In section 3, we note that
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our Hicksian intertemporal utility maximization problem (2) needs to be modified when

inflation is high. The annual discount factors δt that appear in (2) and (4) do not provide

an adequate approximation to the consumer’s intertemporal problem with even moderate

inflation between seasons: we need to introduce between season intra year discount rates

as well. In section 4, we show that when there are seasonal commodities, the use of annual

sums of seasonal quantities and the corresponding annual unit values are unsatisfactory

as annual quantity and price aggregates.

In section 5, we leave the problems involved in the construction of annual aggregates

and turn our attention to the construction of seasonal aggregates. In this section, we

consider the construction of year over year seasonal aggregates. In section 6, we examine

the consistency of the year over year seasonal aggregates of section 5 with the annual

indexes of sections 2 and 3. In section 7, we get into the heart of the seasonal aggregation

problem and consider methods for obtaining valid season to season measures of price

change when there are seasonal commodities. In section 8, we consider how to extend the

scope of the annual calendar year indexes of section 3 to “moving” year comparisons. In

section 9, we indicate how the moving year indexes of section 8 can be centered. These

centered indexes provide an index number solution to the problem of seasonal adjustment.

Section 10 concludes.
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2. The Construction of Annual Indexes Under Conditions of Low Infla-

tion

In the Mudgett (1955; 97)-Stone(1956; 74-75)12 approach to annual index numbers

when there are seasonal commodities, we need to restrict the consumer’s intertemporal

utility function U as follows: there exist F and f such that

U(x0, x1, . . . , xT ) = F [f(x0), f (x1), . . . , f(xT )] (5)

where f is a linearly homogeneous, increasing and concave annual utility function13 and

F is an intertemporal utility function that is increasing and continuous in its T +1 annual

utility arguments. The annual utility function f is assumed to be unchanging over time.

If q0, q1, . . . , qT solves (2) with W defined by (4) and U defined by (5), then it can

be seen that qt, the observed annual consumption vector for year t, is a solution to the

following year t utility maximization problem:

maxxt{f(xt) : pt · xt = pt · qt} = f(qt); t = 0, 1, . . . , T. (6)

Now we are in a position to apply the theory of exact index numbers.14 Assume that the

bilateral quantity index Q(ps, pt, qs, qt) is exact for the linearly homogeneous aggregator

function f . Then we have

f(qt)/f(qs) = Q(ps, pt, qs, qt); 0 ≤ s, t ≤ T. (7)
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As an example of (7), suppose that the annual aggregator function f is f (x) ≡ (x ·Ax)1/2

where A is a symmetric N∗ by N ∗ matrix of constants satisfying certain regularity con-

ditions. This functional form is flexible; i.e., it can provide a second order approximation

to an arbitrary differentiable linearly homogeneous function. The quantity index that is

exact for this functional form is the Fisher (1922) ideal quantity index QF
15

QF (ps, pt, qs, qt) ≡ [pt · qtps · qt/pt · qsps · qs]1/2. (8)

Since QF is exact for a flexible functional form, it is a superlative index.16

Given any bilateral quantity index Q, its associated price index P can be defined as

follows using Fisher’s (1911; 403) weak factor reversal test17:

P (ps, pt, qs, qt) ≡ pt · qt/ps · qsQ(ps, pt, qs, qt). (9)

Given any linearly homogeneous, increasing and concave aggregator function f , its

dual unit cost function can be defined for strictly positive prices p >> 0N∗ as:

c(p) ≡ minx{p · x : f(x) = 1}. (10)

When the utility function f is linearly homogeneous, the Konüs (1924) price index between

periods s and t reduces to the ratio of the unit cost functions evaluated at the period s and

t prices, c(pt)/c(ps). If the bilateral quantity index Q is exact for f , then its companion

bilateral price index P defined by (9) is exact for the unit cost function c dual to f ; i.e.,
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in addition to (7), we also have

c(pt)/c(ps) = P (ps, pt, qs, qt); 0 ≤ s, t ≤ T. (11)

As an example of (11), suppose that the annual aggregator function is the homogeneous

quadratic aggregator f(x) ≡ (x · Ax)1/2 and that c is its unit cost dual function. Then

(11) holds with P = PF where the Fisher ideal price index PF is defined by

PF (ps, pt, qs, qt) ≡ [pt · qtpt · qs/ps · qtps · qs]1/2. (12)

The above analysis seems to indicate that the construction of annual price and quan-

tity indexes when there are seasonal commodities is straightforward: simply regard each

“physical” commodity in each season as a separate economic commodity and apply ordi-

nary index number theory to the enlarged annual commodity space. However, this does

not work when there is sever or even moderate inflation between seasons within the year.

3. The Construction of Annual Indexes Under Conditions of High Inflation

In the previous section, a discount rate δt was used to make the prices in year t

comparable to the base year prices. With low inflation, this is an acceptable approximation

to the consumer’s intertemporal choice problem. However, when inflation is high, we can

no longer neglect interseasonal interest rates.

Consider the budget constraint in (2). We now interpret δt as the discount factor

that makes one dollar at the beginning of year t equivalent to one dollar at the beginning

12



of year 0. From the beginning of t to the middle of season m in t, another discount factor

is required, say ρtm, which will make a dollar at the beginning of t equivalent to a dollar

in the middle of season m of t. Thus the budget constraint in (2) must be replaced by an

intertemporal constraint:

ΣT
t=0Σ

M
m=1δtρtmptm · xtm = W (13)

where ptm and qtm are the (spot) price and quantity vectors for season m of t and xtm is a

year t, season m, year t vector of decision variables. Similarly, definition (4) for “wealth”

W is now:

W ≡ ΣT
t=0Σ

M
m=1δtρtmptm · qtm. (14)

Making assumption (5) again, we can now derive the following counterparts to (6):

maxxt1,...,xtM {f(xt1, . . . , xtM ) : ΣM
m=1ρtmptm · xtm = ΣM

m=1ρtmptm · qtm}

= f(qt1, . . . , qtM ) ≡ f(qt); t = 0, 1, . . . , T

(15)

where the annual year t observed quantity vector qt is equal to [qt1, . . . , qtM ] and qtm is

the season m, year t observed quantity vector.

Note that the seasonal discount factors ρtm appear in the constraints of the annual

utility maximization problems (15). Define the vector of year t, season m discounted (to

the beginning of year t) prices ptm∗ as

ptm∗ ≡ ρtmptm; t = 0, 1, . . . , T ; m = 1, . . . , M. (16)
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The constraints in (15) can now be written as pt∗ ·xt = pt∗ · qt where the year t discounted

price vector is defined as pt∗ ≡ [pt1∗, pt2∗, . . . , ptM∗]. Now we can repeat the analysis in

the previous section associated with equations (7) - (12): we need only replace the year

t spot price vectors pt by the year t discounted vectors pt∗. In particular, assuming that

the bilateral index number formula Q is exact for the homogeneous aggregator function f

and its dual unit cost function c, we have the following counterparts to (7) and (11):

f(qt)/f (qs) = Q(ps∗, pt∗, qs, qt); 0 ≤ s, t ≤ T ; (17)

c(pt∗)/c(ps∗) = P (ps∗, pt∗, qs, qt); 0 ≤ s, t ≤ T (18)

where P is the bilateral price index associated with the quantity index Q defined using

the counterpart to (9) which replaces ps and pt by ps∗ and pt∗.

Thus our approach to constructing annual index numbers when there are seasonal

commodities and high inflation is to use the Mudgett-Stone annual indexes with the year t

season m spot prices ptm replaced by the within year inflation adjusted prices ptm∗ defined

by (16).

To see why we must use inflation adjusted prices in our annual index number formulae,

consider the situation when there is a hyperinflation and we are using the Fisher quantity

index defined by (8). If the hyperinflation takes place only in season m of year t, then the

Paasche part pt · qt/pt · qs of the Fisher index will be approximately equal to ptm · qtm/ptm ·

qsm; i.e., only consumption in season m of year t, qtm, and consumption in season m of
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year s, qsm, will enter into the comparison between years s and t if spot prices ptm are

used in place of the discounted prices ptm∗. This is obviously undesirable.

Note that ρtm+1/ρtm ≡ 1 + rtm for m = 1, 2, . . . , M − 1 where rtm is the average

interest rate faced when borrowing or lending money from the middle of season m to

m + 1 in t. If prices are expected to increase in m + 1 compared to m, then the nominal

interest rate rtm can be expected to increase too.18 Thus if the discounted prices ρtmptm
n

are used in place of the nominal prices ptm
n in an annual index number formula, the effects

of high inflation in any season will be nullified by the discount rates ρtm.

The use of the seasonally discounted prices pt∗ in (17) and (18) in place of the nominal

prices pt poses difficulties for economic statisticians. Not only must the Statistical Agency

collect seasonal data on nominal prices and quantities, but data on season to season interest

rates rtm must also be collected in order to calculate the seasonal discount factors ρtm.

In principle, the interest rate rtm should be a weighted average of all interest rates that

consumers face (both borrowing and lending rates) where the weights are proportional to

the amounts of funds loaned out or borrowed by consumers during season m of year t.

This is not a trivial task. Moreover, many statisticians will object to using discounted

prices in constructing annual price and quantity indexes on the grounds that the Fisher

(1930)–Hicks (1946) intertemporal consumer theory that (17) and (18) are based on is too
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“unrealistic”. Thus we consider some alternatives to the use of interest rates as discount

factors in forming the seasonally deflated prices ptm∗ defined by (16).

A simple alternative is to use the price of a widely traded commodity as a discount

factor. Thus if ptm
G is the price of gold in season m of year t, then the “gold standard”

discount factors are:

ρG
tm ≡ pt1

G/ptm
G ; t = 0, 1, . . . , T ; m = 1, . . . , M. (19)

The gold deflated prices ptm∗
n ≡ ρG

tmptm
n could be used as the normalized prices in (17) and

(18).19

Another alternative is to convert nominal prices into prices expressed in terms of a

stable currency.20 In this case, the “foreign currency” discount factors ρE
tm are defined by

ρE
tm ≡ etm/et1; t = 0, 1, . . . , T ; m = 1, . . . , M, (20)

where etm is the average number of units of foreign currency required to buy 1 unit of

domestic currency in season m of year t.

Instead of using the price of gold ptm
G as the deflator in (19), we could use any of the

price for any commodity is traded during each season. Or instead of deflating by a single

commodity price, the price or cost of a basket of nonseasonal and type (ii) (a) seasonal

commodities might be used as the deflator. The season m year t price vector ptm could

be divided up into the vectors [p̃tm, p̂tm] where p̃tm ≡ [p̃tm
1 , p̃tm

2 , . . . , p̃tm
K ] where each of
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the K commodities represented in p̃tm is either a nonseasonal commodity or a type (ii)

(a) seasonal commodity.21 Let b ≡ [b1, b2, . . . , bK ] be a vector of “appropriate” commodity

quantity weights. Then the year t season m price of this basket of goods is p̃tm · b and the

“commodity standard” discount factors are defined by22

ρB
tm ≡ p̃tm · b/p̃tm · b; t = 0, 1, . . . , T ; m = 1, . . . , M. (21)

As a further refinement to (21), we could replace the fixed basket index p̃tm · b by a

general price index, P̃ (p̃t1, p̃tm, q̃t1, q̃tm), which compares the prices of commodities (ex-

cluding type (i) and type (ii) (b) seasonal commodities) in season m of year t, p̃tm, to their

prices in the base period, p̃t1. Now the discount factor is

ρP
tm ≡ 1/P̃ (p̃t1, p̃tm, q̃t1, q̃tm); t = 0, 1, . . . , T ; m = 1, . . . , M. (22)

We will pursue this final refinement in section 7 below.

