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Abstract

In the calculation of economic aggregates it is often necessary to compute the
value of these aggregates in some relevant subgroups as well as for the whole
data. A method of aggregation is said to be consistent in aggregation if it gives
the same result regardless of whether it is applied directly to the whole data
or to subaggregates resulting in applying the same method to some partition of
the data. In this paper a precise definition of this property is given and it is
shown that any aggregation method satisfying this definition can be interpreted
as repeated application of an Abelian semigroup operation. The range of aggre-
gation problems the result covers is quite broad, as semigroup operations may
be defined for example on sets of real numbers, vectors of real numbers, sets,
functions such as stochastic processes etc.

The semigroup interpretation makes it possible to formulate many classical
aggregation problems, such as index number problems, using algebraic concepts
such as isomorphisms between semigroups, subsemigroups, homomorphisms etc.
Therefore all results and insights given by abstract algebra are directly applica-
ble to these.

This result is applied at length to index number theory. It is shown that
under general conditions an index number formula that is consistent in aggrega-
tion has a simple quasilinear representation.. For this representation a number
of results is proved using functional equations techniques, among them a char-
acterisation of the Stuvel formula.



1 Introduction!

In the calculation of economic aggregates, for example price indices, it is often
necessary to compute the value of these aggregates in some relevant subgroups
as well as for the whole data. These subgroups might be for example different
groups of commodities, industries, countries etc. The subaggregates and the
overall aggregate are usually computed using the same method, for example the
same index number formula. This presents a two-faceted consistency problem.
First, is it possible to obtain the overall aggregate by using only the subaggre-
gates? Second, if this is possible, can it be done in a way that is compatible
with the method that was used to calculate the subaggregates and the overall
aggregate?

These problems have been considered in the context of price indices in nu-
merous studies (see for example Balk [6], [7]; Blackorby, Primont and Russel
[10]; Blackorby and Primont [12]; Diewert [18]; Gehrig [31]; Gorman [33], [?];
Pokropp [44]; Stuvel [57]). ; Theil [59]; Van Yzeren [65] ; Vartia [63]).

According to Stuvel the ”aggregation test” states that

if for the subaggregates of which a larger aggregate is composed
the quantity (price) indices of a given type are known along with the
base-year and current-year values of these subaggregates, it should
be possible on the basis of this information alone to obtain a quantity
(price) index of the same type for the larger aggregate’.

This definition ignores the second problem as it does not require that the
calculation of the overall aggregate from the subaggregates be in any way com-
patible with the method of aggregation (here the ’index of a given type’) used
in computing the subaggregates.

A more stringent requirement is called ’consistency in aggregation’ by Vartia
[63] and is examined for example by Balk [6], [7], Blackorby and Primont [12]
and Diewert [18] . This requirement states that if one calculates the index for the
larger aggregate in two steps, calculating first the indices for the subaggregates
and then feeding these along with the value data of the subaggregates into the
same formula, one must necessary get the same result as if one had calculated
the index in one step.

This presents the problem of what is meant by ’same formula’. Intuitively,
this seems obvious, and is usually not considered. For example, Stuvel does not
even attempt to define what is meant by ’an index of a given type’. This lack of
precision can, however, easily lead to confusion, as can be seen for example in
Vartia [63] where an attempt is made to formulate consistency in aggregation
rigorously, but as the definition of an index number as a certain kind of function
is inadequate for the task, the attempt falls short of the mark. Based on that
kind of definition it is impossible to define what is the ’same’ formula for for
example n and m commodities, because for different numbers of commodities the

I This paper is an adaptation of a longer manuscript [45] available at the URL given in the
bibliography. The results presented here are based on the axiomatic or functional equations
approach to aggregation theory. The connection of these with neo-classical microeconomic
theory are discussed in the more extended manuscript. Also, the relation of index numbers
to additive decompositions is examined there. Therefore, while this paper is designed to be
self-sufficient, some references to these topics may be left in the text.



functions that are used as index number formulas are necessarily different. The
result is a dimensional mix-up?. The definition of consistency in aggregation
proposed by Balk [7, 360] does not have these problems, but is perhaps too
restrictive.

A definition of index number formulas that solves the problem of same for-
mula is analogous to the definition of an estimator in statistics: an index number
formula is defined to be a sequence of functions rather than a single function.
Each function in the sequence represents the ’same formula’ for some number of
commodities. This definition frees us from pondering the question of sameness.
"Using the same formula’ for some number of commodities means just using the
element of the sequence corresponding to this number of commodities.

All of the papers cited above are concerned with index numbers. However,
it is not necessary to restrict attention to index number formulas. In this paper
a general definition of consistency in aggregation is developed and it is shown
to have a certain algebraic structure, namely that of a commutative semigroup.
A proper set of coordinates is presented where this definition can be applied
to index number formulas. The algebraic interpretation of index number for-
mulas that are consistent in aggregation allows many of the classical tests for
index numbers to be interpreted algebraically. Also, it gives rise to many in-
teresting questions concerning the class of index numbers that are consistent in
aggregation.

In the first section, we give very briefly definitions of certain basic algebraic
concepts. These few definitions will be sufficient for understanding the rest
of the discussion. In the second section, consistency in aggregation is defined
and shown to be equivalent to a semigroup representation. Next some general
examples are given, before turning to index number theory, which is the subject
of the rest of the paper. First, consistency in aggregation is defined for index
number formulas.

Next, we show that with minimal regularity conditions, the structure of
consistent index numbers may be simplified even further, namely to a quasilinear
or quasiadditive structure. This result is very closely related to the result of
Gorman [?], even though the derivation is rather different. Also, it is related
to the results of Blackorby and Primont [12], and Balk [6], who makes use
of Gorman’s article. In fact, the quasilinear structure coincides with Balk’s
proposal as a definition for consistency in aggregation. The quasilinear structure
allows one to prove a number of interesting results in the context of axiomatic
price index theory.

2 Semigroups

This preliminary section gives a very brief introduction to semigroup theory.
The idea of the paper is first to give a general aggregation interpretation to
semigroup operations and then use a semigroup representation of index number
formulas that are consistent in aggregation to prove a result concerning their
functional form which is then explored. For this dual purpose only very basic
results concerning semigroups are required, and this is why only these are given

2This has later been corrected by Vartia in an unpublished paper.



in this section. For an extensive treatment on semigroups see for example Ljapin
[41].

Let X be aset and F : X2 — X a function. This kind of F is called a binary
operation in X.

Definition 1 (Semigroup) If a binary operation F is associative, or if for all
x? y7 Z E X

F(z,F(x,2)) = F(F (z,y),2) (1)
then I is called a semigroup operation and defines a semigroup (X, F) on X.

The semigroup operation is often denoted in the literature in one of the
following ways

F ( 7y) = Y, (2)
F (l‘, y) = T+Yy, (3)
F(z,y) = zoy. (4)

We have decided to use the notation
F(z,y) =xory (5)

to avoid confusing one semigroup operation with another and semigroup op-
erations with composite functions. We also use the notation (X, o) for the
semigroup (X, F') and if there is no room confusion about which semigroup
operation is under discussion we may refer to the semigroup just as X.

Definition 2 (Commutative (Abelian) semigroup) If a semigroup opera-
tion op on X is commutative, that is, for all x,y € X,

Topy=yorua, (6)

then (X, op) is called a commutative or Abelian semigroup.

Definition 3 (Homomorphism) If (X,or) and (Y,oq) are semigroups and
B : X —Y is a function such that

B(zopy)=B(x)oa B(y), (7)
then B is called a homomorphism from the semigroup X to the semigroup Y .

Definition 4 (Isomorphism) If B is a bijection, then it is called an isomor-
phism.

If there exists an isomorphism between two semigroups the semigroups are
isomorphic. This means that with regard to questions related only to the binary
operation defined on the two sets the two semigroups are identical. Also, clearly
two isomorphic semigroups have the same cardinality.

Definition 5 (Endomorphism) If B: X — X is a homomorphism from the
semigroup X to itself, then it is called an endomorphism.



Definition 6 (Automorphism) If B : X — X is an isomorphism from the
semigroup X to itself, then it is called an automorphism.

Note that obviously any semigroup is isomorphic with itself because the
identity function is an isomorphism.

Definition 7 (Subsemigroup) A subset Y C X of the semigroup X that is
closed under the operation opso that for all x,y € Y

ropy €Y, (8)
is called a subsemigroup of X.
It is obvious that all subsemigroups of a semigroup are also semigroups.

Definition 8 (Semigroup operation for subsets) A semigroup operation opon
the set X can be easily extended to subsets of X. Define for any subsets
X1, XoCX

X4 OFXQZ{l‘l OF$2|($1,1‘2)€X1 XXQ}. (9)

In other words, X 0p X5 is obtained by applying the operation or to each possible
pair (x1,22) € X1 x Xa.

Obviously, if the distinction between an element of X and a subset of X
consisting of only one element is ignored then the original semigroup operation
may be regarded as a special case of (9).

Using the above the definition of a subsemigroup can be expressed in a simple
fashion: Y C X is a subsemigroup if and only if

YopY CY. (10)

Definition 9 (Generating set) Let X' C X where X is a semigroup. Then
the set
Y(X)= U (X)'= UX op..op X' (11)
N’

neN neN
n times

is clearly a subsemigroup. Y (X') is called the subsemigroup generated by X'
and X' is called the generating set of Y (X').

These basic definitions are all we need to proceed.
3 Defining Consistency in Aggregation

Denote an arbitrary finite set of statistical units (e.g. firms, industries, coun-
tries, transactions) as A. For each a € A there is a measurement z, = z (a) € X
where z : A — X is an arbitrary function pairing each statistical unit with the
appropriate measurement. X is the set of the possible values of the measure-
ments. The word measurement must be understood quite broadly: it can be for
example a real number, a vector of real numbers, a function, a set etc.



The problem that is considered in this paper is aggregation of these measure-
ments into an aggregate on the same scale, that is, mapping the measurements
Zq,a € A into some aggregate T4 € X. Throughout this paper the word aggre-
gation is used in this specialized sense. An aggregation method or formula is
simply a rule that tells us which Z 4 should be picked given any of the possible
combinations of measurements.

Naturally, any set of statistical units that has more than one element can be
partitioned in a non-trivial way into subsets. If P is a partition of A, that is a

collection of non-empty, disjoint subsets of A such that | J P = A, we can apply
pPeP
a given method of aggregation in each of these subsets to get the subaggregates

xp. As each Tp € X it is possible to apply the aggregation method again to
these subaggregates, to get an overall aggregate z’y. The method used is said
to be consistent in aggregation if 7’y = T4 always. We now attempt to give the
above idea a precise formulation.