Each of the choices for the seasonal discount factors ρtm represented by (19) - (22) has

advantages and disadvantages. All of these choices seem somewhat arbitrary. However,

each of these will lead to sensible index number comparisons in the presence of hyperinfla-

tion. If we make use of Fisher’s (1896; 69) observation that nominal rates of interest are

approximately equal to real rates plus the rate of inflation, it can be seen that the inflation

rate choices that are imbedded in the discount factor choices (19) - (22) will be approx-

imately equal to our interest rate choice for ρtm that we advocated originally, provided

that the season to season real rates of return are small.
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The important conclusion that we should draw from the analysis presented in this

section is that when constructing annual quantity indexes in high inflation situations,

seasonal prices must be deflated for general inflation that occurred from season to season

throughout the year. If this deflation is not done, the quantities corresponding to high

inflation seasons will receive undue weight in the annual quantity index.

We conclude this section by discussing the interpretation of the annual price index

P (ps∗, pt∗, qs, qt) in (18). We assume that the price and quantity indexes P and Q that

appear in (17) and (18) satisfy the weak factor reversal test (9) with normalized prices pt∗

used in place of nominal prices pt. Thus P and Q satisfy

ΣM
m=1p

tm∗ · qtm/ΣM
m=1p

sm∗ · qsm = P (ps∗, pt∗, qs, qt)Q(ps∗, pt∗, qs, qt); (23)

i.e., using our original seasonal interest rate discount factors ρtm, (23) says that the dis-

counted (to the beginning of year t) sum of seasonal values ΣM
m=1p

tm∗ · qtm divided by

the discounted (to the beginning of year s) sum of seasonal values ΣM
m=1p

sm∗ · qsm is de-

composed into P (ps∗, pt∗, qs, qt) times Q(ps∗, pt∗, qs, qt). The price index P (ps∗, pt∗, qs, qt)

captures the change in discounted year t prices relative to discounted year s prices. The

interpretation of P (ps∗, pt∗, qs, qt) when the specific commodity discount factors defined

by (19) - (22) are used is less clear. If we use the discount factors defined by (19), then the

normalized prices in season 1 of each year t, pt1∗
n , are equal to the corresponding nominal
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prices pt1
n , but the normalized prices for later seasons m > 1, ptm∗

n , are equal to the cor-

responding nominal prices, ptm
n , divided by the year t, season m to 1, gold price relative,

ptm
G /pt1

G . P (ps∗, pt∗, qs, qt) is a measure of price level change going from year s to t with

the seasonal prices within each year are “stabilized” in terms of season 1 prices using the

price of gold as the deflator of post season 1 prices. This index does not have a clear

interpretation as a measure of the average level of nominal prices in year t versus year s.

In the following section, we discuss the possible use of annual unit values as prices in

the construction of annual price and quantity indexes.

4. Annual Unit Value Indexes Under Conditions of High Inflation

The reader may well feel that the annual index number model that we developed in

the previous section was too complex. One simpler alternative is the following: instead

of distinguishing commodities by season, add up consumption of each physically distinct

commodity over the seasons and use these annual total consumptions as the quantities to

be inserted into an index number formula. The price corresponding to each such annual

quantity would be the total annual value of expenditures on that physical commodity

divided by the annual quantity–an annual unit value.

This is a reasonable proposal, particularly when we consider that at some stage of

disaggregation, unit values must be used in order to aggregate up individual transactions,

if we want to apply bilateral index number theory.23 However, an important characteristic
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of a unit value is the time period over which it is calculated. As Fisher (1922; 318), Hicks

(1946; 122) and Diewert (1995; 22) noted, the time period should be short enough so that

individual variations of price within the period can be regarded as unimportant. In periods

of rapid inflation or hyperinflation, nominal prices vary substantially between seasons24.

Seasonal values that correspond to high inflation seasons will be weighted too heavily in

the annual unit value.

The above argument does not rule out the use of annual unit values provided that

nominal prices ptm
n are replaced by the within the year inflation adjusted normalized prices

ptm∗
n defined by (16), and provided that these prices are approximately constant across

seasons m for each commodity n. This proviso will not be satisfied if there are seasonal

commodities.

The problem with the use of (normalized) annual unit values when there are seasonal

commodities can be illustrated as follows.25 Imagine two years, where in the second year,

after transportation and storage improvements, a constant quantity of a seasonal fruit,

say bananas, is consumed at a constant price. In the first year, the same total annual

quantity is consumed mostly in one season at a price slightly lower than the second year

constant price. In the other seasons of the first year, one banana is consumed at a very

high price. The prices are such that the value of banana consumption is constant over the

two years. The unit value for bananas would also be constant over the two years as would
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the corresponding total annual quantity index. However, most economists would feel that

the utility of banana consumption is higher in the second year compared to the first year

and an index number comparison ought to show this. Given low seasonal real interest

rates, under the above conditions the use of a Mudgett-Stone Fisher ideal quantity index

would lead to a banana quantity index greater than 1. Thus there will generally be real

biases in using annual (normalized) unit value indexes if there are substantial seasonal

fluctuations in quantities and (normalized) prices.

In order to compare more formally the use of annual unit value indexes using normal-

ized prices with the Mudgett-Stone annual indexes in the previous section, we will make

the simplifying assumption that there are no type (i) and no type (ii) (b) seasonal com-

modities. Thus the dimensionality of the commodity space is constant over each season

so that Nm = N for m = 1, . . . , M and we can aggregate commodities over seasons.

Define the year t quantity for commodity n as the sum over the season m quantities:

Qt
n ≡ ΣM

m=1q
tm
n ; n = 1, . . . , N ; t = 0, 1, . . . , T. (24)

Using the inflation adjusted normalized prices ptm∗
n , an annual normalized value for com-

modity n in year t is defined as

V t∗
n ≡ ΣM

m=1p
tm∗
n qtm

n ; n = 1, . . . , N ; t = 0, 1, . . . , T. (25)

The normalized unit value for good n is defined as

P t∗
n ≡ V t∗

n /Qt
n; n = 1, . . . , N ; t = 0, 1, . . . , T. (26)
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Define the year t vector of normalized unit values as P t∗ ≡ [P t∗
1 , . . . , P t∗

N ] and the year t

vector of total quantities consumed as Qt ≡ [Qt
1, . . . , Q

t
N ] for t = 0, 1, . . . , T .

The annual price and quantity vectors P t∗ and Qt can be used in calculating annual

quantity indexes. We want to justify the use of such an index. We assume intertemporal

utility function satisfies the assumptions (5). One of these which appears to be necessary

for total annual year t quantities Qt = ΣM
m=1q

m to solve (15) is

f(x1, x2, . . . , xM ) = g(ΣM
m=1x

m) (27)

where g is an increasing, concave and linearly homogeneous function of N variables.26

However, to ensure that the quantity vectors [qt1, . . . , qtM ] are solutions to (15) when f is

defined by (27), we also require equality of the normalized price vectors; i.e., we require27

pt1∗ = pt2∗ = . . . = ptM∗; t = 0, 1, . . . , T. (28)

To see why this is so, rewrite (15) when f is defined by (27) as follows:

maxx1,...,xM {g(ΣM
m=1x

m) : ΣM
m=1p

tm∗ · xm = ΣM
m=1p

tm∗ · qtm}

= g(ΣM
m=1q

tm), t = 0, 1, . . . , T.

(29)

If (28) were not true for some t, then in (29), we would find that all of the seasonal

purchases in year t for any commodity where unequal prices prevailed would have to be

concentrated in the seasons with the lowest prices, which would contradict the observed

data.
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Assuming that (27) and (28) are satisfied, we can apply exact index number theory

and derive the following annual index number equalities:

g(Qt)/g(Qs) = Q∗(P s∗, P t∗, Qs, Qt); 0 ≤ s, t ≤ T (30)

for any index number formula Q∗ that is exact for the annual aggregator function g. Thus

we have provided an economic justification for the use of annual normalized unit values

P t∗ and total annual quantities Qt in an index number formula.

Suppose that Q∗ in (30) and Q in (17) are both Fisher ideal quantity indexes. Under

what conditions will the annual unit value approach (which leads to (30) with Q∗ = Q∗
F )

give us the same numerical answer as the less restrictive Mudgett-Stone approach (which

leads to (17) with Q = QF )?

Using definitions (24) - (26), it is easy to see that

pt∗ · qt = ΣM
m=1p

tm∗ · qtm = P t∗ · Qt; t = 0, 1, . . . , T. (31)

Hence a Fisher ideal index used in (17) will equal a Fisher ideal index used in (30); i.e.,

Q∗
F (P s∗, P t∗, Qs, Qt) = QF (ps∗, pt∗, qs, qt); 0 ≤ s, t ≤ T, (32)

if and only if28

P s∗ · Qt = ps∗ · qt for 0 ≤ s, t ≤ T. (33)
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A simple set of conditions that will ensure the equalities in (33) are the following

Leontief (1936) type aggregation conditions:

qtm = αtβmq̄; t = 0, 1, . . . , T ; m = 1, . . . M (34)

where αt > 0 is a year t growth factor, βm > 0 is a shift factor for season m and q̄ ≡

[q̄1, . . . , q̄N ] is a fixed quantity vector. If the βm form an increasing sequence, they may

be interpreted as “monthly” growth factors. If the βm fluctuate with mean 1, they can be

interpreted as pure seasonal fluctuation factors with all commodities subject to the same

pattern of fluctuations.

We now verify that assumptions (34) imply the equalities (33). Using the definition

of an inner product, we have for 0 ≤ s, t ≤ T :

P s∗ · Qt = ΣN
n=1P

s∗
n Qt

n

= ΣN
n=1[Σ

M
m=1p

sm∗
n qsm

n /ΣM
j=1q

sj
n ][ΣM

i=1q
ti
n ] using definitions (24) - (26)

= ΣN
n=1[Σ

M
m=1p

sm∗
n αsβmq̄n/ΣM

j=1αsβj q̄n][ΣM
i=1αtβiq̄n] using (34)

= ΣN
n=1Σ

M
m=1p

sm∗
n αtβmq̄n

= ΣN
n=1Σ

M
m=1p

sm∗
n qtm

n using (34)

= ps∗ · qt

where the last equality follows from the definitions of the annual vectors ps∗ and qt.
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Thus assumptions (34) do indeed imply the equality of the Fisher indexes in (32) but

they are not consistent with the simultaneous existence of both seasonal and nonseasonal

commodities or with the existence of nonconstant “monthly” growth rates.

Another set of conditions that will ensure that the equalities in (33) hold are the

following Hicks (1946; 312) aggregation conditions:

ptm∗ = γtp̄; t = 0, 1, . . . , T ; m = 1, . . . , M (35)

where γt > 0 is a year t price level factor and p̄ ≡ [p̄1, . . . , p̄N ] is a constant price vector.

We now verify that assumptions (35) imply the equalities (33). Using definitions (24)

- (26) again, we have for 0 ≤ s, t ≤ T :

P s∗ · Qt = ΣN
n=1[Σ

M
m=1p

sm∗
n qsm

n /ΣM
j=1q

sj
n ][ΣM

i=1q
ti
n ]

= ΣN
n=1[Σ

M
m=1γsp̄nqsm

n /ΣM
j=1q

sj
n ][ΣM

i=1q
ti
n ] using (35)

= ΣN
n=1[γsp̄n][ΣM

i=1q
ti
n ]

= ΣN
n=1Σ

M
m=1γsp̄nqtm

n

= ΣN
n=1Σ

M
m=1p

sm∗
n qtm

n using (35)

= ps∗ · qt.

Thus conditions (35) imply the equalities in (33) and (32). Note that conditions (35)

are just a different way of writing our earlier conditions (28). These conditions are very

restrictive: they require absolute equality of all discounted seasonal price vectors ptm∗

within each year t. In particular, these conditions rule out seasonal fluctuations in prices.
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The above analysis indicates that the existence of seasonal commodities will generally

cause the annual unit value index numbers to differ (perhaps substantially) from the

Mudgett-Stone annual indexes studied in the previous two sections. Since the assumptions

on the underlying annual aggregator function needed to derive exact indexes are much less

restrictive for the Mudgett-Stone indexes, we recommend the use of these indexes over the

use of annual unit value indexes.

We turn now to the task of justifying the use of season specific year over year indexes.

5. Year Over Year Seasonal Indexes

The separability assumptions on the annual aggregators function f which appears in

(5) that are required to justify year over year seasonal indexes can be phrased as follows:

there exists an increasing continuous function h of M variables and there exist functions

fm of Nm variables, m = 1, . . . , M, such that

f (x1, . . . , xM ) = h[f1(x1), . . . , fM (xM )] (36)

where the seasonal aggregator fm(xm) are increasing, linearly homogeneous and concave.

Assumption (36) says that the annual aggregator f which appeared in sections 2 and

3 above now has a more restrictive form which aggregates the seasonal vectors xm in two

stages. In the first, the commodities in season m, xm ≡ [xm
1 , xm

2 , . . . , xm
Nm

], are aggregated

by the season specific utility function fm(xm) ≡ um and then the seasonal utilities um are

aggregated in the second stage by h to form annual utility, u ≡ h(u1, u2, . . . , uM ).
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Making assumption (5) again and assuming that the consumer’s intertemporal budget

constraint is defined by (13) and (14), we can again derive (15). Substituting (36) into

(15) and using the assumption that h is increasing in its arguments gives:

maxxm{fm(xm) : ptm · xm = ptm · qtm} = fm(qtm); t = 0, 1, . . . , T ; m = 1, . . . , M. (37)

Let the unit cost dual cm to the seasonal aggregator function fm be defined by:

cm(pm) ≡ minxm{pm · xm : fm(xm) = 1}; m = 1, . . . , M. (38)

Let Pm and Qm be price and quantity indexes that are exact for the season m aggregator

function fm. Then under our optimizing assumptions, we have the following equalities,

applying the usual theory of exact index numbers, for 0 ≤ s, t ≤ T and m = 1, . . . , M :

fm(qtm)/fm(qsm) = Qm(psm, ptm, qsm, qtm); (39)

cm(ptm)/cm(psm) = Pm(psm, ptm, qsm, qtm). (40)

Equation (39) says that the ratio of seasonal utility in season m of to seasonal utility in the

same season m of s is equal to the quantity index Qm(psm, ptm, qsm, qtm) which is a function

of the nominal price vectors for season m of s t, psm and ptm, and the observed quantity

vectors for season m of s and t, qsm and qtm. If the seasonal aggregator functions are chosen

to be the flexible homogeneous quadratic functions fm(xm) ≡ [xm · Amxm]1/2, where Am

is a square symmetric matrix of constants for m = 1, . . . , M , then the corresponding exact

Qm and Pm will be the superlative Fisher ideal indexes Qm
F and Pm

F for m = 1, . . . , M .
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Equation (40) tells us that the theoretical Konüs (1924) price index for season m between

years s and t, cm(ptm)/cm(psm), is exactly equal to the price index Pm(psm, ptm, qsm, qtm)

which in turn will equal the Fisher ideal price index Pm
F (psm, ptm, qsm, qtm) if fm is the

homogeneous quadratic aggregator function defined above.

Note that the nominal price vectors for season m in s and t, psm and ptm, appear

in (40). Thus the index number on the right hand side of (40) is a valid indicator of the

amount of nominal price change that has occurred going from season m of s to the same

season m in t. Presumably, we have chosen the seasons to be short enough so that prices

can be assumed to be approximately constant within each season and hence have avoided

the weighting problems encountered in the previous two sections in constructing annual

indexes.

Summarizing the results of this section, we have shown how the separability assump-

tion (36) justifies the use of the year over year seasonal price and quantity indexes that

appeared in (39) and (40). These year over year seasonal indexes have been proposed by

Flux (1921; 184), Zarnowitz (1961; 266) and many others29 but explicit economic justifi-

cations for these indexes seem to be lacking.

In the following section, we ask whether the year over year seasonal indexes, (39) and

(40), can be used as building blocks in the construction of annual indexes.

6. Consistency of Year Over Year Seasonal Indexes With An Annual Index
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Recall the results of section 3 and specialize them so that the year s which appears

in (17) and (18) is the base year, year 0. Let f be the linearly homogeneous, concave and

increasing annual aggregator function which appears in (15) and (17) and let Q and P be

exact for f . Then using (17) with s = 0, we have for t = 0, 1, . . . , T :

f(qt)/f (q0) = f(qt1, . . . , qtM )/f (q01, . . . , q0M ) = Q(p0∗, pt∗, q0, qt). (41)

Equations (41), along with a base period normalization for f(q0) such as f(q0) ≡ p0∗ · q0,

can be used to compute the annual quantity aggregates f(qt) by utilizing the index number

formula Q that is exact for f .

Now consider the model in the previous section where the annual aggregator function

f had the more restrictive separable functional form defined by (36). How can the annual

aggregates f(qt) = h[f1(q1), . . . , fM (qM )] be computed exactly in this case?30

As in the previous section, assume that the seasonal aggregators fm(xm) are linearly

homogeneous, increasing and concave in their arguments and assume now that h has

the same mathematical properties. Assume also that the fm have exact index number

formulae Pm and Qm. We can again derive the equalities (39) and (40) and we can also

derive the following counterparts to (39) and (40) (with s = 0)31 where normalized prices

ptm∗ replace the nominal price vectors ptm, for t = 0, 1, . . . , T and m = 1, . . . , M :

fm(qtm)/fm(q0m) = Qm(p0m∗, ptm∗, q0m, qtm); (42)

cm(ptm∗)/cm(p0m∗) = Pm(p0m∗, ptm∗, q0m, qtm). (43)
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Choose units of measurement to measure base period seasonal utilities fm(q0m) as follows:

fm(q0m) ≡ p0m∗ · q0m ≡ Q0
m; m = 1, . . . , M ; (44)

i.e., set utility in season m of year 0, fm(q0m) or Q0
m, equal to base period expenditures in

m, p0m ·q0m, times the inflation factor ρ0m which converts the dollars of season m in year 0

to dollars at the beginning of year 0; (remember that p0m∗ = ρ0mp0m). The normalizations

(44) imply that base year seasonal unit costs, cm(p0m∗), are all equal to unity; i.e.,

cm(p0m∗) = 1 ≡ P 0∗
m ; m = 1, . . . , M. (45)

We have used equations (44) and (45) to define Q0
m and P 0∗

m for m = 1, . . . , M . Now

substitute (44) and (45) into (42) and (43) to obtain the following computable formulae

for the year t seasonal price and quantity aggregates, cm(ptm∗) and fm(qt) for t = 1, . . . , T

and m = 1, . . . , M :

fm(qtm) = Qm(p0m∗, ptm∗, q0m, qtm)p0m∗ · q0m ≡ Qt
m; (46)

cm(ptm∗) = Pm(p0m∗, ptm∗, q0m, qtm) ≡ P t∗
m . (47)

Note that we have used equations (46) and (47) to define year t and season m seasonal

price and quantity aggregates, P t
m and Qt

m.
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Now consider the year t utility maximization problems (15) when f has the separable

form (36) for t = 0, 1, . . . , T :

maxx1,...,xM {h[f 1(x1), . . . , fM (xM )] : ΣM
m=1p

tm∗ · xm = ΣM
m=1p

tm∗ · qtm}

=maxx1,...,xM {h[f 1(x1), . . . , fM (xM )] : ΣM
m=1c

m(ptm∗)fm(xm) = ΣM
m=1c

m(ptm∗)fm(qtm)}

since maximization of utility implies cost minimization32

=maxQ1,...,QM {h[Q1, . . . , Qm] : ΣM
m=1P

t∗
m Qm = ΣM

m=1P
t∗
m Qt

m}

letting Qm ≡ fm(xm), Qt
m ≡ fm(qtm) and P t∗

m ≡ cm(ptm∗)

=h[Qt
1, . . . , Q

t
M ].

(48)

The equalities in (48) follow from the assumption that the observed quantity data for year

t, qt ≡ [qt1, . . . , qtM ], solve the year t utility maximization problem (15) when f has the

separable structure (36) and the homogeneous seasonal aggregator functions fm have the

exact index number formulae Qm(p0m∗, ptm∗, q0m, qtm) and Pm(p0m∗, ptm∗, q0m, qtm) that

enabled us to construct the seasonal price and quantity aggregates P t∗
m and Qt

m via (44) -

(47).

Let the annual aggregate quantity index Qa be exact for the linearly homogeneous

aggregator function h. Then the equalities in (48) imply the following exact index number

relationships for t = 1, 2, . . . , T :

h[f1(qt1), . . . , fM (qtM )]/h[f1(q01), . . . , fM (q0M )]

= Qa(P 0∗
1 , . . . , P 0∗

M ; P t∗
1 , . . . , P t∗

M ; Q0
1, . . . , Q

0
M ; Qt

1, . . . , Q
t
M ).

(49)
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The index number formula on the right hand side of (49) is an example of a two stage

aggregation formula. In the first, we use the year over year “monthly” indexes Qm and

Pm to form the “monthly” aggregate prices and quantities P t∗
m and Qt

m using (44) - (47).

In the second stage, the annual quantity index Qa aggregates the “monthly” information

using the right hand side of (49) to form an estimator for the ratio of real consumption in

t versus 0.33

The two stage estimator of the annual consumption ratio defined by (49) can be

compared with the single stage estimator defined by the right hand side of (41). In

general, the two stage estimator (49) will not coincide with the one stage estimator (41).

However, there are special cases of interest to Statistical Agencies where the two index

number approaches will yield exactly the same answer: if all of the aggregator functions

f, f 1, . . . , fm and h are of the Leontief (1936) no substitution variety34, then corresponding

exact price and quantity indexes are (i) the Laspeyres price indexes PL, P 1
L, . . . , PM

L and

P a
L and the Paasche quantity indexes QP , Q1

P , . . . , QM
P and Qa

P , and (ii) the Paasche price

indexes PP , P 1
P , . . . , PM

P and P a
P and the Laspeyres quantity indexes QL, Q1

L, . . . , QM
L and

Qa
L. Thus if Paasche or Laspeyres indexes are used throughout, then the year over year

seasonal indexes can be used as building blocks in a two stage procedure to construct an

annual index, and this procedure will give the same answer as the single stage procedure.
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However, from the viewpoint of economic theory, the use of Paasche and Laspeyres

indexes cannot be readily justified. The problem is that these indexes are exact only for

Leontief aggregators which assume zero substitutability between all commodities.35

If we make the reasonable assumption that all of the homogeneous aggregators f, f1,

. . . , fM and h can be closely approximated by homogeneous quadratic utility functions,

then the corresponding exact index number formulae for Q, Q1, . . . , QM , P 1, . . . , PM

and Qa are all (superlative) Fisher ideal indexes. In this case, the single stage annual

aggregate quantity ratio defined by the right hand side of (41), QF (p0∗, pt∗, q0, qt), will

not be precisely equal to the corresponding two stage annual aggregate quantity ratio

defined by the right hand side of (49) where Qa is the Fisher ideal quantity index Qa
F .

However, Diewert (1978; 889), drawing results due to Vartia (1974) (1976), showed that,

numerically, the right hand side of (41) will approximate the right hand side of (49) to the

second order36, provided that superlative index number formulae were used for all of the

indexes. Limited empirical evidence on the closeness of single stage superlative indexes to

their two stage counterparts can be found in Diewert (1978; 895) (1983c; 1036-1040).

If the single stage number differs considerably from the two stage number, which

number should be used? If superlative indexes are being used in both procedures, then

from the viewpoint of economic theory, the single stage number should be preferred, since

the assumptions on the annual preference function f are the weakest using this procedure.
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We turn now to the difficult problem of making index number comparisons between

seasons within the same year when there are seasonal commodities.

7. Short Term Season To Season Indexes

Under conditions of even low inflation, it is important to have reliable short term

inflation measures for indexation, wage negotiations, calculation of real rates of return,

etc. Thus we need to be able to compare the price level of the current season with the

immediately preceding ones. The annual price indexes defined earlier are not suitable for

this nor are the year over year seasonal indexes defined by (40), since they are not compa-

rable over seasons or “months” m because the commodity baskets change over the seasons

due to the existence of type (i) seasonal commodities. To make this lack of comparability

problem clearer, make the separability assumption (36) on the annual utility function f .