While the idea of sets of statistical units and their partitions gives the mo-
tivation to the whole exercise, we do not wish to deal with them explicitly. It is
more natural to think of aggregation methods directly in terms of the measure-
ments without involving the underlying set structure. First, we define what we
mean by an aggregation method:

Definition 10 An aggregation method or formula is a sequence of functions

(Fn)nel\ﬂ F,: X" — X, (12)

where X is an arbitrary set. Each function F,, in the sequence maps mea-
surement vectors x = (21, ..., 2, ) € X™ of length n corresponding to a set of n
statistical units to X. This definition allows us to say what it means that the
same aggregation method has been employed in two situations involving, say, k
and [ statistical units respectively. It simply means that the measurements were
aggregated by applying Fj in the first instance and Fj in the second. For exam-
ple, we could take X = R and the aggregation method could be defined to be
simple summation of real numbers and the corresponding sequence of functions
would then be just

Fo(z1,.,2n) = le (13)
i=1

Definition 1 thus enables us to give a precise formulation of the two-stage
procedure described above. For example, if the measurement vector x € X"
is partitioned into two subvectors x = (x”,x?), such that x” € X"» x? €
X"e,n =np+ng, then we can calculate first the subaggregates tp = F,,, (XP)
Tg = Fuy (XQ) and then apply the same formula to these to get ZTpg =
F (an (XP ) v Fhg (XQ)). Consistency of aggregation would then require that
%PQ = Fn (X .

There is one additional complication, however. As we are dealing with mea-
surement vectors in (12), an ordering of the measurements is implied. However,
the set structure given above as motivation does not require that the measure-
ments (or the statistical units) be ordered in any way. Indeed, in the cases we



are interested in, any ordering of the statistical units will be completely arbi-
trary, like for example the labelling of different commodities with numbers. The

arbitrary numbering, which can be done in n! ways, should have no effect on the
aggregation result. The same applies to the partitioning of the measurements
into subvectors. For example, there is an obvious discrepancy between parti-
tioning of a set A into two subsets A = P U @ and partitioning a measurement
vector x into x = (x”,x?). The latter partition depends crucially on how the
measurements (and the corresponding statistical units) are ordered, while the
former does not. To eliminate these effects of the ordering of the statistical units
our definition of consistency in aggregation includes a symmetry condition.

The above discussion provides the necessary background to the definition of
consistency in aggregation.

Definition 11 An aggregation formula (F), oy, Fn @ X™ — X is consistent
in aggregation (CA) if it satisfies the following conditions:

CA1l F, is symmetric in its arguments for alln € N .

In other words, for all n € N it must hold that if i :{1,...,n} — {1,...,n}
is an arbitrary bijection then

Fn (mi(l),...,wi(n)) ZFn (azl,...,a:n) (14)
for allx =(x1,...,2,) € X™.

CA2 Foralln € N andx = (21, ...,x,) € X™ it must hold that if X is partitioned
arbitrarily into K < n subvectors x = (xl, ...,XK) with 2% € X™  and

K
n= > ny then
k=1

These two conditions ensure that any formula satisfying them will correspond
to the intuition laid out above. To see this, consider a set of commodities
A and a partitioning P of A into K subsets. To apply definition 2 we first
have to number the subsets P € P to get P ={P4,..., Px}. Then we have to
number the measurements x,,a € P, in each subset to get the vectors x*
(Tk,1, s Thym, ). Now we are able to calculate the subaggregates T, = F,, (x¥).
The first condition ensures that the numbering of the measurements z;, ; within
each subset will have no effect on the ). Applying the same formula again to the
subaggregates gives @’ = Fi (T1,....,2x) = Fg(Fn, (x') ..., Foye (x%)). The

first condition again makes sure that the numbering of the subsets has no effect
on the result while due to the second condition the two-stage aggregate =’ =
Fx (z1,...,k) is equal to the one-stage aggregate * = F), (z1,...,%y), where
again, the numbering from 1 to n of the measurements is irrelevant because of
the first condition.

Before we can show that the above definition implies the existence of a
semigroup representation, a minor technical problem has to be addressed. For



completeness, F has been included in the definition of an aggregation formula.
The inclusion makes it unnecessary to treat subsets of one statistical unit or
subvectors of length 1 any differently from other subsets or subvectors. However,
‘aggregation’ just of one measurement does seem meaningless. The only natural
candidate for 7 would seem to be the identity mapping of X so that F; = idx.
This is not implied by our definition. For example the sequence F), (z1, ..., 2,) =
x, where z € X is constant, is CA, yet F} is clearly not the identity mapping
(except when X = {x}). But in this example F} could obviously be replaced by
the identity mapping without altering the aggregation result in any non-trivial
case, that is, where there are two or more measurements to be aggregated. This
result holds in general, and is presented in the next lemma.

Lemma 1 Let (Fy,), ey, Fn: X" — X be CA Then (Gn), ey, Gn @ X" — X,
where Gy = idx and G,, = F,, for all n > 1 is also CA Also, aggregation with
G, will yield exactly the same result as aggregation with F,, whenever n > 1.

Proof. See Appendix A.1. m

As Fy can be always replaced with idy if necessary, in the following we shall
always assume that F; = idy.

We may now proceed towards proving our main result. Note that any func-
tion [, in a sequence ([7,),y that is CA may be defined recursively by the
simple algorithm

Fy(x1,.yxn) = Fo (Fro1 (21, oo, X)), Tp) , for all (z1,...,2,) € X (16)
Starting from n = 2 and applying (16) we get

Fy(z1,m2,73) = Fa (Fy (21,%2) ,73) . (17)
Applying (16) again gives

Fy(x1,20,23,04) = F5(F3(x1,22,23),%4)
Fy (Fy (Fy (z1,72),23) ,24) - (18)

It is obvious that this procedure can be repeated to get any function in the
sequence. Using somewhat cumbersome notation

Fn (J}l, ,J}n) = F2 (F2 (F2 (F2 (F2 (.]31,]}2) ,J}3) ) ,Jjnfl) ,J}n) s (19)

for all (z1,...x,) € X™.
This means that the whole sequence is defined by Fy. By the definition of
CA and Lemma 1 F; clearly has the following properties:

Commutativity. For all (z1,22) € X2 :
Fy (w1, 22) = F (w2, 71) .
Associativity. For all (xq,72,23) € X3 :

F5 (Fy (z1,22) ,x3) = Fa (21, F5 (22, 23)) .



But this means that F» is a commutative (or Abelian) semigroup operation
on X. Thus, any formula that is consistent in aggregation can be constructed
by repeated application of a commutative semigroup operation. Dropping the
subscript from Fy we adopt the standard algebraic notation:

Fy (z,y) = F (z,y) =xopy. (20)

Also, we refer to the semigroup that is defined by the set X and the binary
operation F' on it as (X, o) or, if it is obvious from the context which binary
operation on X is meant, just X. Using this notation, keeping in mind Lemma
1, any sequence that is CA has a simple representation

Fi(z1) = = (21)

Fn (ajlv"'vajn) = X1 0F ... OF Tp, (22)

where F' = F5. But the converse is also true. If (X, op) is a commutative
semigroup then the sequence defined by (21) and (22) is CA The property CAl
is an obvious corollary of commutativity. Also,

F, (xl, ...,xK) = (110F ...OF T1,) OF ... OF (XK1 OF -.. OF TK K )

X101 OF .. Op X1,y OF ... OF XK1 OF -.. OF LK nk (8SSOC.)
= 1 0p ... op Xy. (commutativity)

We have now proved the following theorem:

Theorem 1 (Semigroup representation of CA) Let (Fy,),cy, Fn: X" —
X be an aggregation formula (with Fy replaced by idx if necessary). Then
(Fn)pey @8 CA <= Fy : X? — X is a commutative (Abelian) semigroup oper-
ation and for alln € N and (z1,...,2,) € X"

F1 (J}l) = ldX

F,(x1,...;xn) = X10p, ...0R Tn.

This means that consistency in aggregation completely reduces to the basic
algebraic concept of commutative semigroup. All the results concerning semi-
groups can thus be directly applied to any aggregation formula with the CA
property.

This result has not to our knowledge been presented before in this general
form. However, at least Pokropp [44] has used a semigroup representation of
aggregation in the context of production indices.

4 Examples

As algebra textbooks (see for example Auslander [4]) are full of examples of
commutative groups and semigroups it is easy to construct examples of formulas
that are consistent in aggregation. Some semigroup operations have a natural
‘aggregation interpretation’ while some have not. The most basic examples have
X =R (or the positive reals which we denote X =R, ).



Example 1 These are simple examples of aggregation formulas that are CA for
real numbers.

1. F, (x1,...,mn) = c€Rorzopy=c. (23)

2. Fy (x1,.0yn) = le orxopy=1x+y. (24)
i=1

3. F,(x1,...yxy) = Hﬂ% Or Lop Yy = TY. (25)
i=1

4. By (x1,..,xn) = max{z1,...,Tn} orzopy=max{x,y}. (26)

5 F,(x1,...,xy) = min{zy,..,x,} orzxopy=min{z,y}. (27)

In the above examples the interpretation of repeated application of the semi-
group operation as aggregation is obvious. Also, all of the above formulas have
their counterparts for aggregation of dependencies.

Example 2 Let X = {f|f:R — R } and define f+ g as pointwise summation
so that (f +g) () = f (x) + g (x) for all x € R. This is clearly a commutative

semigroup operation. Thus Fp, (f1,...fn) = Zfl is CA
i=1

All formulas in example 1 could be similarly extended to aggregation of
real-valued functions.

Example 3 Let X be a Boolean algebra. Then the following formulas are CA:

1 Fy (A, Ay = | JA, AieX (28)

=1

2. Fy(Ar, .. An) = [Ai, AieX (29)
i=1

Unions and intersections are not usually associated with aggregation. How-
ever, both have simple, almost trivial, interpretations as aggregation formulas:
they have to do with classification of data. The sets A; could for example be sets
of firms belonging to different industries or geographical areas. Aggregation by
union could then be interpreted as combining the different industries or areas to
a more aggregated level of classification. Aggregation by intersection could be
interpreted as finding statistical that satisfy an ever-growing number of speci-
fications: the sets A; could be for example firms situated in OECD countries,
firms situated in EU countries, in the Euro-zone etc.

Note that if X is X = P (A) or the set of all subsets of a finite set A =
{ai,...,a,} and the 'measurements’ are A; = {a;}, then (28) reduces to the
partitioning of a set which was given as motivation for the whole concept of CA

It is intuitively clear that the arithmetic mean must be CA by any meaningful
definition. The arithmetic mean for a whole data set can after all be calculated
as an arithmetic mean of means of subsets. However, it is not always noticed
that this actually includes two aggregation processes: to calculate the mean in
two stages we need not only the means for the subsets but also their weights
(for example the number of observations in each subset). To conform with our



definition of CA any subaggregate must contain all information that is relevant
to further aggregation. That is why both the aggregation processes must be
explicitly taken into account.

Example 4 (Arithmetic Mean) Let X = Ri o or the positive quadrant of
the real plane. The first component x of any measurement x = (x,y) € ]R?H 18
the variable of interest and the second component y is a weighting variable. The
weighted arithmetic mean is generated by the commutative semigroup operation

Y121 + Y222

Y1+ . 30
Y1+ Y2 n y2> (30)

X1 0F X2 = <
This is clearly commutative. It is also associative because

(y1 +92) (%) + Y33

(y1 +92) + s

(xX10pX2)op X3 = (Y1 +y2) +ys | (31)

(ylﬂh + Y22 + Y3x3
Y1+ Y2 + Y3

11+ (Y2 +y3) (w)

7yl+y2+y3)

Yy2+ys
Y1+ (Y2 +y3)

Y1+ (Y2 +u3)

= X10p (X20F X3).