Assume that the season m aggregator fm has the unit cost dual cm, and Pm is an exact

bilateral price index for fm. Setting s = 0, equations (40) become:

cm(ptm)/cm(p0m) = Pm(p0m, ptm, q0m, qtm); t = 1, . . . , T ; m = 1, . . . , M. (50)

We can interpret cm(ptm) as the price or unit cost of one unit of season m subutility in

year t, but there is no way of comparing these subutilities across seasons.37 Thus equations

(50) are of no help in obtaining comparable (across seasons) price indexes.

The aboved lack of comparability problem was noted by Mudgett (1955; 97-98),

Zarnowitz (1961; 246) and the economic statisticians at INSEE (1976; 67): the existence
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of type (i) seasonal goods makes it impossible to carry out normal bilateral index number

comparisons between consecutive seasons.

A solution to this problem of a lack of comparability is to make a different separability

assumption. Recall the notation from in section 3 where we partitioned the price vector

ptm into [p̃tm, p̂tm] where the commodities represented in p̃tm were either nonseasonal

commodities or type (ii) (a) seasonal commodities. Partition the quantity vectors in a

similar manner; i.e., qtm ≡ [q̃tm, q̂tm] and xtm ≡ [x̃tm, x̂tm] for t = 0, 1, . . . , T and m =

1, . . . , M . We now assume that the intertemporal utility function U introduced in section

1 has the following structure: there exists an increasing, continuous function G and an

increasing, linearly homogeneous and concave function φ such that

U(x01, . . . , x0M ; . . . ; xT1, . . . , xTM )

= G[φ(x̃01), x̂01, . . . , φ(x̃0M ), x̂0M ; . . . ; φ(x̃T 1), x̂T 1, . . . , φ(x̃TM ), x̂TM ].

(51)

The assumptions on the structure of intertemporal preferences represented by (51) are

similar to the separability assumptions made by Pollak (1989; 77) to justify the usual

annual indexes (recall sections 2 and 3 above). The only difference is that we now want

to justify comparable “monthly” indexes and thus our “monthly” aggregator φ must not

include type (i) and type (ii) (b) seasonal goods.38

Using our new notation for ptm ≡ [p̃tm, p̂tm], xtm ≡ [x̃tm, x̂tm] and qtm ≡ [q̃tm, q̂tm],

we can rewrite the consumer’s intertemporal budget constraint given by (13) and (14) as:

ΣT
t=0Σ

M
m=1δtρtm[p̃tm · x̃tm + p̂tm · x̂tm] = ΣT

t=0Σ
M
m=1δtρtm[p̃tm · q̃tm + p̂tm · q̂tm]. (52)
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As usual, we assume that [q0, q1, . . . , qT ] solves the intertemporal utility maximization

problem when U is defined by (51) and the budget constraint is defined by (52), where

the year t observed quantity vector is qt ≡ [qt1, . . . , qtm] and the year t season m quantity

vector is qtm ≡ [q̃tm, q̂tm]. Using the assumptions that G and φ are increasing in their

arguments, we can deduce that39

maxx̃tm{φ(x̃tm) : p̃tm · x̃tm = p̃tm · q̃tm} = φ(q̃tm); t = 0, 1, . . . , T ; m = 1, . . . , M. (53)

Let γ(p̃tm) be the unit cost function that is dual to the short run aggregator function φ.

Assume that the bilateral price and quantity indexes P̃ and Q̃ are exact for the aggregator

function φ. Then the equalities (53) imply the following equalities for 0 ≤ s, t ≤ T ; m =

1, . . . , M and j = 1,2, . . . , M :

φ(q̃tm)/φ(q̃sj) = Q̃(p̃sj, p̃tm, q̃sj, q̃tm); (54)

γ(p̃tm)/γ(p̃sj) = P̃ (p̃sj, p̃tm, q̃sj, q̃tm). (55)

We normalize the theoretical “monthly” price level function γ(p̃tm) so that the seasonal

price level in season 1 of year 0 is unity; i.e., we place the following restriction on γ:

γ(p̃01) = 1. (56)

Equations (55) and the normalization (56) allow us to use the exact bilateral index number

formula P̃ to provide estimates for the theoretical short term seasonal price levels γ(p̃tm).
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The fixed base sequence of short term inflation estimates is

1, P̃ (p̃01, p̃02, q̃01, q̃02), . . . , P̃ (p̃01, p̃0M , q̃01, q̃0M ); . . . ; P̃ (p̃01, p̃T 1, q̃01, q̃T 1), . . . ,

P̃ (p̃01, p̃TM , q̃01, q̃TM ).

(57)

Using the chain principle, the sequence of short run inflation estimates is

1, P̃ (p̃01, p̃02, q̃01, q̃02), P̃ (p̃01, p̃02, q̃01, q̃02)P̃ (p̃02, p̃03, q̃02, q̃03), . . . . (58)

The first two numbers in the chain sequence (58) coincide with the first two numbers in

the fixed base sequence (57) but then the chain estimate for a given year t and month

m + 1 is equal to the chain estimate for the immediately preceding month m times the

month to month bilateral link, P̃ (p̃m, p̃m+1, q̃m, q̃m+1). There are other ways of utilizing

the exact index number bilateral relationship defined by (55) to obtain estimates for the

sequence of “month” to “month” theoretical price levels

γ(p̃01), γ(p̃02), . . . , γ(p̃0M ); . . . ; γ(p̃T 1), γ(p̃T 2), . . . , γ(p̃TM ); (59)

but the fixed base and chain methods are the most practical ones.40

Should the fixed base sequence of price levels (57) or should the chain sequence (58)

be used by Statistical Agencies to measure short term price change? It seems appropriate

to review some of the arguments.41

One of the main arguments in favour of the chain system is that it is better adapted

to solving the problems of disappearing and also new goods.42 Recently, the problem of

the proliferation of new goods has intensified. Hence, the Statistical Agency, in making
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“month” to “month” index number comparisons, will be forced to use what Keynes (1930;

95) called the highest common factor method: the bilateral index number formula P̃ is

applied only to the subset of commodities that are transacted in both periods.43 If the

chain system is used, then the subset of commodities transacted will be larger than the

subset obtained using the fixed base system. Hence the chain comparisons will be more

reliable than the fixed base comparisons.

Another argument in favour of the chain system is that most “reasonable” index

number formulae will more closely approximate each other if the chain system is used,

since period to period changes are likely to be smaller over adjacent periods. Diewert

(1978; 895) and Hill (1988; 143) (1993; 387-388) noted that chaining will tend to reduce

the spread between the Paasche and Laspeyres indexes and hence the use of either of

these should more closely approximate a superlative index and hence better approximate

the underlying economic index.44

However, Hill (1988; 136-137), drawing on some analysis by Szulc (1983; 548) on the

“bouncing” phenomenon, also made an argument that favours the use of the fixed base

system: the chain system should not be used if prices and quantities have a tendency to

oscillate in a regular fashion and hence should not be used to aggregate seasonal data.

To see why the chain principle can give poor results, consider a situation where the price

and quantity data of quarter 1 in year 0 coincides with the price and quantity data of
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quarter 1 in year t > 1. Then if P̃ satisfies the identity test, the fixed base price level

for quarter 1 of t will be P̃ (p̃01, p̃t1, q̃01, q̃t1) = P̃ (p̃01, p̃01, q̃01, q̃t1) = 1, the correct answer,

whereas the chain index will not in general give the correct answer.45 However, in the

present context, this criticism loses all or most of its force, since we are excluding most

seasonal commodities in the index number formula P̃ .46 Furthermore, if we take P̃ to be

the Fisher ideal price index P̃F , then in most cases, we will find that the chain principle

will give satisfactory results even if there are type (ii) (a) seasonal goods included in the

list of goods that P̃F operates on.47

Although our focus in this section is on measuring short term price change using the

bilateral price index P̃ , we can also use the companion quantity index Q̃ to measure short

term quantity change for nonseasonal quantities. Furthermore, the exact index number

relations (54), along with a base period normalization such as

φ(q̃01) = p̃01 · q̃01 (60)

which sets season 1 utility in the base year 0 equal to expenditure on nonseasonal goods

p̃01 · q̃01, can be used to form estimates for annual sums of seasonal utilities. If we define

year t aggregate utility by ΣM
m=1φ(q̃tm), then using the fixed base principle, this theoretical

real quantity aggregate can be estimated in units of season 1 year 0 constant dollars by

[ΣM
m=1Q̃(p̃01, p̃tm, q̃01, q̃tm)]p̃01 · q̃01. (61)
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The reader can work out chain system or multilateral estimates for the year t utility

aggregate. However, annual quantity estimates of the form (61) will be of limited interest

due to the exclusion of type (i) and type (ii) (b) seasonal goods. To obtain comprehensive

estimates, it will be necessary to use the Mudgett-Stone indexes described in section 2

(with low inflation) or section 3 (with high or moderate inflation).

Our discussion can be summarized as follows: (1) a “month” to “month” Fisher ideal

chain index of nonseasonal commodities (and of type (ii) (a) seasonal commodities) is our

preferred alternative; see (58) with P̃ ≡ P̃F ; (2) if quantity information is not available

in a timely manner, fixed base Laspeyres price indexes will have to be used; i.e., (57) will

have to be used with P̃ ≡ P̃L. However, the base period should be changed as frequently

as possible.

Some seasonal bilateral index number procedures that work over commodity spaces of

varying dimensions have been proposed by Diewert (1980; 506-508) and Balk (1980a; 27)

(1981). We shall now review these proposals and compare them to our preferred proposal

(58), which depended on the separability assumptions (51).

Diewert (1980; 507) attempted to deal with the problem of disappearing and then

reappearing seasonal goods by utilizing Hicks’ (1940; 114)47 treatment of new goods: in

seasons when a good is unavailable, determine the reservation price that would just ration

the consumer’s demand for the good down to zero. These reservation prices, along with
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the associated zero quantities, could then be used as prices and quantities that could be

inserted into a bilateral season to season index number formula. There are two problems

with this proposal: (1) Statistical Agencies do not have the resources required to estimate

these reservation prices48 and (2) even if appropriate reservation prices could be estimated,

the assumptions required to justify the economic approach would not generally be satis-

fied. On the second problem, recall our earlier classification of type (ii) seasonal goods

(price and quantity data are available in each season) into types (ii) (a) and (ii) (b). Once

we have estimated reservation prices for type (i) seasonal goods, we have essentially con-

verted them into type (ii) seasonal goods. Hence we have the same problem that we had

with type (ii) seasonal commodities–some type (i) seasonal commodities can have their

prices and quantities rationalized by maximizing an underlying utility aggregator function

over the seasons (call these type (i) (a) seasonal commodities) and some cannot, because

custom shifts the aggregator function over the seasons (call these type (i) (b) seasonal

commodities). Thus to rigorously justify Diewert’s (1980; 507) earlier economic approach,

we have to rule out type (i) (b) and type (ii) (b) seasonal commodities, or simply restrict

the index number comparisons to type (i) (a) and type (ii) (a) seasonal commodities. But

this latter case is essentially the case analyzed in this section, except that we now add

type (i) (a) commodities to our list of K type (a) seasonal commodities (and we have to

provide reservation prices for the type (i) (a) commodities).
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Balk’s (1980a; 27) (1981) proposal for dealing with type (i) seasonal commodities

makes use of the Vartia II (1974; 70) (1976) price index49 so it is necessary to define this.