This illustrates the point made above. The first component in the vector-
valued semigroup operation keeps track of the variable of interest. The second
aggregates the weighting variable, something that is not directly interesting but
necessary information to carry the aggregation further. Defining the aggregation
process in this way means that each measurement or subaggregate (x,y) is ’self-
contained’ in the sense that no additional information is needed to calculate
further aggregates.

The unweighted arithmetic mean is the special case where the variable y is
the number of observations.

Example 5 (Quasi-arithmetic mean) The above example can obviously be
generalized to what Aczél [2] has called quasi-arithmetic means. Let X =R3 |
as above. Let f : Riy — R be an arbitrary bijection. Then the weighted quasi-
arithmetic mean is generated by the semigroup operation

X1 O X3 = (f_l (ylf (@) + 9 (xQ)) Y1 +y2> . (32)
Y1+ Y2

Again, this is clearly commutative. Also, associativity is easy to show in
similar fashion as it was done in the previous example. Taking f(z) = =z,
f(z) = logz, f(x) = =1 lead to the arithmetic, geometric and harmonic

means respectively. Taking f (x) = xP leads to the generalized moment mean
(or the CES function).

Example 6 (General quasilinear function) Both of the previous examples

are special cases of what we call the general quasilinear function, following Aczél
[2, 148]. This type of function is important in the context of index number

10



theory, because all index number formulas known to us with the CA property
have a quasilinear representation. Indeed, it is shown below that under some
rather loose conditions all index numbers that are CA have also a quasilinear
representation (See [?]).

Let X = R%},. Let Y C R™ be a subsemigroup of (R",+) where the +
stands for ordinary vector summation. In other words, Y is closed under vector
addition. Let B : R}, — Y be an arbitrary (usually continuous) bijection.
Then the corresponding general quasilinear aggregation formula is generated by
the semigroup operation

x10p Xy = B (B (x1) + B (x2)). (33)

Throughout this study the term quasilinear is used in this sense and it should
not be confused by the quite different more often encountered meaning of the
term in consumer theory. Note that the three previous examples can be ex-
tended to aggregation of functions in the way shown in Example 2. We give the
arithmetic mean as an example.

Example 7 Let X = A2, where A= {ala: Ry — Ry }. For any (a,b) € A?
the function a gives the dependency we are interested in and b is a weighting

a

function. Define the operations ab, ¢ and a + b as pointwise product, division
and addition so that (ab) (x) = a(x)b(x), (%) (x) = ZJ&% and (a+Db)(z) =
a(x) +b(x). Then the weighted arithmetic mean function is generated by the
commutative semigroup operation

biai + baaz

,b1 + b | . 34
b1 + b L+ 2> ( )

alopa2_<

Example 8 (Random variables) Let opdefine a semigroup operation on X C
R™. Moreover, let the function F : X?> — X be measurable. Now, let Z be a
set of random wvariables defined in a probability field (2, F, P) such that each
z € Z is a function z : Q@ — X, that is, the possible values of each z are in
X. Using Example 2 we may now define a consistent method of aggregation
for these random wvariables by defining (21 og 22) (w) = 21 (W) oF 22 (w) for all
w € Q. Because F was assumed measurable, any aggregate Z = z1 oG ... 0¢ 2Zn
is now also a random variable defined in (Q, F, P) .

These definitions may seem trivial extensions of aggregation methods for
reals. However, the properties of these derived semigroups are different from
the properties of the original semigroups. It is easy to see for example, that in
many cases the subsemigroups and their generating sets of these semigroups of
random variables can be quite complex and interesting. Indeed, many aggre-
gation problems concerning random variables and stochastic processes can be
formulated using these algebraic concepts.

Example 9 (Convolution) Let X = L (R"). The convolution operation * in
LY (R™) is defined by

(f+9) (@) = / fle—y)g()dy. (35)

Rn

11



It is well-known that f x g € L' (R"™) and that * defines a commutative and
associative operation® in L' (R™). This means that for example we may view
calculating the probability density function of the sum of absolutely continuous,
independent random variables as consistent aggregation.

5 Index numbers and CA

Before we can define what CA means for index numbers we need some idea of
what an index number is. As it is not our purpose to participate here in the
discussion about the proper definition of an index number formula, we define it
very loosely. The definition is similar to our definition of an aggregation formula
in the sense that it is also a sequence of functions in which the nth element of
the sequence gives the formula for n commodities. Thus a index number formula
is defined to be a sequence of functions

(Fdnens fo: (R — Ry (36)

A price index for n commodities is given by f, (p', p% q',q°), where p', g’
are the period 1 ('new’) prices and quantities respectively and p°,q" are the
period 0 ("old’) prices and quantities. To get a quantity index the places of
prices and quantities are reversed. For example, the Laspeyres price index is
given by

>onia?
fE(p'.p’.q,q’) =5—, foralln e N. (37)

n

> pd¢?
=1

We place a two conditions for the functions f,, for a sequence to be considered
an index number formula. The first condition is the so-called unit of measure-
ment (commensurability) test. This states that the index must be independent
of the units of measurement used in the prices and quantities. The formal state-
ment of the condition is given below. For alln € N, all (pl, p’, qt, qo) € (Ri+)4
and all (Aq,...,A,) € R it must hold that

fn (>\1ph seey >\np1117 Alpcl]v sy )‘npgm >‘1_1Q%7 eeey >‘;1Q1117 )‘1_1q(1)7 seey )‘;1%9138)
= fu(Pp"p".d'.qd").

We also require that f1 (p*,p% ¢',¢°) = 2—; so that the price index for one
commodity is just the price relative. For example Vartia [63] shows that if
the unit of measurement test holds that the index number formula has the
representation

fa (P4, P% dhd?) = gn ((71,09,01) 5 oory (7,00, 01)) (39)

for all (p*,p%,q",q°) € (Rﬁ+)4. In (39) gn : (]RSJFQH Ry, m = %

are the price relatives and v} = plg!, ¢ = 0,1 are the value vectors for periods

3For which the Fourier transform F gives an isomorphism (up to a normalization constant)
to a multiplicative semigroup F (£ (R™)) .
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1 and O respectively. This is because there is a bijective mapping between
(pl,po,ql,qo) and (r,po,vl,vo), so that we may write

fo (PP, d", q°%) = hy, (m,p°, v, V).

Applying the unit of measurement test with (A1,...,\,) = (
becomes

fn (p17p07q17q0) = hy (77717V17V0)
= On ((ﬂ'lvvgvvi) yeeey (71'”,1)2,1)111)) .

It is this representation that allows us to define CA for index number for-
mulas.

Definition 12 (CA for index number formulas) The index number formula
(fn)nen 18 consistent in aggregation if the sequence (Fy,), o, Fn : (Rir)n —

(R3,)"
Fp, ((m1,08,01) 5oy (0, 0, 0p)) (40)

= (gn ((771,1)?,1)%) 3ty (Wn7vg7vrlL)) 72U?7 szl> (41)
i=1 i=1

is consistent in aggregation in the sense of definition 11, or equivalently, that
the function Fg is a commutative and associative binary operation.

Example 10 The Laspeyres formula is CA because the operation

0 0
1) _ (Ulﬂ'l + v9ms

0,1 0 0,01, 1
(7\'1,1)1,1)1) oF (71'2,1)2,1)2 o0 o0 , U1 + vy, v} +v2) (42)
1T

18 commutative and associative as can be seen from example 4. In this case
the last component, i.e. the aggregation of the period 1 values is redundant, as
the information is not used in the price aggregation.

Example 11 [t is a little harder to see that the Stuvel formula is generated by
the operation

(77171}?71]%) oF (77271}371]%) (43)

1
+

0 1_—1,.0 1, —
Vi1 —V T FUTW2—VyT,
04,0
2(111 +v2)

= 2
0 1.—1 0 1. —1 1 1 )
VIT1—V)T ) VT2V, vitva 0 0,1 1
v Vs,V v
\/( 2(1)?%»1/3) ) + v?+vg, 1+ 29 1+ 2

and that this operation is indeed commutative and associative. However, if we
take the bijection

(44)

Bs (m,0',0°) = (07 —vla~t vt o) 4 (45)

it can be shown quite easily that the Stuvel formula has the quasilinear repre-
sentation

(wl,v?,v}) op (7\'2,1)3,1)%) = Bgl (BS (r,v?,v%) + Bg (r,v%,vg)) . (46)

This is consistent in aggregation by example 6.

13



Quasilinear representations of the kind presented in the above example turn
out to be quite important. That is why we give the following definition.

Definition 13 (Quasilinearity) An index number formula (gn), oy is quasi-

linear if the functions (F},), oy defined in (40) have representations

Fo(x1,..,%,) = B 1B (x1) + ... + B(x,)), (47)

where B : ]Ri . — S is an arbitrary continuous bijection with a continuous
inverse and S C R? is a subsemigroup of (R3, +) where the + stands for ordinary
vector summation. In other words, S is closed under vector addition.

Corollary 1 It is obvious that any quasilinear formula is consistent in aggre-
gation in the sense of Definition 11.

Also, algebraically, it is clear that the function B is an isomorphism from the
index number semigroup to the semigroup S and thus the semigroup operation
that defines the index number formula is isomorphic to vector summation in S.

This definition of quasilinearity coincides with Balk’s [6], [7] proposal for
consistency in aggregation, However, the example

F2 ((Trlvv(l)ﬂ}%) ) (77271}(2]7@%)) = (mln {7717772}71}(1) +U(2)7U% =+ U%) (48)

is consistent in aggregation in our sense but is not quasilinear. That shows that
our definition is more general than Balk’s formulation. Also, there seems to be
no reason why (48) should not be considered consistent in aggregation, and it
is our conclusion that Balk’s definition is too restrictive. However, as will be
shown later, under very natural conditions the two definitions become equal.

It turns out that most reasonable index number formulas that are consistent
in aggregation have a quasilinear representation, that is, they are consistent in
aggregation also in Balk’s more restricted sense.. The quasilinear representa-
tions for some are given in the next example. Before continuing, however, we
replace the notation (7r1,v{,v}) with the simpler (z1,z2,x3), as this is neutral
with regard to prices and quantities.

Example 12 (Quasilinear representations for well-known indices.) 1.
The Laspeyres formula can be defined by the operation

ToT1 + Y21

49
ﬂ?Q"‘yQ 7$2+y2;$3+y3)7 ( )

($1,9€2,$3) OFy, (y17y27y3) = (

which has a quasilinear representation with the functions

B, R:O’H_ —>R3’_+, By (x) = (w21, 22, x3) (50)

_ - q _ 21
BL1 : Ri+ - RiJr’ BL1 (z) = (z_27z27 ZS) . (51)
2. The semigroup operation that defines the Paasche formula is

1 —1N\ 1
T3T, + Y3y
(w1, 22, 23) o, (Y1,Y2,¥3) = ((ﬁ) ,x2+yg,x3+y3) .

14



The functions for the quasilinear representation are

Bp : ]RSJF+ — RiJr, Bp(x) = ($3$f1,x27333) (52)
-1
_ - 21
By : Ri, —Ri,, Bp'(z)= ((Z_s) 722,Z3> (53)

3. Log-Laspeyres.
($1,$2,$3) OFLr (y17y27y3) (54)

xglog x1 + y2 log y1
= Z B 55
(eXp< T2 + Yo >,azg+y2,x3+y3) (55)

Brr : Ry, —RxR%Y,, BpL(x)=(w2logz,xa,73) (56)
— 9 _ z
B;; : RxRi, —R}, Bj(z)= (eXp (;;)332903) (57)

4. The operation defining Stuvel’s formula was already given above. The
quasilinear representation can be constructed using

3 2
Bs : Ry, —RxR{,, Bs(x ): xgxl—xdxl l‘g,l‘d

-1 . 2 Zl
B;' : RxR2, -R3 , Bg(z) 2,22 \/ 222 zw&%

5. A CES-type index can be defined using
Be RiJr — RifH, Be (x) = (W (22, 23) x’l)73727373) (60)

BE«l : R —>R++a Be (z) = ((m) 7Z2,Z3> w

where W (z2, x3) is some weighting function.

6. The formula called the Montgomery formula by Stuvel [57] and Vartia T
by Vartia [63].

By : R, -Rx R?H, B (x) = (L (22, 23) log 21, 22, 23) ° (62)
B,/ : RxRi, —»R3, B/ (z)=(L(2,2)logz,2,23) (63)

where L (x3,19) = 8= s the logarithmic mean. For discussion of
’ log x3—log x2

its properties see for example Carlson [?] or Vartia [65].

These are just some examples, but they all seem to point to the conclusion
that quasilinearity is somehow natural for index number formulas that are CA
We now attempt to find conditions under which an index number formula with
the CA property will have a quasilinear representation. We now attempt to
find conditions under which an index number formula with the CA property
will have a quasilinear representation. Gorman [?] has proved similar results,
using different notions of separability. However, Gorman’s strong proportion-
ality requirements lead him to a characterisation of Stuvel-type indices, which
will be discussed below. Also Blackorby and Primont [12] have used functional
equations techniques to prove somewhat more restricted results. Our proof is
algebraic, and utilises the semigroup structure of consistent index numbers.
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6 Sufficient conditions for quasilinear represen-
tation

The problem of finding a quasilinear representation for index number formu-
las that are CA is closely related to the problem considered by Aczél and
Hosszud [1]. They present necessary and sufficient conditions for a continuous
semigroup operation F : (]R")2 — R™ to have the representation F (x,y) =
B! (B (x) + B (y)) where B: R® — R" is a continuous bijection with a con-
tinuous inverse. Their result is that F has to be group operation satisfying
certain conditions. This result is not directly applicable, because the index
number semigroups do not have identity or inverse elements and are thus not
groups. However, we use a similar method of derivation as used in [1]. Also,
Pokropp [44] has derived similar results in the context of production theory.
Our approach is similar to Aczél and Hosszi’s [1] and differs from Pokropp’s in
that we make use of continuity.

Below, we refer to the semigroup that is defined by the set X and the binary
operation F' on it as (X, o) or, if it is obvious from the context which binary
operation on X is meant, just X.

Before we proceed we present two lemmas which we will need later.

Lemma 2 (Cauchy Equation) Let S C R"™ be a subsemigroup of (R™,+)
where the + sign means ordinary vector summation. Let S have an open subset
R C S. Then the only continuous solutions F : S — R™ to the equation

F(x+y)=F(x)+F(y) foralx,yeS (64)
are of the form F (x) = Cx where C is an arbitrary n X n matriz.

Proof. See appendix A.2. m

The Cauchy equation is one of the fundamental functional equations, and
will be central in the discussion below, as many of the results are arrived at by
reduction to the Cauchy equation. The linear function is the only practically
relevant solution to the equation. The other solutions to the equations are based
on the so-called Hamel bases, and are not constructive, but their existence
may be proved based on the axiom of choice. The idea is to interpret the
reals as a rational-coefficient vector space. The axiom of choice (Zorn’s lemma)
implies that all vector spaces have bases, so-called Hamel bases. The non-
continuous solutions of the Cauchy equation may be defined using the Hamel
basis of reals interpreted as a rational-coefficient vector space. These functions
are quite remarkable. For example, the graph of any non-continuous solution to
the one-dimensional equation is dense in R™. The interested reader is referred
to Kharazisvili [37] and [39].

Lemma 3 The quasilinear representation of an indexr number semigroup is
unique up to a linear transformation. Put otherwise, if

xopy =B~ (B(x)+B(y)=B" (Bx)+B()),

where B :R?H — S and ]§:R?~_+ — S are continuous bijections with continuous

inverses and S has an open subset’ then B (x) = CB (x) for all x €R} .. Cis
a non-singular 3 X 3 matriz.

6Which we will show that it must have under our conditions.
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Proof. See appendix A.3 m
The first of our conditions for a quasilinear representation to exist is a weak
proportionality condition.

Condition 1 (Weak proportionality) For any x,y €R? | and k,l€R:
(l‘l, kxo, kxg) of (l‘l, lxs, ll‘d) = (.Il, (k + l) X9, (k + l) $3) . (65)

This is equivalent to saying that if all prices have changed proportionally by
the factor x7 and values by the factor %21 (or, in other words, if all quantities
have changed proportionally by the factor ﬁ;) then the index should give the
price relative. This is a very weak proportionality condition that we feel any
interesting index number formula should possess. Note that for example Fisher’s
[29, 420] test that states that if price relatives agree with each other then the
index should agree with the price relatives implies this test. Obviously, (65) can
be repeated to get the equivalent to any number of commodities by induction.

The reason that this condition was adopted to us is that it allows us to define
easily 'powers’ for the index number semigroup.

Definition 14 For any x €R3 | and k€R,; we define
Xk = (.Il, kl‘g, k‘3) . (66)

This definition is natural because by the weak proportionality condition for
any x ER:L_ and neN
x" = (z1,nT2,NT3) = XOp...0pX. (67)
&\,_/

n times

Also, for any x,y ERi 4 and k,I€R the powers possess the familiar proper-
ties:

1.
xFopx! = (21, kxo, kxs) op (1, 2o, l23) (68)
= (x1,(k+1)x2, (k+1)x3) = x"
2.
(Xk)l = (.Il, kxg, k‘l‘g)l = (.Il, kl.IQ, kl$5) = Xkl. (69)

Now, if we take any U = [ u; uz us ] ,u; € Ri—s— and define for all
(371,372,1‘3) S Ri+ :

Hy (71, 2,73) = uj'opuy*opug® (70)

then the function Hy : Ri’_ . — Su, where Sy = Hy (Ri’_ +) will clearly
be continuous because of continuity of the semigroup operation and the power
function. Also,

Hy (x)orHu (y) = (ui'opuj®opus®)or (uf'opuy’opus®)  (71)
ufl +y1 OFungryz OFu§3+y3

= HU(x+y).

17



Sy is a subsemigroup of the index number semigroup (R%,,0r). To see this,
let s=Hy (x) and t = Hy (y) . Now

sopt = Hy (x) orHy (x) = Hy (x +y) € Su. (72)
This means that we have proven the following lemma.

Lemma 4 Hy : ]R?H_ — Sy 18 a continuous homomorphism Hy between the
Semigroup (]R:O’H_, —l—) and a subsemigroup Su of the index number semigroup.

Also, the function Hy has the property
Hy (x)" = (uj*opuiopuf?)’ = ui” opuf™oruf™ = Hy (kx).  (73)

The idea of a function like Hy is similar to Aczél and Hosszi’s article[1] The
strategy we will now follow is first to find a Hy that is a bijection which makes
it an isomorphism. Then we extend this isomorphism to cover the whole index
number semigroup using a method not unlike that used in proof of Lemma2.
This is necessary because in most cases there will not exist any U such that Sy =
Ri . This follows from some common properties of index number formulas. For
example, for many formulas the value of the index will always lie between the
minimum and the maximum of the price relatives. For these indices, any U the
first component of Hy, denoted hy would have the property

hy (x) € [min {u11, o1, 131}, max {u11, o1, us1 }] (74)

Many formulas have either this property or at least the index never takes a value
greater than or equal to the maximum of the price relatives. This means that
Su € R3_ in most interesting cases.

Condition 2 (Bijectivity) There exist U = [ u; us ug ] ,u; € R?H_ such
that Hy : Ri—s— — Sy is a bijection.

The second condition means that for some U Hy has an inverse H(Jl and
thus it is an isomorphism between semigroup (R%,,+) and a subsemigroup
Sy of the index number formula. Thus for any t,s € Sy that have Hy (x) =

s,Hy (Y) =t
sopt = Hy (x) opHy (y) = Hy (x +y) = Hu (Hﬁl (t) + Hg' (s)), (75)

so that the index number formula has a quasilinear representation in the
subsemigroup Su.The condition may seem abstract, but it has an index number
theoretic interpretation. This is given in the next lemma.

Lemma 5 If the bijectivity condition does not hold, then the price index calcu-
lated using this formula for three or more commodities has the following prop-

1 1
erty: if for some i # j z—o #+ %3, that is, if the expenditure change on all goods

has not been proportional, we may redistribute the expenditure among the com-
modities without changing the value of the index. That is,

In ((ﬂ-lvv(l)?v%) PRI (7'('”,’[)2,’[),,11)) =Gn ((77175(1]75%) y e (ﬂ'n,@%,ﬁi)) ) (76)
n n n n
whenever S°v) = S0 and Y o} = S 7.
i=1 i=1 i=1 i=1



Proof. See Appendix A4. m

This means that the relative importance of goods does not matter, only
the price relatives and aggregate value of consumption. As this clearly is a
property that no reasonable formula would have, it is our opinion that the
second condition is justifiable. As an example of formulas that do not satisfy
this property, take xopy = (max {x1, 41}, 22 + y2, €3 + y3). This is a continuous
semigroup operation, which defines the index that gives the maximum of all
price relatives. Here we see that the distribution of value shares is unimportant,
the maximum price relative will be chosen regardless of the importance of the
corresponding commodity.

From now on U will be regarded as fixed to some value for which Hy (x) is
a bijection.

Before turning to the next condition, we show that Sy is open.

Lemma 6 Sy = Hy (REL_) is open in R3.
Proof. See AppendixA.5. m
Condition 3 (Vanishing commodities) l}ir%xk oORy =Yy

This condition states that the value of a commodity tends to zero, then its
effect on the index should vanish. The technical value of this condition lies in
that it ensures that for each x ERi . there exist some s,t € Sy such that

xops=t. (77)

To see this note that for any y €Sy by condition 3
y = limx" opy = lim (ony")%. (78)
n—oo n—oo
Because Sy is open by lemma 6 this means that for n large enough (x op y™) w
Su but as Sy was shown to be a subsemigroup of the index number semigroup
n
this means that [(x op y”)ﬂ =xopy" =t € Sy. Taking s =y" the result
follows.

Condition 4 (Monotonicity) The indez is strictly increasing in the price rel-
atives, so that hg (x1,%2, T3, Y1,Y2,Y3) 18 strictly increasing in x1 and y;.

Lemma 7 If condition 4 holds together with the previous conditions, and X op
s=tandyorps=t thenx=y.

Proof. See Appendix A.6 ®

While condition 3 ensures that each x ERi . is a solution to the equation
xops =1t for some s,t € Sy, condition 4 makes it the unique solution to the
equation.