First define the logarithmic mean50 of two positive numbers, x and y, by

L(x, y) ≡
{

[x − y]/[lnx − lny] if x 6= y

x if x = y.
(62)

Balk (1981; 73) observed that (62) could be extended to the case where one of the numbers

x or y is zero and the other is positive so L(x, y) = 0. To define the Vartia II price index,

let pt be two generic price and quantity vectors pertaining to periods t = 0, 1. Define the

period t expenditure share on commodity n by

wt
n ≡ pt

nqt
n/pt · qt; t = 0, 1; n = 1, . . . , N. (63)

Define the logarithmic mean average share for commodity n between periods 0 and 1 by

w01
n ≡

{
L(w0

n, w1
n) if at least one of w0

n, w1
n is positive

0 if both w0
n and w1

n are 0
(64)

Finally, define the Sato (1976; 224)–Vartia (1974; 70) price index PSV by

lnPSV (p0, p1, q0, q1) ≡ ΣN
n=1w

01
n ln(p1

n/p0
n)/ΣN

n=1w
01
n . (65)

We have added Sato’s name to the price index PSV defined by (65) because he showed

that PSV is exact for a constant elasticity of substitution (CES) aggregator function.51

Balk (1995b) and Reinsdorf and Dorfman (1995) have studied the axiomatic proper-

ties of the Sato-Vartia price index and their conclusion is that it almost rivals the Fisher

ideal index.52 Furthermore, the fact that the Sato-Vartia index is exact for CES functional
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forms has proved useful in empirical applications; e.g., see Feenstra (1994). However, it

should be pointed out that the Sato-Vartia price index PSV defined by (65) is not su-

perlative; i.e., it is not exact for an aggregator function that can provide a second order

approximation to an arbitrary twice differentiable linearly homogeneous function when the

number of commodities N exceeds 2.53

We now return to Balk’s (1980a; 27) (1981) proposal for dealing with seasonal com-

modities. His method works as follows: when comparing type (i) commodities between two

seasons when both are absent from the marketplace, drop the commodity from the index

number computation; for all other cases, use the Sato-Vartia price index. This procedure

will set the weight of the commodity equal to zero if it is not present in both periods. Ob-

viously, another way of describing this method is: use what Keynes (1930; 94) called the

highest common factor method and use the Sato-Vartia price index as the index number

formula.

Balk’s approach54 to the treatment of type (i) seasonal commodities is satisfactory

from the viewpoint of the test approach to index number theory but there are two problems

versus the economic approach: (1) since the Sato-Vartia index is not superlative, it would

be better to apply the highest common factor method but use a superlative price index in

place of the Sato-Vartia index55 and (2) Balk’s procedure ignores the existence of type (i)

(b) and (ii) (b) seasonal commodities. The prices and quantities corresponding to these
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type (b) seasonal commodities cannot be rationalized by utility maximizing behavior where

the utility function remains constant over the two periods in question because custom shifts

the demand over seasons for type (b) seasonal commodities. The above second criticism of

Balk’s proposed procedure is the same as our earlier second criticism of Diewert’s (1980;

507) economic approach to seasonal indexes and the cure to this problem is the same:

restrict the season to season index number comparisons to nonseasonal commodities and

type (i) (a) and (ii) (a) seasonal commodities.

To conclude this section, we note that many consumer goods are durable; i.e., they

provide services beyond the initial season of purchase. Hence from the viewpoint of the

economic approach to the short term consumer price index, seasonal rental prices or user

costs should be used as the prices for durable consumer goods and the quantity weights

should reflect not only the purchases made during the season but also the available stocks

of consumer durables.56 Note that as inflation increases, the “season” will generally have

to shrink (so that within season price variation can be neglected) and thus the number of

affected consumer durables will increase (and more user costs will have to be constructed).

In the following section, we return to the annual calendar year indexes defined in

sections 2 and 3 above, but we no longer restrict ourselves to calendar years.
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8. Moving Year Annual Indexes

In sections 2 and 3 above, the index number comparisons always compared the M

seasons in one calendar year with the M seasons in another calendar year. However,

we could choose any month (or season) as our year ending month and the prices and

quantities of this new noncalendar year could be compared over years. The separability

assumptions required to justify these new noncalendar year comparisons will be analogous

to our earlier separability assumptions (5) but slightly different: the annual aggregator

function f will now be defined over the seasonal commodity vectors for a noncalendar year.

These noncalendar year comparisons can be taken a step further: we could think about

comparing the prices and quantities of a noncalendar year with the prices and quantities

of a base calendar year. What are the restrictions on intertemporal preferences that would

justify this type of comparison, which we will call a variable year end comparison or a

moving year57 comparison? We provide an answer below.

Recall the seasonal aggregators f1(x1), . . . , fM (xM ) from sections 5 and 6. We as-

sumed the existence of an aggregator h that allowed us to define the annual utility function

f(x1, . . . , xM ) ≡ h[f 1(x1), . . . , fM (xM )]. Here we again assume the existence of the lin-

early homogeneous, increasing and concave seasonal aggregators f1, . . . , fM but make the

following stronger assumptions on the intertemporal utility function U :

U(x01, . . . , x0M ; x11, . . . , x1M ; . . . ; xT 1, . . . , xTM ) ≡ ψ−1{ΣT
t=0Σ

M
m=1βmψ[fm(xtm)]} (66)
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where the βm > 0 are parameters that allow the consumer to cardinally compare the

transformed seasonal utilities ψ[fm(xtm)] and ψ(z) is a monotonic function of one positive

variable z defined by

ψ(z) ≡ fα(z) ≡
{

zα if α 6= 0
lnz if α = 0.

(67)

Substituting (67) into (66) reveals that the intertemporal utility function U is a CES

(constant elasticity of substitution) aggregate of the seasonal utilities fm(xtm). Using the

assumptions that the seasonal aggregator functions fm(xtm) are linearly homogeneous in

the elements of xtm, it can be verified U is linearly homogeneous.58

Assume that q01, . . . , q0M ; . . . ; qT 1, . . . , qTM solve the intertemporal utility maximiza-

tion problem (2) where U is defined by (66) and (67) and the intertemporal budget

constraint is defined by (13) and (14). Then since ψ−1 is a monotonic function of one

variable59, it can be seen that for any year t, we must have for t = 0,1, . . . , T :

ΣM
m=1βmψ[fm(qtm)] = maxx1,...,xM {ΣM

m=1βmψ[fm(xm)] : ΣM
m=1δtρtmptm · xm

= ΣM
m=1δtρtmptm · qtm}.

(68)

Recall that δt > 0 is the discount factor that makes a dollar at the beginning of t equivalent

to a dollar at the beginning of 0. Recall also that ptm is the vector of prices for season

m of t and ρtm is the discount factor that makes a dollar in the middle of season m of t

equivalent to a dollar at the beginning of year t.

In section 3 above, we defined the vector of year t, season m discounted (to the

beginning of t) prices, ptm∗, by (16). In the present section when we will be dealing with
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noncalendar years, it is convenient to redefine ptm∗ as follows:

ptm∗ ≡ δtρtmptm; t = 0, 1, . . . , T ; m = 1, . . . , M ; (69)

i.e., ptm∗ is now the nominal price vector ptm discounted to the beginning of 0.

Now return to the equalities (68). The annual utility ΣM
m=1βmψ[fm(qtm)] can be

rescaled or transformed by the monotonic function ψ−1 to make the resulting annual

utility function linearly homogeneous. We obtain the equalities for t = 0, 1, . . . , T :

ψ−1{ΣM
m=1βmψ[fm(qtm)]}

= maxx1,...,xM {ψ−1(ΣM
m=1βmψ[fm(xm)]) : ΣM

m=1p
tm∗ · xm

= ΣM
m=1p

tm∗ · qtm}.

(70)

Recall equations (44) - (47). These remain valid now with the understanding that the

normalized prices ptm∗ are now defined by (69) instead of (16). The calendar year utility

maximization problems in (70) are special cases of the year t utility maximization problems

in (48), where the ptm∗ are defined by (69). The general utility function h which appears

in (48) is now the following specialized functional form:

h(Q1, . . . , QM ) ≡ ψ−1[ΣM
m=1βmψ(Qm)]

= [ΣM
m=1βm(Qm)α]1/α if α 6= 0.

(71)

Assuming that we have exact index number formulae for the seasonal aggregator functions

f1, . . . , fM , we can use (44) - (47) to calculate the seasonal (discounted to the beginning

of year 0) prices P t∗
m and the seasonal aggregate quantities Qt

m for t = 0, 1, . . . , T and

m = 1, . . . , M . Furthermore, (49) can be used to calculate the calendar year aggregates,
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h[f1(qt1), . . . , fM (qtM )]/h[f1(q01), . . . , fM (q0M )], provided that we can find the bilateral

index number formula Qa that is exact for the aggregator function h defined by (71). Note

that the h defined by (71) has a CES (or mean of order α) functional form. Sato (1976;

225) showed that the Vartia II (1974; 66-70) (1976) quantity index QSV is exact for this

functional form. Thus we have for t = 1, 2, . . . , T :

ln{h[f1(qt1), . . . , fM (qtM )]/h[f1(q01), . . . , fM (q0M )]}

= lnQSV (P 0∗
1 , . . . , P 0∗

M ; P t∗
1 , . . . , P t∗

M ; Q0
1, . . . , Q

0
M ; Qt

1, . . . , Q
t
M )

≡ ΣM
m=1w

0t
mln(Qt

m/Q0
m)/ΣM

j=1w
0t
j

(72)

where w0t
m ≡ L(w0

m, wt
m), wt

m ≡ P t∗
m Qt

m/ΣM
j=1P

t∗
j Qt

j for m = 1, . . . , M and t = 0, 1, . . . , T

and L(x, y) is the logarithmic mean defined by (62).

All we have done is establish the exact index counterpart to (49), assuming that

the functional form for the annual aggregator function h has the more restrictive CES

functional form defined by (71) and (67), instead of a general flexible functional form as

in section 6. However, with the special structure of intertemporal preferences defined by

(66) and (67), the equalities (70) and (72) established for calendar years can be extended

to noncalendar years; i.e., to any consecutive run of M seasons. For example, we can
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establish the following counterparts to (70) and (48) for t = 0, 1, . . . , T − 1:

ψ−1{ΣM
m=2βmψ[fm(qtm)] + β1ψ[f1(qt+1,1)]}

= maxx1,...,xM {ψ−1(ΣM
m=2βmψ[fm(xm)] + β1ψ[f 1(x1)]) :

ΣM
m=2p

tm∗ · xm + pt+1,1∗ · x1 = ΣM
m=2p

tm∗ · qtm + pt+1,1∗ · qt+1,1}

= ψ−1{ΣM
m=2βmψ[Qt

m] + β1ψ[Qt+1
1 ]}

= maxQ1,...,QM {ψ−1[ΣM
m=2βmψ(Qm) + β1ψ(Q1)] :

ΣM
m=2P

t∗
m Qm + P t+1∗

1 Q1 = ΣM
m=2P

t∗
m Qt

m + P t+1∗
1 Qt+1

1 }

(73)

where the P t∗
m and Qt

m are defined by (44) - (47) with the ptm∗ now defined by (69)

instead of (16). The moving year utility maximization problems in (73) have dropped the

quantities of season 1 in t and added those of season 1 in t + 1. Equations (70) when

t = 0 can be combined with (73) and the fact that the Sato-Vartia quantity index QSV

is exact for the h defined by (71) and (67) to yield the following exact relationships for

t = 0, 1, . . . , T − 1:

ψ−1{β1ψ[f1(qt+1,1)] + ΣM
m=2βmψ[fm(qtm)]}/ψ−1{ΣM

m=1βmψ[fm(q0m)]}

= ψ−1{β1ψ(Qt+1
1 ) + ΣM

m=2βmψ(Qt
m)}/ψ−1{ΣM

m=1βmψ(Q0
m)}

= QSV (P 0∗
1 , . . . , P 0∗

M ; P t+1∗
1 , P t∗

2 , . . . , P t∗
M ; Q0

1, . . . , Q
0
M ; Qt+1

1 , Qt
2, . . . , Q

t
M ).

(74)

In evaluating the Sato-Vartia quantity index on the right hand side of (74), we use the base

year aggregate discounted seasonal prices P 0∗
1 , . . . , P 0∗

M , the base year seasonal aggregates

Q0
1, . . . , Q

0
M , the year t + 1 aggregate season 1 discounted price P t+1∗

1 followed by the
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year t season 2 to M discounted prices P t∗
2 , . . . , P t∗

M and the year t + 1 season 1 quantity

aggregate Qt+1
1 followed by the year t season 2 to M quantity aggregates Qt

2, . . . , Q
t
M .