Define now the function ¢ (x,y) for all x,y €R? | by

c(x,y) or Hu (y) = Hu (x) . (79)

Lemma 8 The function c (x,y) is well-defined and depends only onx —y. We
may thus write c(x,y) = H(x —y). Also, we denote the domain of H as S.
Because each x ER:L_ is a solution to the equation xops =t for somes,t € Sy,
H is a function H :S — R:L_.
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Proof. Appendix A.7. m

Lemma 9 R3, C S and ifx € R} then H (x) = Hy (x). That is, Hy is the
restriction of H into Ri+.

Proof. Appendix A.7. m
Lemma 10 For all s,t C S,
H(s)op H(t) =H(s+t). (80)
Also, H is a bijection.

Proof. See Appendix A.8. =
This means that H has an inverse H™! : R}, — S. If we substitute
s=H'(x), t=H"'(y) into (80) it becomes

xopy=H(H" (x) tH (). (81)

From the above equation it is clear that S is a subsemigroup of (R3, —l—) and H
is an isomorphism between (S, +) and (R}, oF).

Lemma 11 Define the function G T — Ri—s— where T = V.S for some non-
singular 3 X 3 matriz 'V that has (u12, u22,uz2) and (u13, uss, us3) as its second
and third row, and G (t) = H(V~'t) for all t€T. Then G is a bijection
that has the form G (t) = (g(t),t2,t3), Gt (x) = G (g(x),x2,73) and
xopy =G (Gfl (x) +G7! (y)) .

Proof. See Appendix A.9. m
Lemma 12 G and G~ are continuous.

Proof. See Appendix A.10. m

Taking B = G~ ' and noting that Ri 4+ C S so S has an open subset and
therefore also T' we have now proved our main theorem.

Theorem 2 (Quasilinear Representation of Index Number Formulas)
Any index number formula that is CA and satisfies conditions 1-4 has a quasi-
linear representation xopy = B™1 (B (x) +B (y)) that is unique up to a linear
transformation. Moreover, the function B can be chosen to be of the form
B (x) = (b(x), 22, 23).

7 Necessity considerations

The conditions 1-4 were shown to be sufficient for a quasilinear representation
to exist. They are, however, not necessary. For a formula with a quasilinear
form condition 1 implies that

B (21, kxo, kx3) +B (21,12, lx3) = B (21, (K + 1) 22, (k +1) 23) . (82)

For any fixed x this is just the one-dimensional Cauchy equation in k£ and [
and thus clearly B (z1, kxo, kx3) = kB (x) so that B is linear homogeneous in
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(22, x3). But this means that if we were to choose some function B without this
property then condition 1 would not be satisfied. However, as was pointed out
above, any function that does not satisfy condition 1 will not be an interesting
candidate for an index number formula. Thus the following result is of some
interest.

Theorem 3 An index number formula has a quasilinear representation X op
y =B ' (B(x)+B(y)) , where B is linear homogeneous in (x2, 3) and B (x) =
(b(x),x9,x3) if and only if conditions 1—4 are satisfied.

Proof. Theorem 2 and the above discussion show that if conditions 14 are
satisfied then the representation exists. For the proof of the only if part see
Appendix A.11. =

Thus while conditions 1-4 are not necessary conditions in general, if weak
proportionality is required then linear homogeneity of B is implied and the rest
of the conditions are sufficient and necessary to guarantee the existence of a
quasilinear representation. As has been argued above, weak proportionality is
such an essential property of any index number formula, that assuming it is not
a very strict restriction, and we will assume it for the most part below.

Definition 15 (Weakly proportional quasilinear index ) If a semigroup
operation that defines an index number formula has a quasilinear representation
xopy =B (B (x)+B(y)) with B continuous, having a continuous inverse,
and linear homogeneous in (22, x3) and B (x) = (b(x),x2,x3) then we say that
the semigroup operation defines a weakly proportional quasilinear index number
formula. By the above theorem, this definition is equivalent to the conditions

1.

As we have argued that almost any function of any practical interest would
satisfy our four conditions, the question remains could any function satisfying
them be regarded as a candidate for an index number formula. The answer seems
to be that all functions that satisfy all four conditions satisfy some elementary
properties of index number formulas. For example, the rather permissive set
of axioms given by Vartia [63] is implied by our conditions. (We examine a
different set of axioms below.) The tests include the weak proportionality test,
which is our condition 1, a weak identity test, which states that if there is no
change in prices and the quantities change proportionally, then the price index
should have value 1. In our coordinates this is equivalent to

(1,22, kx2) oF (1,y2, ky2) = (1,22 + y2, k (z2 + y2)) - (83)

This is implied by condition 1 as it is equivalent to (1,1,k)™ op (1,1,k)¥ =

(1,1,k)""¥ . Also, the set of axioms includes the so-called monetary unit test,
which requires that if all prices are multiplied by some positive k and quantities
by some positive [ the index should remain unchanged. As our conditions ensure
that

(z1, klag, klxs) op (y1, klys, klys) = xM op y* = (x op y)kl , (84)
this condition is also satisfied. We have proved this lemma:

Lemma 13 All weakly proportional quasilinear formulas satisfy Vartia’s ax-
10ms.
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We conclude that our choice of vocabulary in calling all these functions
index numbers is not meaningless, as they have characteristics that are typical
for index number formulas. As the previous examples show, some of the classical
index number tests seem to have algebraic interpretations. In the next section
this is examined in some more detail.

8 Tests for Index Numbers

In the so-called test-theoretic approach to index number theory pioneered by
Irving Fisher [29] functions that are candidates to being used as index number
formulas are subjected to certain tests, i.e. the functions are required to satisfy
some requirements that are considered necessary or desirable for an index num-
ber formula. Many of these tests demand that the function have some property
that is similar or analogical to some property of the simple price ratio’. In this
section we use the results derived above and find some interesting algebraic in-
terpretations for these tests. We present first the test in its 'pure’ algebraic form
and then apply the concept to index number formulas as an application. This
approach is warranted for two reasons: first, it simplifies the notation some-
what, and second, it shows that the concept of tests could be extended for some
other kinds of aggregation as well. Also, from now on we deal only with weakly
proportional quasilinear index numbers and the terms quasilinear and weakly
proportional quasilinear are used interchangeably.

Definition 16 (Category 1) Let or be an Abelian semigroup operation on
S. Lett : S — S be an arbitrary bijection. Then the formula defined by
the semigroup operation opsatisfies the test by function t if and only if for all
x,y € X it is true that t (xop y) =t (x) op t(y). Using algebraic terminology,
t must be an automorphism of the index number semigroup.

We now show that both the time reversal and factor reversal tests fall into
this category. First we define the time reversal and factor reversal functions.

Definition 17 (Time reversal function) The time reversal function is the
function

t:Ri+—>Ri+,t(l‘1,$2,$3): (xl_l,l‘g,xg). (85)

Definition 18 (Factor reversal function) The factor reversal function is de-
fined by

q B .’1:'3
s Ry, —»R3, s(z1,22,23) = (mlm,xg,xg) . (86)
Note that the names of the time reversal and factor reversal functions are
natural. The time reversal function transforms a price relative-value vector
comparing periods 0 and 1 to a price relative-value vector comparing periods
1 and 0 and also reverses the order of the values. The factor reversal function

"This ’analogy principle of aggregation’ could actually be formulated generally so as to
include many other aggregation problems as well, for example those given as examples in
previous sections. For reasons of readability this is not done.
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transforms any price relative-value vector into a quantity relative-value vector
because

!

Lemma 14 Both functions are autoinverses, i.e. they have inverses and t~* =
t and s~ =s.

Proof. Simple calculation will show that this is true. m

Lemma 15 The order of time and factor reversal may be changed without ef-
fect, ortos =sot.

Proof. For any x,

L1122

(tos)(x) = t(s(x))_t< 3 ,x2,x3) _( - ,x3,x2) (88)
= s (a1 ms,m2) =s(8(x) = (s0t) (%),

]
Using these functions we may also define the time and factor antitheses of
any index number formulas.

Definition 19 (Time antithesis) Let opdefine an index number formula. The
time antithesis of that formula is defined by the semigroup operation oggiven by

xogy =t (t(x) o t (¥)) = t (t (x) or t (¥)), (89)
where t is the time reversal function.

Definition 20 (Factor antithesis) Let opdefine an index number formula.
The time antithesis of that formula is defined by the semigroup operation o g given

by
xoy =s"' (s(x)ops(y)) =s(s(x)ors(y)), (90)
where s is the factor reversal function.
It is easy to show that both of these operations are commutative semigroup
operations. Commutativity is an obvious corollary of the commutativity of op.

Associativity is shown in a similar fashion as to the general quasilinear function
above.

s(s[s(s(x)ors(y))lors(2))
= s(s(x)ors(y)ors(z))
s(s(x)orss(s(y) ors(z))]).

This gives us the following lemma.

Lemma 16 The time and factor antitheses of formulas that are consistent in
aggregation are also comsistent in aggregation. If the original formula is quasi-
linear, so are its time and factor antitheses.
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Proof. The first part was explained above. For quasilinear index numbers
xogy =t (t(x) op t(y)) = (Bot) ™' (Bot)(x)+ (Bot)(y)). (91)

This gives the result for the time antithesis. The case for the factor antithesis
is proved similarly. m
Now we give definitions of the tests.

Definition 21 (Time reversal test) Let opdefine an index number formula
and let ogdefine its time antithesis. The formula satisfies the time reversal test
if these operations are identical so that for all x,y €R3

Xopy = xogy =t (t(x) or t (¥)).

An equivalent way of stating this demand is to require that the time reversal
function be an automorphism or that the time reversal test is a category 1 test
with the time reversal function as test function.

To see that the two definitions are indeed identical it is just necessary apply
the time reversal function on both sides of the above equation. It is perhaps
easier to see that this definition is identical to the usual definitions if the equation
is written component by component. The time reversal test demands that the
value of an index comparing period 0 to period 1 should be the reciprocal of the
index comparing period 1 to period 0. In our representation this is equivalent to
the requirement that if we transform all price relative vectors comparing period
0 to period 1 with the time reversal function and then aggregate these, we
should be able to recover the aggregation result for the untransformed vectors
by applying the same transformation again to this aggregate of transformed
variables. Formally for any x,y € R3_, we should have

xopy = t(t(x)ort(y)) (92)
= (92 (1" @3,72) (y1_17y37y2))71 » T2+ Y2, 3 + y3> . (93)

It should be clear that this is the usual definition for the time reversal test for
two commodities. The semigroup structure is enough to guarantee that the
extension to any number of commodities is a simple exercise in induction.

Definition 22 (Factor reversal test) Let ordefine an index number formula
and let ogdefine its factor antithesis. The formula satisfies the factor reversal
test if these operations are identical so that for all x,y 6R3++,

Xopy =Xogy =s ' (s(x)ors(y)).

An equivalent way of stating this demand is to require that the factor reversal
function be an automorphism or that the factor reversal test is a category 1 test
with the factor reversal function as test function.

The factor reversal test demands that the product of price and quantity
indices must equal the ratio of the value aggregates. The demand that s be an
automorphism is equivalent to

xopy = s(s(x)ors(y)) (94)
— ( 92 ((azs (zow1) ™" ,xs,x2> ; (ys (yaw1) ™" 7y37y2))_ Frand %5)

T2 +Y2,T3 + Y3
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which is clearly the factor reversal test for two commodities. Again, it is an
obvious induction to see that if the above is true, then the equivalent will be
true to any number of commodities.