In a similar fashion, the aggregate seasonal price and quantity data constructed using

(44) - (47) for any run of M consecutive seasons, can be rearranged and inserted into the

Sato-Vartia index number formula, and the resulting number times the (discounted) value

of base year consumption, ΣM
j=1p

0j∗ · q0j = ΣM
j=1P

0∗
j Q0

j ,

Qtm ≡ QSV (P 0∗
1 , . . . , P 0∗

M ; P t+1∗
1 , . . . , P t+1∗

m−1 , P t∗
m , . . . , P t∗

M ;

Q0
1, . . . , Q

0
M ; Qt+1

1 , . . . , Qt+1
m−1, Q

t
m, . . . , Qt

M )ΣM
j=1p

0j∗ · q0j

(75)

is an estimate of the consumer’s real consumption in the moving year starting in season

m of year t expressed in constant dollars pertaining to the beginning of calendar year 0.

We can divide the quantity index Qtm into the discounted value ratio of the moving

year starting in season m of year t to the base year to obtain a price index Ptm:

Ptm ≡ [ΣM
i=mpti∗ · qti + Σm−1

j=1 pt+1,j∗ · qt+1,j]/[ΣM
i=1p

0i∗ · q0i]Qtm. (76)

Due to the fact that discounted price vectors ptm∗ appear in (75) and (76) instead of

the nominal price vectors ptm, it is difficult to interpret the moving year price index Ptm

that is defined by (76), just as it was difficult to interpret our earlier calendar year price

indexes defined by (18). However, our focus here is on the moving year quantity indexes

Qtm defined by (75). The main advantage of these over the single and two stage calendar

year quantity indexes defined earlier by (17) and (49) is their timeliness: at the end of
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each season of each year, a moving year quantity index can be calculated that will enable

economic policy makers to accurately determine the progress of the economy over the

current noncalendar year compared to the base calendar year. A second advantage is

that they are comprehensive; i.e., they include all of the seasonal commodities whereas

the short term season to season quantity indexes defined in the previous section by (54)

were also timely but they had to exclude most seasonal commodities. A third advantage

is that they do not have to be seasonally adjusted, since the quantities pertaining to an

entire year starting at season m of year t are compared to the quantities pertaining to a

base year. Thus the moving year quantity indexes Qtm defined by (75) can be viewed as

seasonally adjusted constant dollar consumption series at annual rates and the analysis in

this section provides a rigorous justification for the use of these series from the viewpoint

of the economic approach.

A in section 6, we recommend that the seasonal aggregates Qt
m and P t∗

m be defined

using Fisher ideal indexes for the seasonal bilateral indexes Qm and Pm that appeared

in (46) and (47). Of course, Statistical Agencies may have to approximate these Fisher

indexes by Paasche and Laspeyres indexes and it may also be necessary to approximate

the Sato-Vartia quantity and price indexes in (75) and (76) by Paasche and Laspeyres

indexes as well. Provided that the base year is changed fairly frequently, these first order

approximations should be adequate. In low inflation contexts (i.e., less than 5% per year),
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it may also be possible to approximate adequately the moving year quantity indexes Qtm

defined by (75) by replacing the discounted price vectors ptm∗ defined by (69) by the nom-

inal price vectors ptm; this replacement will also occur in (44) -(47). Replacing discounted

by nominal prices in (76) means that the resulting moving year price index Ptm can be

regarded as a normal (seasonally adjusted) annual price index. Making these Paasche and

Laspeyres approximations and using nominal prices ptm in place of the discounted prices

ptm∗ causes (76) to become the “indice sensible” that was used as a seasonally adjusted

consumer price index by the French Statistical Agency INSEE (1976; 67-68) for several

years. Diewert (1983c; 1040), using Turvey’s (1979) artificial data on seasonal consump-

tion, also calculated some approximations to the moving year price indexes defined by

(76): Diewert used Turvey’s nominal prices instead of discounted prices and compared the

results of using Laspeyres, Paasche, Fisher ideal and translog or Törnqvist (1936) price

indexes in both stages of the aggregation. The choice of index number formula did not

matter very much for that data set.71

In the following section, we regard (75) as an index number method of seasonal

adjustment and compare this method with more traditional statistical methods of seasonal

adjustment.
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9. Econometric Versus Index Number Methods of Seasonal Adjustment

What we have done in the previous section is to show that if we use the Sato-Vartia

quantity index, QSV defined by (75), to aggregate up the year over year seasonal indexes,

then we can make exact index number comparisons for any consecutive string of M seasons

with the base year. These moving year indexes have no seasonal components and hence

can be regarded as seasonally adjusted “monthly” series at annual rates.

Instead of using the Sato-Vartia index QSV in (75), a superlative quantity index such

as the Fisher ideal QF could be used to approximate QSV .61 If the moving year is a calendar

year, then the resulting QF (P 0∗
1 , . . . , P 0∗

M ; P t∗
1 , . . . , P t∗

M ; Q0
1, . . . , Q

0
M ; Qt

1, . . . , Q
t
M ) reduces

to our preferred two stage annual index defined by (49), where Qa ≡ QF . In the general

case where the Fisher quantity index is defined for the moving year starting at season m of

year t, QF ≡ [QPQL]1/2 where the Paasche and Laspeyres quantity indexes, QP and QL,

are evaluated at the same aggregate seasonal prices and quantities and can be regarded as

share weighted moving averages of the moving year seasonal quantity aggregates.

As a further refinement, we can “center” the series of moving year quantity indexes

Qt,m defined by (75). If we have monthly data so that the number of seasons M equals

12, then Qt,m represents the aggregate quantity of a moving year starting at month m of

t relative to the aggregate quantity of a base year. An estimate of the annual quantity
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centered around month m of year t compared to the quantity of the base year is

Qc
t,m ≡





(1/2)Qt,m−6 + (1/2)Qt,m−5; t = 0, 1, . . . , T − 1; m = 7, . . . , 12
(1/2)Qt−1,m+6 + (1/2)Qt−1,m+7; t = 1, 2, . . . , T ; m = 1, . . . , 5
(1/2)Qt−1,12 + (1/2)Qt,1; t = 1, . . . , T ; m = 6.

(77)

We cannot provide centered monthly quantity estimates for the first and last 6 months;

i.e., Qc
t,m is not defined for t = 0 and m = 1, 2, . . . , 6 and for t = T and m = 7, 8, . . . , 12.

Our suggested index number method of seasonal adjustment is not really a seasonal

adjustment method.62 Our index numbers Qtm defined by (75) simply compare a moving

year aggregate to a corresponding base year aggregate. Thus we have changed the question

that we are trying to answer. The centered index number comparisons Qc
tm of the form

(77) are averages of the more fundamental comparisons made in (75), where the averaging

is done so that the resulting centered estimates will more closely resemble a conventional

seasonally adjusted series at annual rates.

In Appendix 1 below, we compare official U.S. seasonally adjusted at annual rates

data on quarterly GDP over the years 1959-1988 with moving year centered index numbers

which aggregate the quarterly unadjusted data published in the Bureau of Economic Anal-

ysis [1992].63 We found that our suggested index number method for seasonal adjustment

performs as well as the official X-11 method. The turning points are basically the same.

The main differences are: (i) the index number adjusted series is smoother and (ii) the X-11

adjusted series grows more slowly.64 The reason for the second difference is that the X-11

series is constructed by seasonally adjusting the U.S. fixed base quarterly (unadjusted)
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quantity series whereas the unadjusted quarterly chain data is the input into the index

number formula.65 Our results are consistent with the fixed 1987 base year Laspeyres and

chained comparisons of U.S. real GDP over the years 1959-1987 made by Young (1992;

36), who found that the average rate of growth of the fixed base GDP index numbers was

3.1% compared to 3.4% per year for the chain indexes.66 Users of U.S. seasonally adjusted

data should be made aware that it is fixed base data that is being seasonally adjusted.

When the base year is changed, fairly substantial changes in growth rates can occur in the

official seasonally adjusted fixed base data.

The performance results in Appendix 1 are significant because the index number

method offers a number of advantages over the X-11 method: (i) The index number

method can be explained fairly simply.67 (ii) There are many significant unannounced

choices that must be made by the statistican-operator of the X-11 method (i.e., mul-

tiplicative or additive seasonals, treatment of outliers, etc.), whereas the index number

method involves only two easily stated choices.68 (iii) Final seasonal adjustment factors

using the X-11 method are not available until 2 or 3 years of additional unadjusted data

become available, whereas, indexes of the form (75) will be available almost immediately

after the last season in the moving year and the centered indexes of the form (77) will

be available after an additional 6 months. The Statistical Agency will avoid the current

embarrassing problem of trying to explain why the seasonally adjusted series are still being
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revised years after the preliminary series are released. (iv) The index number method of

aggregation simultaneously seasonally adjusts (normalized) prices and quantities (recall

(75) and (76) above) whereas statistical methods of seasonal adjustment separately adjust

prices, quantities and values without respecting the fact that only 2 of these 3 variables are

independent. (v) Finally, statistical seasonal adjustment methods that allow for changing

seasonals run into a severe identification problem and the resulting seasonal factors that

these statistical methods churn out are not well defined from a theoretical point of view.69

The econometric methods do have the advantage that they can be applied in situations

where there is quantity but not price information, i.e., the X-11 method can seasonally

adjust an unemployment series but an index number method cannot.

It should be emphasized that the moving year quantity indexes defined by (75) are

sufficient statistics for defining the centered moving year quantity indexes defined by (77).

Thus the Statistical Agency should strive to provide moving year quantity and price indexes

of the form (75) and (76) on a timely basis: users can easily perform the simple arithmetic

operations inherent in forming the centered moving year indexes of the form (77).

Our specific assumptions on intertemporal preferences represented by (66) and (67)

led to the specific Sato-Vartia exact index number formula (75) where the “monthly”

aggregates P t∗
m and Qt

m were formed using superlative index number formulae in (44) - (47).

Since in many situations, it may be necessary to approximate both the “monthly” price

56



indexes Pm which appear in (47) and the Sato-Vartia price index PSV which appears in

(76) by Laspeyres price indexes. Then the corresponding quantity indexes in (46) and (75)

will be Paasche quantity indexes. These Paasche and Laspeyres indexes will approximate

their superlative and Sato-Vartia counterparts will be acceptable approximations, provided

that the base year is changed fairly frequently.

Another approximation to our recommended theoretically exact indexes defined by

(44) - (47) and (75) - (76) occurs if the inflation adjusted prices ptm∗ defined by (69)

and used in (44) - (47) are replaced by the corresponding unadjusted spot price vectors

ptm. This will make little difference to the moving year quantity indexes defined by (75)

and (77) provided that: (i) inflation is “low” and (ii) seasonal fluctuations are not “too”

erratic. Numerical experiments will be required before we can be more precise.

10. Conclusion

We have discussed the problem Statistical Agencies face when constructing price and

quantity aggregates under conditions of high inflation when there are seasonal commodi-

ties. Without seasonal commodities, the index number problem is still straightforward

(but expensive): the Statistical Agency must collect subannual price and quantity (or

value) information more frequently in order to make the subannual periods of time short

enough so that variations in prices within the periods can be neglected.70 However, when
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there are seasonal commodities, this solution to the high inflation index number prob-

lem is not valid: we cannot make meaningful bilateral index number comparisons (from

the viewpoint of the economic approach) between consecutive months or quarters if the

dimensionality of the commodity space varies from period to period.

The assumptions on preferences that we have made provide justifications for three

types of seasonal index number comparisons that Statistical Agencies should provide:

(i) For measuring short term price change, the approach outlined in section 7 should

be used; i.e., a season to season short run price index using only nonseasonal (and type (a)

seasonal) commodities should be constructed. These short term indexes would be used as

deflators71 when constructing the annual quantity indexes in (iii).

(ii) The year over year seasonal indexes defined by (39) and (40) in section 5 should

also be constructed. The assumptions on preferences required to justify these are the least

restrictive. The business community may find these indexes the most useful.

(iii) Finally, the moving year price and quantity indexes defined by (75) and (76)

in section 9 should also be calculated.72 These indexes will serve as seasonally adjusted

price and quantity indexes (at annual rates). If there is low inflation, spot prices ptm can

be used in place of the normalized prices ptm∗ in (45) - (48) and (75) - (76).