Thus we have established that the time and factor reversal tests have simple
algebraic interpretations. They are equivalent to the requirement that the time
reversal function and factor reversal function be automorphisms of the index
number semigroup.

The concept of category 1 tests can be extended to cover tests that demand
that instead of a solitary function a whole class of functions {t|k € K} where K
is some index set must be automorphisms. For example the linear homogeneity
test advocated among others by Eichhorn [25] falls into this category.

Definition 23 (Linear homogeneity test) The index number formula sat-
isfies the linear homogeneity test if the functions

myg ]Ri-‘r — Ri-ﬁ-’ my (x1,$2,$3) = (k$1,x2, k‘l‘j)
are automorphisms for all k > 0.

This is equivalent to the demand that a price index should be linear homo-
geneous in period 1 prices. To see this, note that if the test is satisfied then

(kz1, 22, kx3) o (ky1, Y2, kys) = (kg2 (X,y) , T2 + yo2, k (x5 + y3)) - (96)

This is a rather stringent requirement which will be examined below.
Some of the classical tests can be given an algebraic interpretation different
from that of the one of category 1 test.

Definition 24 (Category 2) The second category of tests that we define is as
follows. Let A C S be some subset of S . The commutative semigroup operation
opdefined in S satisfies the category 2 test with the test subset A if and only
if A is a subsemigroup of the index number semigroup. In other words, if A is
closed under the operation op.

We now give some examples of this type of test.

Definition 25 (The identity test) The test requires that if all the price rel-
atives are equal to one then the value of the index should be one. (See for
example Stuvel [57], Eichhorn [25]). For index numbers that are consistent in
aggregation this demand is equivalent to that the subset

A= {(1,3}2,1'3) | (iL‘Q,QL‘g) S Ri+|}

is closed under op.

It is often required that the value of a price index should fall between the
minimum and the maximum of the price relatives, or

gn ((71'1,1)?,’0%) 3y (Wn7v27vrlL)) € [mln {7717 77Tn} , max {7717 77rn}] .

For the type of index number formulas under discussion this can be expressed
as a category 2 test.
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Definition 26 (Minimum-Maximum test) The formula defined by op sat-
isfies the minimum-mazimum test if the subsets A,y defined by

Axy = [xvy] X Ri«k (97)
are closed under the operation op.

Fisher’s proportionality test [29, 420] test that states that if price relatives
agree with each other then the index should agree with the price relatives. In
other words, if all the prices have changed proportionally by the factor x, then
the value of the index be x. In our representation this can be stated as

(7,20, 3) o (2,Y2,¥y3) = (T, 72 + Y2, 23 + y3) - (98)

Again, it is an obvious induction that if this holds for two commodities
the equivalent will hold for any number of commodities. If we define the sets
A, = {(azl,azg,azg) € Ri+|x1 = x} then it may be seen that the test can be
formulated using the definition of category 2 tests.

Definition 27 (Fisher’s proportionality test) The index number formula
defined by the semigroup operation opsatisfies Fisher’s proportionality test if
for all x > 0 the subset A, = {(azl,azg,azg) € Ri+|x1 = x} 1s closed under op.
It is easy to see that as we have assumed that the indices are strictly increasing
in the price relative this is equivalent to the minimum-mazimum test.

For quasilinear index numbers the function B defines the formula completely.
Thus any property required by a test must be reducible to a property of this
function. The next two lemmas give the two categories of tests for quasilinear
index number formulas.

Lemma 17 (Category 1 tests for w.p. quasilinear indices) If a semigroup
operation opthat defines an index number formula is weakly proportional as well
as quasilinear, then the category 1 test with the continuous test function t is
equivalent to the requirement that the composite function B ot must be a linear
transformation of B so that for all x €R% |, (Bot) (x) = B (t(x)) = CB (x).

Proof. If conditions 1-4 are satisfied then for any x,y GRi - the semigroup
operation may be written as xorpy = B~ (B (x) +B (y)) . If the index number
satisfies test with the function t then

xopy =t~ (B™ (B(t(x)+B(t(y))) = (Bot) ' (Bot)(x)+(Bot)(y)).

It is obvious that (B ot) is continuous and it gives an alternative quasilinear
representation of the same formula. By Lemma 3 and Theorem 2 the any weakly
proportional quasilinear representation is unique up to a linear transformation
the claim must be true. m

Corollary 2 If the test is required to hold for some class of functions {ty|k € K}
where K is some index set then the requirement is

(Boty)(x) =B(ty (x)) = C (k) B(x). (100)
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Lemma 18 For the factor reversal test the matriz C is always of the form

-1 Co C3
c=|0 1 0|, (101)
0 0 1

Proof. Let the weakly proportional quasilinear index number that sat-
isfies factor reversal be defined by the function B (x) = (b(x),z2,23). We
may restrict attention to the first row of C because the two last equations in
B (s (x)) = CB (x) are

T2 = cnb(v1,22,73) + co2T2 + C2373 (102)
3 = c31b(v1,72,73) + c32w2 + 3373,
which obviously imply the result for the two other rows. The factor reversal
test implies that

b($1,l‘2,l‘3) = Clb( 3

1T
= ¢ (e1b (21, @2, x3) + caw2 + c323) + c2x2 + c373
b (xy, w0, 23) +ca (14 c1)xo +c3 (14 ¢1) 3.

, T2, $3) + Coxo + C3x3 (103)

Clearly, c? = 1 because otherwise b (w1, z2,23) would not depend on x;. Also,
c1 must be negative because b (Z—f;;, To, 3 ) is strictly monotone to the opposite

direction from b (a1, xo,x3) . Therefore ¢; = —1. ®
Lemma 19 For the time reversal test the matriz C is always of the form
-1
c=| o0 (104)
0

O = O
—= O 0

Proof. Let the weakly proportional quasilinear index number that sat-
isfies factor reversal be defined by the function B (x) = (b(x),x2,x3). We
may restrict attention to the first row of C because the two last equations in
B (t (x)) = CB (x) are

x2 = co1b(x1, T2, x3) + c2ox2 + Ca373 (105)
r3 = c31b(w1, 22, 73) + c3272 + 3373,
which obviously imply the result for the two other rows. The time reversal test
implies that
b(xl,l‘g,xg) = ¢1b (xl_l,xg,.fg) “+ Ccoxg + C3T3 (106)
= c1(e1b (w1, 2, 73) + co3 + c372) + C2T2 + C373
= cdb(xy, w0, 23) + (co 4+ c1c3) T2 + (c3 + c1c0) x3.
Clearly, c? = 1 because otherwise b (w1, z2,23) would not depend on x;. Also,

c1 must be negative because b (xl_l, To, J,'g) is strictly monotone to the opposite
direction from b (x1, zg,x3) . Therefore ¢; = —1. But this means that

(C2 — 03) To + (03 — Cg) x3 =0, (107)

orceo =c3.
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Lemma 20 (Category 2 tests for w.p. quasilinear indices) If a semigroup
operation op that defines an index number formula satisfies conditions 1—4 then
the category 2 test with the subset A is equivalent to the requirement that the
image of A under the mapping B, denoted here B (A) C T must be closed under
vector addition.

Proof. Let s,t € B(A) be arbitrary and let x =B~ (s),y=B~* (t). If
the test is satisfied xop y = B! (B(x)+B(y)) = B~ !(s+t) = a € A. But
this means that s +t = B (a).

Now, let x,y €A be arbitrary. There exist s,t such that x =B™!(s) and
y=B71(t). Assume now that B(A) is closed under addition. Then s +t €
B (A). But then xopy = B7! (s +t) € A. Therefore the two conditions are
equivalent. m

Lemma 21 (The Fisher proportionality test for w.p. quasilinear indices)
The condition that a quasilinear index number formula with a quasilinear repre-
sentation defined by some function B (x) = (b (x),x2,x3) satisfy Fisher’s pro-
portionality test is equivalent to the requirement that B is a linear transformation

of some B (x) = (b(x1,x2,23) = ¢1 (1) T2 + ¢ (x1) x3) . This is also proved by
Balk [6].

Proof. Let xopy = B7!(B(x)+B(y)) define an index number for-
mula. If the index number formula satisfies the proportionality test, by lemma
20 this means that any subset A, must be closed under addition so that if

x = (z,22,23),y = (2,y2,y3) €ER} |,
B (x)+B (y) = (b(z,z2,23) + b (2, y2,y3), T2 + Y2, 3 + y3) € B(As)
. But this obviously means that
b(x,z2,w3) +b(x,y2,y3) = b(x, 22 + Y2, T3 + ¥3) - (108)

For any fixed = € R this is the Cauchy equation in the last two arguments. The
only continuous solutions to this equation are (see for example [2]) of the form

b(z,z9,x3) = c1 (x) 2 + c2 () 3. (109)

This is because for any fixed x the solutions must be linear so the dependency
on x must be via the coefficients. Note that both ¢; and ¢y cannot be constant
because then B would not be a bijection. m

Lemma 22 (The identity test for w.p. quasilinear index numbers.) The
identity test for a weakly proportional quasilinear index number formula is equiv-
alent to the requirement that for all (z2,x3) € R3, b(1,22,23) = axs + cxs.

Proof. By Lemma 20 the identity test can be written as
b(1,22,23) +b(1,92,y3) = b(L, 22 + y2, 23 + y3) - (110)

But this is just a Cauchy equation for which the only continuous solutions are
of the form b (1, 22, x3) = axy + cx3. W
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Lemma 23 (The linear homogeneity test for w.p. quasilinear formulas)
The linear homogeneity test implies that the function B that defines it is a linear
transformation of a function (b(x),x2,x3) where b is of one of the forms

b(xl,l‘g,xg,) = $2f< 3 )+)\x210gx1, (111)
T1X2
b(x1,20,23) = ﬂf2$1f< L )+Oé$310g$1, (112)
T1T9
x(
b(xy,x9,x3) = xzoxif <$1;2)’ (113)

c # 0,c#1.

Proof. See Appendix A.12. m

Imposing the linear homogeneity requirement thus considerably restricts the
functional forms of the quasilinear indices. Proportionality questions are quite
interesting because they have been the focus of so much debate. In this section
and the sections below we will establish the effect of ”increasing” demands of
proportionality on quasilinear index numbers. It turns out that proportionality
requirements greatly affect the other properties that the index number formula
may have.

Lemma 24 The only w.p. quasilinear indices that satisfy both the linear homo-
geneity and factor reversal tests are given by the forms (linear transformations
of B are of course allowed)

b(r1,x2,23) = 2317210gacl—mQIOgﬁ and (114)

x2
b(ry,x9,23) = 2x3logm —$310g§, (115)

T2

or

b(x1,22,23) = wloga; —xalog and (116)

X1T9
b(x1,22,23) = wzzloga; —x3log , (117)

T1T2

These are "rectified” forms of the log-Laspeyres and log-Paasche indices respec-
tively. We will discuss these briefly below.

Proof. See Appendix A.13. m
The two indices satisfy neither time reversal nor the identity test. To see
this, note that for the first one

b(21", 23, 22) = —2a3logxy + 23log f:_: , (118)

so that the second one is its time antithesis. The reverse is also easily seen to
be true. For the identity test, note that

b(l,l‘g,l‘g) =3 IOgﬂ (119)
Z2

for the first function. This is clearly not linear in x5 and x3. It is obvious
that the second function does not satisfy the identity test either. Now, notice
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that because neither function satisfies the time reversal or identity tests we have
proved the following lemmas.

While probably not of practical value as index number formulas, the exis-
tence of these functions proves that it is possible to construct formulas other
than the Fisher and Sato—Vartia formulas that satisfy linear homogeneity and
factor reversal. These have been said to be the only "known” index numbers
with these properties (see e.g. Reinsdorf and Dorfman [47]).

Lemma 25 No w.p. quasilinear index number formula satisfies the linear ho-
mogeneity test, the factor reversal test and the time reversal test.

Lemma 26 No w.p. quasilinear index number formula satisfies the linear ho-
mogeneity test, the factor reversal test and the identity test.

Therefore the linear homogeneity test restricts the other properties of the
index number formula may have rather severely. Note also that the two indices
are curious because they satisfy the linear homogeneity test but do not satisfy
Fisher’s proportionality test because they obviously cannot be written in the
form given by Lemma 21. This obviously has to imply the second of the above
lemmas because the linear homogeneity test and the identity test together imply
Fisher’s proportionality test.

Eichhorn [25] includes both the linear homogeneity test and the identity test
in his axiomatic definition of index numbers. The previous lemma then shows
that there can be no quasilinear formula that satisfies those axioms as well as
factor reversal. Indeed, we can show the following result.

Theorem 4 (Eichhorn’s axioms for quasilinear indices) The only quasi-
linear index number formulas that satisfy both the identity test and the linear
homogeneity test are defined by either

b(zy1, T2, x3) = axga:fl + cxglog xq (120)

or
b(x1,x2,x3) = axsxy + crslog 1, (121)

or
b(x1, 2, x3) = arzr ' + bagaf, (122)

where the parametres a, b, c are such that the functions are strictly increasing in
1 for all x9 and x3.

Proof. If the index is to satisfy the linear homogeneity test b must be one
of the three forms given above. For the first one

b (1,372,1‘3) =xof (z—z) + Bxs. (123)

This must be linear in x5 and z3 if the index is to satisfy the identity test, so
that

Tof (%) + Bx3 = axq + cxs, (124)
2
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which means that

F(2)=at-m (125)
T2
and
b(x1,22,23) = x9 {a + (c—P) xfzg} + Bxs + Axs log xq (126)

= ars+ Cl'gl‘l_l + Azo log xy.

For the second functional form
x(
b(1,x9,23) = aof <x—d> + pxo = axg + cx3, (127)
2

which implies that

T3
b(wy,20,73) = T2y [G—KH'Cx ~ } + prox1 + arglog x4
2

= cx3+ axexy + axzlogx;.

And for the third the identity test requires that

b(1,z0,23) = 2o f (i—:) + pxo + Brs = axs + cxs, (128)
so that
b(z1,22,23) = moxf [a —p+(c—=P) %] + prox§ 4 Brzz (129)
= awer§ + crzxt
]

These are extremely restrictive functional forms, and it would therefore seem
that Eichhorn’s axioms and consistency in aggregation are not really compatible.

Before turning to examine the effect of Fisher’s proportionality and the factor
reversal test we prove a lemma that establishes a result that is related to the
identity test and which will be useful below.

Lemma 27 (Reverse identity test) For weakly proportional quasilinear in-
dex numbers the requirement that if only the factor under consideration has
changed, the value of the index should equal the ratio of the value aggregates,

in other words if x; = (%3,331'2,%1'3) for alli=1,...n, then g, (X1,...,X,) =

=L is equivalent to the demand that b (%,Jfg,l‘g) = dxo + ex3 for some
> xio
i=1

=
constant d, e.

Proof. Define P : RZ, — R%, as P(z,y) = (b(z,y,2y),y) so that
P (%,@) = (b (%,xg,x;;) ,Z2 ] . Now the demand is equivalent to requiring
that the Abelian semigroup operation

(z,y) oG (u,v) =P~ (P (2,y) + P (u,v)) (130)
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is the weighted arithmetic mean operation discussed above, because

n
inS n
=1

Ti2  Tq3

(131)

n n T
Mg =l Y wp
=1 =1

By similar argument as used in Lemma 3 this means that P must be a linear
transformation of P (x,y) = x221. Thus Py (;—g,xﬁ =b (i—g,ﬂfg,ﬂfg) = dxy +
er% =dry+ers. W

This test coupled with the identity test is equivalent to the requirement that
the index satisfy factor reversal when only one of the factors has changed, hence
we have called it the reverse identity test.

Corollary 3 If the formula satisfies the identity test so thatb (1, x2,x3) = axa+
cxs and the above test so that b (%,l’g,ﬂ?g) =dry +exg thena+c=d+e
because b(1,1,1) = a+ ¢ = d + e. This will prove useful below.

The next theorem continues the theme of this section.

9 Characterization of the Stuvel formula

As was seen the linear homogeneity test severely restricts the other properties
that a w.p. quasilinear formula may have. We turn now to Fisher’s proportion-
ality and ask the same question as above. What formulas satisfy both Fisher’s
proportionality and factor reversal. The answer turns out to be that Stuvel’s for-
mula is unique in this sense. Versions of this result are also derived by Gorman
[?] and Balk [7].

Theorem 5 Stuvel’s formula is the only quasilinear index number formula that
satisfies Fisher’s proportionality test and the factor reversal test.

Proof. Note that Fisher’s proportionality implies weak proportionality.
For the formula to satisfy the factor reversal test it was shown in lemmas 17
and 18 that it is necessary and sufficient that

x(
b ( 2 7$27$3> = —b (1,22, 23) + doxa + dxs.
1T

Substituting from lemma 21 it takes the form

X X:
Cc1 < 3 ) T2 + C2 ( 3 ) xr3 = —C1 (l‘l) XTo — C2 (.I) r3 + doxo + d3xs. (132)
T1X9 1T

Multiplying on both sides by ;—; we get

-1
cl(””‘”’ )(”“"3 ) +C2("”‘3 >x1 (133)
T1T2 X129 T1T2

. (x)( zs >_1—CQ (x)x1+d2( Zs )_1+d3x1, (134)

T1x2 L1122
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so that we see that both sides of the equation depend only on z; and J— which

are the price relative and the quantity relative. The expressions xl and —Li-
1L2

are independently determined and we may write 7 = x; and kK = 71;; The
equation is now

c1 (k) ea(k)m=—ci (m) k™t —co (m) 4 dor ™ + dam. (135)
The same equation must hold for any 7’ # 7 so that
ci (k) Hea(k)m = —cr (7)) k! —co (7)) 7'+ dor ™ + dan’. (136)
Now subtracting (136) from (135) we get

ca(R) (m—7') = =k ey (7) — ey (7)) — (e ()70 — o (7)) +d3 (m — 7).
(137)

Dividing this by 7 — 7’ # 0 it becomes

/{_161 (m) —c1 (') o (m)m —co (n') 7’

Co (K)) = — P P + ds. (138)
As the left-hand side depends only on k this has to mean that —%2 A

and —W#E +ds = B for all # > 0 where A and B are some constants.
Thus we have established that

co (k) = Ax~' + B. (139)
c1(m)— C( )

Multiplying — =A by (m — ') and rearranging it becomes ¢ (7) =

(') — A(r — 71'73 ﬂI,f we fix 7’ and denote ¢; (1) + An’ = D we have
c1(m) =D — Am. (140)
Substituting (139) and (140) into (135) we have
(D—Ar)k '+ (Ak™'+ B) 7 (141)
= —(D—-Am)r ' — (An7 ' + B) m+ dar™ " + dsm, (142)
or rearranging
(D+D—do)k '+ (B+B—ds)m=0. (143)

This equation must hold for all x,7 > 0. This implies that D = %2 and B = %’*.
Now we have the function

B (x) = (b (21,22, 73) , 22, 23) = ((D + Axy) xg — (Aafl + B) xg,azg,azg)

which is clearly a linear transformation of (??) for any values of A, B, D. This
completes the proof. m

As we have argued that weakly proportional quasilinearity is for practical
purposes equivalent to consistency in aggregation, this result implies in our
opinion that there is some justification for Stuvel’s assertion that his formula
is the solution to the index number problem, if proportionality and consistency
in aggregation are deemed to be necessary properties for a somehow optimal
index number formula. It is somewhat interesting to note that while it is well
known that Stuvel’s formula satisfies the time reversal test, it was not necessary
to include this in the characterization.
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10 Conclusions

Consistency in aggregation is an attractive property for an aggregation method
used in compiling economic aggregates. It is intuitively simple, but has to our
knowledge lacked a precise and general formulation until now. The semigroup
representation of consistency in aggregation in our opinion reflects very well
this intuitive simplicity and even beauty of the concept. As the semigroup
structure is very general, it makes possible to apply the definition of consistency
in aggregation to a very large class of aggregation methods, for example to
aggregating sets, real numbers, real vectors, functions or combinations of these.
Also, as the semigroup structure implies that all information needed to combine
sub-aggregates into a larger aggregate be carried in the sub-aggregates, it draws
attention to the fact that many aggregation problems that are usually regarded
as one-dimensional or involving aggregation of one variable interest, are in fact
better understood as many-dimensional and involving auxiliary or ”nuisance”
aggregation as well.

The algebraic interpretation also shows that consistency in aggregation is
a rather stringent condition, as it requires that the aggregation method be
reducible to a commutative and associative binary operation. This stringency
could be overcome by demanding that an aggregation method satisfy consistency
in aggregation only approximately.

In the second part of the paper the implications of consistency in aggrega-
tion for index numbers was discussed. Taking advantage of functional equations
methods, the algebraic structure was used to prove that under some general
conditions, consistency in aggregation imply what we have called a quasilinear
structure for the index numbers. In other words, the index number semigroups
are isomorphic to vector addition semigroups. This structure is simple enough
to make it possible to prove a number of results concerning what kind of prop-
erties the indices may have. We explore especially the relationship of different
proportionality requirements to other properties of the index number. Some of
the results are summarized in the next table.

10.1 Table 1. Summary of some results concerning quasi-
linear indices and proportionality

Degree of Linear
proportionality / Weak  Fisher . Eichhorn
homogeneity
Property
(114),
Factor reversal Many Stuvel (115) None
Factor + time reversal Many Stuvel  None None
Factor + time reversal Many Stuvel  None None

approximates true index
It is seen that among quasilinear index numbers Stuvel’s formula has some
claim to uniqueness. It is the only formula satisfying Fisher’s demand that if
all price relatives are equal then the index should equal their common value in
addition to the factor reversal and time reversal tests. If the proportionality
demand is relaxed to weak proportionality, there exist many index numbers,
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including what we have called the Montgomery—Vartia formula, but also many
others, that satisfy the factor and time reversal tests. On the other hand, if
linear homogeneity in period 1 prices is demanded, then there will be no indices
satisfying both of these tests. The degree of proportionality that an index
number formula should possess is a much-debated question, but our results
imply that very stringent demands of proportionality are not compatible with
consistency in aggregation.