For each of the above three indexes, the Statistical Agency will have to decide whether

to provide Paasche and Laspeyres or superlative versions. From the viewpoint of economic
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theory, the superlative versions are better but they will be more costly and less timely. In

the long run, Statistical Agencies will be able to make use of electronically recorded data

on the sales of commodities to produce timely superlative indexes.73 However, in the short

run, difficult choices must be made on how to produce price and quantity indexes when

there are seasonal commodities and high inflation.

Appendix 1: U.S. Seasonally Adjusted and Centered Moving Year Estimates

The raw data for our comparisons are from the Bureau of Economic Analysis (1992):

seasonally unadjusted estimates of U.S. GDP from quarter 1 of 1959 to quarter 4 of 1988

(120 quarters in all) are from Table 9.1; implicit price deflators for GDP using chain type

weights are from Table 7.2 and estimates of quarterly GDP seasonally adjusted at annual

rates are from Table 1.2. The price index was normalized to equal 1 in the third quarter

of 1987. Dividing the seasonally unadjusted GDP by the price index gave us the series

Yt, t = 1, . . . , 120 (note the changed notation here, with t denoting consecutive quarters).

The series Yt is plotted in Figure 1. The units are 100 millions of 1987 third quarter

dollars. The series of 4th quarter observations are indicated by the sharp peaks joined up

by dashed lines. The seasonal fluctuations are evolving over time.

Denote the Fisher ideal fixed base moving year index by Qt, where t indicates the

first quarter of the moving year and the base year consists of the 4 quarters of 1987.
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(We made no adjustment for general inflation since it was not high). Qt is defined for

t = 1, 2, . . . , 117. and the centered index is given by

Qc
t ≡ (1/2)Qt−1+(1/2)Qt−2; t = 3, 4, . . . , 118. (A1)

These centered indexes are plotted as the solid line in Figure 2 (and denoted by QF

and measured again in 100 millions of 1987 dollars). The official seasonally adjusted U.S.

constant dollar GDP series for the same 116 quarters is also plotted as the dashed line in

Figure 2 (and denoted by SAY ). SAY grows more slowly and is more erratic than QF

but both series have roughly the same turning points and hence both can serve as guides

business cycle movements.

Figure 1

Figure 2
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Footnotes
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dation. The author thanks Bert Balk, Jeff Bernstein, Peter Hill and Alice Nakamura for

helpful comments and Tina Corsi for her help in preparing the manuscript.

1. See Middleditch (1918), Paton (1920; 2), Sweeney (1927) (1928) (1964) and Baxter

(1975; 17-35) (1984; 38-57).

2. This classification corresponds to Balk’s (1980a; 7) (1980b; 110) (1980c; 68) narrow

and wide sense seasonal commodities.

3. This classification is due to Mitchell (1927; 236). See Mitchell (1927; 237) and

Granger (1978; 33) examples of seasonal fluctuations due to custom.

4. This is not quite true: both Diewert (1980; 506-508) and Balk (1981) proposed

procedures which will work over commodity spaces of varying dimensions. See section 7.

5. References on the economic approach include Konüs (1924), Pollak (1989), Samuelson

and Swamy (1974) and Diewert (1976) (1981) (1983a) (1983b) (1993a).

6. Using the nonparametric tests for maximizing behavior due to Afriat (1967) and

Diewert (1973; 424), we can test whether a given set of price and quantity data are

consistent with the maximization of a homothetic or linearly homogeneous utility function;
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see Diewert (1981; 198-199). If a combination of seasonal and nonseasonal data pass this

test, then the seasonal commodities are of type (ii) (a).

7. See Diewert(1980; 506-508) (1983c) on the economic approach to seasonal indexes.

This paper focuses on the theory of the seasonal consumer price index. An analogous

theory exists for the seasonal producer price index with separability assumptions on the

producer’s intertemporal production function or factor requirements function. See Fisher

and Shell (1972) and Diewert (1980) (1983b).

8. The role of separability assumptions in the economic approach to index number

theory is laid out in chapters 2 and 3 of Pollak (1989) and chapter 9 of Blackorby, Primont

and Russell (1978). The latter book provides a general exposition of separability.

9. The present paper generalizes Diewert’s (1983c) earlier economic approach.

10. Our single consumer theory can be extended to groups of consumers using Pollak’s

(1981; 328) Social Cost of Living Index; see Diewert (1983a; 190-192) (1993b; 294). We

do not deal with sampling problems in the present paper.

11. For example, should indirect taxes be included in the consumer price index? The

structure of the relevant utility maximization problem gives us guidance on this issue. This

advantage of the economic approach has been stressed by Jack Triplett over the years.

12. Some precursors of Mudgett and Stone in recognizing that seasonal commodities

should be distinguished as separate commodities in the seasons that they are available
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were Marshall (1887; 373) and Bean and Stine (1934; 34).

13. f is defined over the annual commodity space of dimension ΣM
m=1Nm ≡ N∗; i.e., each

“physical” commodity in each season is treated as a separate economic commodity from

the perspective of the annual utility f . The concavity assumption on f can be replaced

by the weaker condition of continuity; see Diewert (1974; 111).

14. See Diewert (1976; 116) (1981; 180-193) (1983a; 184) (1993a; 45-50).

15. See Diewert (1976; 116) for the history of this result.

16. See Diewert (1976; 117) for this terminology. Diewert (1976; 137-138) regarded

QF as the best superlative index number formula since it is exact for both Leontief (no

substitution) and linear (perfect substitutability) aggregator functions and it is the only

superlative index that is consistent with revealed preference theory. Diewert (1992; 221)

also showed that QF had good axiomatic properties.

17. The terminology is due to Samuelson and Swamy (1974; 572).

18. This relationship was first noticed by Fisher (1896; 75). Fisher (1896; 13 and 69)

also defined the expected real interest rate r̄tm in terms of the nominal interest rate rtm

and an expected commodity inflation rate itm going from season m to season m+1 of year

t as follows: (1 + rtm) = (1 + r̄tm)(1 + itm).

19. This type of deflation was used by German accountants to stabilize (or make com-

parable) accounting values pertaining to different time periods during the German hyper-
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inflation of 1923; see Sweeney (1927) (1928).

20. This type of reevaluation to make accounting values comparable is also used by

accountants in high inflation countries; e.g., see Wasserman (1931; 10).

21. Since it is difficult to distinguish type (ii) (a) from type (ii) (b) seasonal commodities,

it may be more practical to stick with nonseasonal ones. Of course, there may be difficulties

in distinguishing nonseasonal from seasonal commodities as well.

22. This commodity basket approach to deflating the value of money to make it com-

parable over time dates back at least to William Fleetwood who wrote in 1707; see Ferger

(1946). The use of the cost of a basket of goods as an index number was extensively

developed by Lowe (1823; 331-346) and Scrope (1833; 401-425) who applied this idea to

many practical problems of indexation. This commodity standard idea for adjusting the

value of money has been independently discovered many times; see for example Marshall

(1887; 371), Fisher (1911; ch. 13) and the many references in Fisher (1920; 291-294).

23. This point was first made by Walsh (1901; 96) (1921;88) and Davies (1924; 183)

(1932;59). For more recent discussions on unit values, see Dalen (1992; 135), Diewert

(1995; 20-24) and Balk (1995a).

24. See the data on the German hyperinflation in Sweeney (1927; 182).

25. Our observation here is substantially due to Marshall (1887; 374).
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26. Assumption (27) is restrictive: it says that the consumer is indifferent to the annual

consumption of each commodity taking place in a single season or spread out across seasons.

27. Note that these conditions are Hicksian (1946; 312) aggregation conditions which

guarantee the existence of annual aggregates. In fact, if conditions (28) hold, we do not

have to make the restrictive assumption (27) in order to determine that [qt1, qt2, . . . , qtM ]

solves (15). To determine the annual aggregator function g∗ under conditions (28), let

c(pt1∗, . . . ptM∗) be the unit cost function dual to f (x1, . . . , xM ). Define the N variable

unit cost function c∗(pt) ≡ c(pt, . . . , pt). Then g∗(ΣM
m=1x

m) is dual to c∗.

28. Satisfaction of (33) also ensures equality of the two Laspeyres indexes, Q∗
L(P s∗,

P t∗, Qs, Qt) ≡ P s∗ · Qt/P s∗ · Qs and QL(ps∗, pt∗, qs, qt) ≡ ps∗ · qt/ps∗ · qs and the Paasche

indexes, Q∗
P (P s∗, P t∗, Qs, Qt) ≡ P t∗ · Qt/P t∗ · Qs and PP (ps∗, pt∗, qs, qt) ≡ pt∗ · qt/pt∗ · qs.

29. For example see Bean and Stine’s (1924; 31) Type D index number or Rothwell

(1958; 70). Incidentally, Flux (1921; 185) also proposed (and used) Bean and Stine’s Type

B index and Crump, in his discussion of Flux’s (1921; 207) paper, proposed Bean and

Stine’s Type A index number. Finally, Bean and Stine’s (1924; 31) Type C index number

has come to be known as the Rothwell (1958; 71) index.

30. Actually, the exact index number approach used in this section in conjunction

with the homogeneous separability assumptions (36) can be viewed as an extension of

Shephard’s (1953; 64-71) aggregation theory; see also Diewert (1974; 151).
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31. Multiply both sides of the constraint in (37) by the discount factor ρtm and the

resulting constraint becomes ptm∗ · xm = ptm∗ · qtm. Thus the nominal price vectors psm

and ptm in (39) and (40) can be replaced by the normalized price vectors psm∗ and ptm∗.

32. This requires that h be increasing. This technique was used by Shephard (1953;

64-71) (1970; 114-123) and Diewert (1974; 164-165) under various regularity conditions.

33. If there are no type (i) seasonal commodities, then consider an alternative two stage

procedure where for each “physical” commodity, we aggregate over seasons within a year

in the first stage and then aggregate over these “annual” commodities in the second stage,

using say Laspeyres price indexes and Paasche quantity indexes at each stage. This pro-

cedure would give the same answer as the single stage procedure (41) if the Q in (41)

were the Paasche index QP (p0∗, pt∗, q0, qt) ≡ pt∗ · qt/pt∗ · q0. These alternative two stage

aggregation procedures were considered by Balk (1980a; 25) and Diewert (1980; 506-508).

Different separability assumptions are required to justify each procedure.

34. In this case, equation (36) will hold even though Leontief aggregator functions are not

strictly increasing in all arguments. If h is Leontief, then h(Q1, . . . , QM ) ≡ minm{Qm/bm :

m = 1, . . . , M} where the bm are positive constants. The unit cost function is ΣM
m=1bmPm.

35. The Leontief functional form is not flexible; i.e., its dual unit cost function can

provide only a first order approximation to an arbitrary differentiable unit cost function.
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36. Diewert’s (1978; 888) results required that the second order approximations be taken

around a point where the period t price and quantity vectors equal the period 0 price and

quantity vectors. However, the same second order approximation result will hold if these

equality restrictions are relaxed to proportionality restrictions, since superlative indexes

are homogeneous of degree 0 or 1 in their price and quantity vector arguments.

37. Zarnowitz (1961; 246) seemed to feel that it is possible to somehow estimate cardinally

comparable seasonal subutility functions fm. Balk (1980a; 21) denied this.

38. We want to include all nonseasonal and type (ii) (a) seasonal commodities in the

x̃tm vectors to make the coverage of the resulting “monthly” price indexes as broad as

possible. However, we must exclude type (i) and type (ii) (b) seasonal commodities from

the “monthly” aggregator function φ, since inclusion of these would cause the resulting φ to

shift as climate and customs changed across the seasons, making “monthly” comparisons

impossible. In practice, it will be difficult to decide what is a type (ii) (a) seasonal

commodity.

39. We also use the positivity of the discount factors δt and ρtm in deriving (53).

40. Rothwell (1958; 71) noted that the problem of making price comparisons between

seasons with different market baskets is formally identical to the problem of making inter-

national comparisons between countries with different market baskets. This suggests that

the symmetric methods used in making international comparisons could be applied to the
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problem of aggregating up the many bilateral price comparisons in (55) into a consistent

sequence of “monthly” price levels. Balk (1981; 74) in fact implemented this idea, calcu-

lating a system of EKS (see Gini (1931; 12), Eltetö and Köves (1964) and Szulc (1964))

monthly purchasing power parities for Dutch fruit and vegetables. However, Walsh (1901;

399) and Balk (1981; 77) also noted a practical disadvantage to the use of these symmetric

methods: the price levels have to be recalculated each time a new observation is added.

41. See the discussion and references in Diewert (1993a; 52-55).

42. In fact, it was these problems that led Julius Lehr (1885; 45-46) and Alfred Marshall

(1887; 373) to introduce the chain system.

43. Our formal model needs to be modified to deal with the problem of new commodities.

Mudgett (1951; 46) called the error in an index number comparison that was introduced

by the use of the highest common factor method the homogeneity error.

44. Using annual Canadian data for 13 categories of consumption over the years 1947

to 1971, Diewert (1978; 894) provided some evidence to support these theoretical approx-

imation results.

45. The chain index will give the correct answer if P̃ satisfies Walsh’s (1901; 389)

(1924; 506) multiperiod identity test; see Diewert (1993a; 40) for a discussion of this test.

However, the Paasche, Laspeyres and all known superlative indexes do not satisfy this test
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and thus are vulnerable to the Szulc-Hill criticism of the chain system. Incidentally, Walsh

(1901; 401) (1924; 506) was the first to make this criticism.

46. The reason for this statement is that Fisher (1922; 280-283) (and others) have found

that P̃F satisfies Walsh’s multiperiod identity test to a high degree of approximation.

47. See also Hofsten (1952; 97) and Fisher and Shell (1972; 101)

48. Diewert (1980; 502-503) suggested an econometric approach to the estimation of

reservation prices but did not implement it. Hausman (1997) seems to have been the first

to implement such an econometric approach.

49. As mentioned earlier in section 6, the Vartia I (1974; 66-67) (1976) price index was

used to establish the approximate consistency in aggregation of superlative indexes. It is

interesting to note that Montgomery (1937; 37) defined the Vartia I index much earlier and

also established its consistency in aggregation properties; see Montgomery (1937; 40-48).

50. For the properties of the logarithmic mean and references to the mathematics

literature, see Carlson (1972).

51. Lau (1979; 75-81) clarified and extended the class of functions that PSV is exact

for. The CES aggregator function is equal to a positive constant times a weighted mean

of order r. For the properties and axiomatic characterizations of means of order r, see

Hardy, Littlewood and Polya (1934; 12-19) and Diewert (1993c; 381).
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52. Reinsdorf and Dorfman (1995) show that PSV fails to satisfy the four monotonicity

axioms listed in Diewert (1992; 220) that are due to Eichhorn and Voeller (1976; 23) and

Vogt (1980; 70). The Fisher index PF satisfies these axioms.

53. PSV is not pseudosuperlative (see Diewert (1978; 888)) either; i.e., when we evaluate

the first and second order partial derivatives of PSV (p0, p1, q0, q1) around an equal price

(p0 = p1) and equal quantity (q0 = q1) point, we find that the first order derivatives of

PSV coincide with the corresponding first order derivatives of a superlative index tabled in

Diewert (1978; 893) but the second order derivatives do not. This is what we would expect

since PSV is exact for CES and two stage mixtures of CES and Cobb-Douglas functions

(see Lau (1979; 75-81) for the precise results) and these functions can provide only first

order approximations to arbitrary N commodity aggregator functions.

54. Actually, we are describing only the first stage in Balk’s (1981; 73) procedure. In the

second stage of his procedure, Balk (1981; 74) uses the multilateral Gini (1931; 12), Eltetö

and Köves (1964) (EKS) index and Szulc (1964) (EKS) index to eliminate the influence of

a base period on his seasonal price indexes.

55. Since seasonal price and quantity changes can be huge, the choice of the index

number formula makes a large difference. When Balk (1980a; 41) compared his Sato-

Vartia indexes for Dutch fruit and vegetables with an alternative index number formula,

he found some differences in the 50% range. Also Reinsdorf and Dorfman (1995; table
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1) found substantial differences between the Sato-Vartia price index and the superlative

Fisher and Törnqvist (1936) price indexes for some artificial data

56. For a discussion of the problems involved in constructing user costs for consumer

durables and references to the literature, see Diewert (1983a; 211-216).

57. The term “moving year” is due to Mendershausen (1937; 245). Diewert (1983c;

1029) earlier used the term “split year” comparison to describe a variable year end index

number comparison. Following the terminology used by Crump (1924; 185) in a slightly

different context, we could also use the term “rolling year” comparison.

58. Diewert (1983c; 1034) assumed that U was the simple sum of seasonal utilities,

ΣT
t=0Σ

M
m=1f

m(xtm). This is a special case of (66) and (67) with the βm = 1 and α = 1.

59. Recall that ψ(z) ≡ zα if α 6= 0. If α < 0 then the max in (68) is replaced by a min,

but equations (70) are still satisfied.

60. Once the Qtm or Ptm have been defined by (75) or (76) for t = 0 and m = 1, . . . , M ,

the chain principle can be used to relate the prices and quantities of each moving year

to those of the preceding moving year; see Diewert (1983c; 1031-1032) for comparisons of

fixed base and chained moving year price indexes using the Turvey (1979) data.

61. Since superlative indexes are exact for flexible aggregators, the flexible aggregator

function can approximate the CES aggregator function in (74) to the second order.
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62. For material on time series methods of seasonal adjustment, see Bell and Hillmer

(1984), Hylleberg (1992) and Findley (1997).

63. Instead of the Sato-Vartia quantity index, we used the Fisher ideal quantity index

in (75). We did not deflate the quarterly prices by an index of purchasing power since

inflation was “small” over this period.

64. The average quarterly rate of growth for the official X-11 adjusted series was .78%

compared to .85% per quarter for our centered Fisher ideal moving year series.

65. Until recently, most U.S. long term quantity series were constructed using a fixed

base Laspeyres quantity index so that additivity of components could be preserved. With

the recent huge increases in the quantity of computers and their equally huge declines in

price, the use of fixed base indexes has become unworkable: changing the base year leads

to dramatic revisions in economic history. This illustrates a point of Hill’s (1988) (1993):

the base period in fixed base index numbers must be changed reasonably frequently.

66. This difference in annual growth rates is .3% per year which is approximately equal

to four times our quarterly difference in growth rates of .07% per quarter.

67. See William R. Bell and Steven C. Hillmer (1984; 291).

68. The two choices are variants of (75): (i) should the inflation adjusted normalized

prices ptm∗ defined by (69) be replaced by the unadjusted spot prices ptm and (ii) should
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the Sato-Vartia index number formula QSV which appears in (75) be replaced by some

other index number formula?

69. See the discussion by Anderson (1927; 552-553).

70. Diewert (1995; 22) advocated this solution to the index number problem under high

inflation but he neglected the seasonal commodities problem.

71. Recall equations (22) and (69).

72. Under conditions of high inflation, the price indexes defined by (76) will be difficult

to interpret and hence the Statistical Agency would not have to report them. The primary

focus should be on the production of the moving year quantity indexes defined by (75).

73. Mr. William Hawkes informs me that the A.C. Nielsen company based in the U.S.

distinguished 1.65 million separate product codes as of September, 1995; i.e., this company

has detailed price and quantity information by region on all of these commodities.
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Lehr, Julius (1885), Beiträge zur Statistik der Preise, Frankfurt: J.D. Sauerländer.

Leontief, W. (1936), “Composite Commodities and the Problem of Index Numbers”,

Econometrica 4, 39-59.

Lowe, J. (1823), The Present State of England in Regard to Agriculture, Trade and

Finance, Second edition, London: Longman, Hurst, Rees, Orme and Brown.

Marshall, A. (1887), “Remedies for Fluctuations of General Prices”, Contemporary

Review 51, 355-375.

Mendershausen, H. (1937), “Annual Survey of Statistical Technique: Methods of

Computing and Eliminating Changing Seasonal Fluctuations”, Econometrica 5, 234-262.

80



Middleditch, L. (1918), “Should Accounts Reflect the Changing Value of the Dollar?”,

The Journal of Accountancy 25, 114-120.

Mitchell, W.C. (1927), Business Cycles, New York: National Bureau of Economic

Research.

Montgomery, J.K. (1937), The Mathematical Problem of the Price Index, London:

P.S. King and Son.

Mudgett, B.D. (1951), Index Numbers, New York: John Wiley and Sons.

Mudgett, B.D. (1955), “The Measurement of Seasonal Movements in Price and Quan-

tity Indexes”, Journal of the American Statistical Association 50, 93-98.

Paton, W.A. (1920), “Depreciation, Appreciation and Productive Capacity”, The

Journal of Accountancy 30, 1-11.

Pollak, R.A. (1981), “The Social Cost-of-Living Index”, Journal of Public Economics

15, 311-336.

Pollak, R.A. (1989), The Theory of the Cost-of-Living Index, Oxford: Oxford Uni-

versity Press.

Reinsdorf, M.B. and A.H. Dorfman (1995), “The Sato-Vartia Index and the Mono-

tonicity Axiom”, Washington, D.C.: US Bureau of Labor Statistics.

Rothwell, D.P. (1958), “Use of Varying Seasonal Weights in Price Index Construc-

tion”, Journal of the American Association 53, 66-77.

81



Samuelson, P.A. and S. Swany (1974), “Invariant Economic Index Numbers and

Canonical Duality: Survey and Synthesis”, American Economic Review 64, 566-593.

Sato, K. (1976), “The Ideal Log-Change Index Number”, The Review of Economics

and Statistics 58, 223-338.

Scrope, G.P. (1833), Principles of Political Economy, London: Longman, Rees,

Orme, Brown, Green and Longman.

Shephard, R.W. (1953), Cost and Production Functions, Princeton, N.J.: Princeton

University Press.

Shephard, R.W. (1970), Theory of Cost and Production Functions, Princeton, N.J.:

Princeton University Press.

Stone, R. (1956), Quantity and Price Indexes in National Accounts, Paris: The

Organization for European Cooperation.

Sweeney, H.W. (1927), “Effects of Inflation on German Accounting”, Journal of

Accountancy 43, 180-191.

Sweeney, H.W. (1928), “German Inflation Accounting”, Journal of Accountancy 45,

104-116.

Szulc, B. (1964), “Indices for Multiregional Comparisons”, Przeglad Statystyczny

(Statistical Review) 3, 239-254.

82



Szulc, B.J. (1983), “Linking Price Index Numbers”, pp. 537-566 in Price Level

Measurement, W.E. Diewert and C. Montmarquette (eds.), Ottawa: Statistics Canada.

Törnqvist, L. (1936), “The Bank of Finland’s Consumption Price Index”, Bank of

Finland Monthly Bulletin 10, 1-8.

Turvey, R. (1979), “The Treatment of Seasonal Items in Consumer Price Indices”,

Bulletin of Labour Statistics, 4th quarter, International Labour Office, Geneva, 13-33.

United Nations (1993), Systems of National Accounts 1993, New York: United Na-

tions.

Vartia, Y.O. (1974), Relative Changes and Economic Indices, Licenciate Thesis, De-

partment of Statistics, University of Helsinki.

Vartia, Y.O. (1976), “Ideal Log-Change Index Numbers”, Scandanavian Journal of

Statistics 3, 121-126.

Vogt, A. (1980), “Der Zeit und der Faktorumkehrtests als ‘Finders of Tests’ ”, Statis-

tische Hefte 21, 66-71.

Walsh, C.M. (1901), The Measurement of General Exchange Value, New York: MacMil-

lan and Co.

Walsh, C.M. (1921), The Problem of Estimation, London: P.S. King and Son.

Wasserman, M.J. (1931), “Accounting Practice in France During the Period of Mon-

etary Inflation (1919-1927)”, The Accounting Review 6, 1-32.

83



Young, A.H. (1992), “Alternative Measures of Change in Real Output and Prices”,

Survey of Current Business 72 (April), 32-48.

Zarnowitz, V. (1961), “Index Numbers and the Seasonality of Quantities and Prices”,

pp. 233-304 in The Price Statistics of the Federal Government, G.J. Stigler (Chairman),

New York: National Bureau of Economic Research.

84