The simplicity of the quasilinear structure makes all calculations readily
interpretable and transparent. In addition. the straightforward connections
between different subindices and the total index, as well as between additive
and multiplicative decompositions of value changes make quasilinear formu-
las eminently suited for production of official statistics. This simple structure
is, however, complex enough to give reasonable approximations to theoretical
price and quantity indices, as well as conditional indices which is shown in [45].
Therefore, in our opinion, the best quasilinear indices, such as the Stuvel and
Montgomery—Vartia formulas, should be considered as reasonable alternatives to
the Tornqvist and Fisher formulas in most theoretical and practical applications
of index numbers.
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A  Proofs of some results

A.1 Proof of Lemma 1

1. Let y € X™ be formed from x € X™ by replacing [ arbitrary components
of by Fy (z;). Then F,, (y) = F, (x) because

F, (y) Fy(x1), ..., F1 (1), 2141, -, Tn) (applying CAl, reindexing)
F (Fy(x1), ., 1 (z1)), Fret (T141, -y 20))  (CA2)
(Fy (21, ...2p) , Fog (141, -y xn))  (CA2)

(T1, .y xp). (CA2)

Il
EICECE

So any component z; of z can be replaced with F; (x;) without altering the
result. It is obvious that G,, satisfies CA1l. To see that it satisfies CA2 consider

an arbitrary partition of the statistical units into K > 1 subsets with [ of those
having only one element and a corresponding partition of the measurement
vector:

Gk (G’n1 (xl) sy Grge (xK))
= Gk (x1,..0,Gn,, (xl“) s ooy Gl (XK)) (reindexing, CA1)
Fg (xl,...xl,FnHl (x“‘l) g ooy g (xK)) (def. of G,)

= Fx (Fi(21),....Fi(21), Fo,, (le) ooy Fruge (XK)) (above res.)
= Fk(x1,...,2n) (CA2)
Gg (21, ...,xy). (def. of G,)
If K =1 then Gy (Fy, (21,...,2,)) = idx (Fp (X1, .0y 2p)) = Fy (21, .0y ) =

Gn (l‘l, ceey xn)
Thus, G,, is CA and obviously yields the same aggregation results as Fj,.
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A.2 Proof of Lemma 2

We present first the proof of the equation for continuous f : R — R. Because
fx)=f(x+0)=f(x)+ f(0), clearly f(0) = 0. Clearly, for all n € N

fnx)=f(z+..+2)=nf(z) . (144)

Because

f@)=f (m - %x) —mf (%w) , (145)

for any m € N we have m~'f (z) = f (mflx) . Taking = 1, we have for all
4= €Q.of

n

r@=1(2)=nf(5) = 2r W =as ). (146

m

By continuity of f,if z € R,qi. — x, & € @ for all k € N, we have
F@) =1 (Jim o) = Jim f (@) = Jimof () =2f (), (aD)

so that f () = xf (1). It is clear that any f () = cx is continuous and satisfies
the equation. This completes the proof.
The the n-dimensional Cauchy equation

F(x+y)=F(x)+F(y) forall x,y eR" (148)

reduces to the one-dimensional one, and the solutions are of the form F' (x) =
Cz. (See for example Aczél [2, 327-338]).

However, if we are looking for solutions F' : S — R™ where it is not necessary
that the vectors (0, ..,0,x,0,...,0) € S the above derivation cannot be used.
Intuition suggests, however, that an analogy of the result must hold. It is
relatively easy the to extend the definition of F' to the whole R™ and show that
the extension must be linear and the original F' must be a restriction of this
linear function.

Define

F(x—y)=F(x)—F(y) for all x,y €S. (149)

Note that if t—y = u—v then x4+v = y+u and F (x)+F (v) = F (y)+F (u).
This means that F (x) — F (y) = F (u) — F (v) so that there is no contradiction
and the function F is well-defined. Also, note that if z =z —y € S then

F(z)+F(y) = Fx) = - (150)
F(z) = F(x)-F(y)=F(z),

so that F is the restriction of F to S. Next we show that F is indeed defined in
the whole R".

Let now 2 € R C S, where R is open. Such a subset exists by assumption,
Define z (k,z) = x9 — k~1z, where k € N and z € R" are arbitrary. Because
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R is open there exists some k, € N such that x(k,,z) € R C S. As S is
a subsemigroup of (R",+) also k,x (k.,2z) = k,xo — 2z € S and k,zg € S.
However, z = k,xo — (k,xo — z) and thus F is defined for all z € R".

From the above it is then clear that for any z1, z2 € R" there are uy, uz,vy,v2 €
S such that z; = u; — v;. We may now show that the function F is a solution

to the Cauchy equation in R™ :

F (z1+z2) = f‘( u; —vy) + (uz — va)) (151)
(w1 +uz) — (v1 +v2))

(u; +uz) — F(vy + va)

(u1) + F (uz) = F(v1) = F (v2)

= (F(u)-F (V1)) + (F(uz) - F(v2))

= F(21)+F (22).

F
= F
F

— =~

To see that F is continuous, let (Zn)neN be an arbitrary sequence with
lim 2z, = z. Then for large enough n z(k.,z,) € R C S and thus also

n—oo

k.o — 2z, € S. But then, because F' was assumed continuous
lim F(z,) = lim (F (k.xo) =F (koxo — 20)) (152)
= F(k,xo)— nlLII;OF (k.xo — 2n)
= F(k.xo) —F(k.xo—2)=F (2).

But this means that F(x) = Cz for some C and as by (150) F is the
restriction of F into S this means that F (x) = Cz for all z € S.

A.3 Proof of lemma 3

Define M : S — S as M = Bo B~L so that M o B = B. Obviously, M is a
continuous bijection.

Let s,t € S be arbitrary and let z = B™!(s),y = B~ (t). Then s+t =
B (xopy) € S so that (S,+) is a semigroup. Also,

zopy=B""(B(x)+B(y) = (MoB)™ (MoB)(x)+ (MoB)(y)).
Taking M o B from both sides gives

MB((x)+B(y)) = M(@B((x))+M(B(y)) or equivalently
M(s+t) = M(s)+Mf(t).

According to the previous lemma the above implies that M (x) = Cz. Also,
because M is a bijection, C' must be non-singular.
If B (x) = CB(x) for all z. Then B! (z) = B~! (C~'z) and

B! (ﬁ (x) + B (y)) — B! (C!(CB(x)+CB(y)))
— B (B +B(y) =xory.

Thus, any B (x) = CB(x) may also be used to define a quasilinear repre-
sentation.
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A.4 Proof of Lemma 5

First, the condition that Hy be a bijection is equivalent to demanding that the
equations

hy (x1, 2, x3) = Y1
3

Zumxi =1Y2 (153)

i=1

Zuw% =Y3

i=1
have at only one solution = = x (y1,¥y2,y3) € R, for each (y1,y2,y3) € Su.
We have denoted the first component of Hy as hy. Note that if the vec-
tors (u12, u22,uz2) and (u13, us3, ugz) are linearly dependent then the two latter
equations define a segment of a plane for each (y2, y3) for which a solution exists
and clearly then as hy is continuous there will exist many solutions for some
(y1,¥2,y3). Bijectivity thus requires that (ui2,uo2,us2) and (u1s, us3, uss) are
linearly independent, in other words, that the expenditures of different periods
implied by U are not proportional for each good. In that case the two equations
define a segment of a line, restricted by the fact that all components of x must
be strictly positive. Thus finding a solution to the equations can be thought of
as first finding the line on which the two sums equal to yo and ys, respectively,
denoted by

1(21;92,93, U) = (21, 22 (15 92,43, U) , 23 (21592, 93, U)) ,

where admissible values of z; are those for which I (z1;y2,ys3,U) € Ri 4 and
then finding a solution on this line to the first equation. Also, if there are
multiple solutions to the equation, all of them must be on this line.

Consider now an index number formula that would not satisfy Condition
2. Because all the candidates for U must have independent (w12, ug2,us2) and
(u13,u93, u33) we restrict attention to these cases. For any U there would exist
z,y € R% |,z # y such that Hy (x) = Hy (y) . But then for any ¢ € (0,1),

Hy (tx+ (1~ t)y) = Hu (x)' orHu (y)' ' = Hy (%),

so that Hy (x) would be constant on the line segment between x and y.
Now let z € Ri 4 be arbitrary. We may choose & € R small enough so that
z—k (%X—l—%y) € R?H and then define

f(t) = z— k:( x—i—;y)—kk(tx—i-(l—t)y)

_ z+k{<t—%>x+ (1—t—%)y]

1
= z+k<t—§> [x—y] forallt e (0,1).

Note that f(t) € Ri—s— for all ¢, and f(0) = z — k (%X—l—%y) f (%) = 2z, and
= (et dy)
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For all ¢t € (0,1)

Hy (f(t) = Hy (z—k (%x%y)) op (HU (x)f opHy (Y)Hy
~ Hy (z—k <%x+%y)> or Hy (x)"
o)) )
= Hu (z—k (%x%y)) or Hy (x)** op Hu (x)**
- Hy (z—k (%x—k%y)) or Hy (x)2* op Hy (y) 2"

There is thus a line segment of length k ||x 4 y|| that goes through the point z
and on which the function Hy is constant. If Hy is constant, its second and
third components are obviously constant, so that this means that f (¢) must

3 3
be on the line on which the sums V§ (z) = Y w2z and V§; (z) = D uisz; are
i=1 i=1
constant, that is on I (21;V§ (2), Vg (2), U) . Repeating the procedure for all
points [ (z1; VJ (), Vi (z) , U) we see that for each point there is some segment
of the line on which Hy is constant. That is, the function

m(z1) = hy (1(z1; V4§ (2), Vi (2),U)) (154)

is constant in some neighbourhood of each admissible x1, which means that
by continuity it is constant for all admissible z;. As z was arbitrary we may
conclude that for all z € R%  :

Hy (z') =Huy (2), for all 2 € R} | : V{ (2) =V (2) , V& (2) = V4 (z() ) |
155

In other words Hy (x) = G (u11, u21, us1, Vi (x), Vg5 (x)). This means that
the index number formula for three commodities depends only on the price
relatives (w11, u21,u31) and the value aggregates (V[(}, VllJ) and not at all on how
the values are distributed between commodities. As there is no U for which
Hy is a bijection, we conclude that this is true for all U that satisfy the linear
independence condition.

The proof for more than three commodities follows easily from the semi-
group structure. For example, if we have two sets of observations z1, ..., x, and
xy,xh, T3, ..., Ty, where &) = (211,12 + k, T13) , 25 = (T21, T22 — k, x23), and the
above holds, then

! A A !
X] OF X5 0F X30p ... 0Op X, = (X]OpF X50F X3)OF ... 0Op Xp,
= (Xl or X9 OFX3)0F~~-OFX7L

= Xll OFXI20FX30F~'~OFX7L'

All redistributions of expenditure may be expressed as a finite series of pairwise
redistributions, and therefore the result is true for any number of commodities.
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A.5 Proof of Lemma 6
Any element y € Sy is defined by the equation
Hy (x) =y (156)
or

hy (z1,22,23) = Y1

3
Ui2T; = Y2
i=1

3
D UiBT; = Y3
i=1
The two latter equations define a segment of a line as seen in the proof of the
previous lemma. The equation for the line is

e (] ]e). 157

where Uz = Y22 Us2 g Uss is singular we just reindex the vec-
U23  U33

tors w;. All of the submatrices cannot be singular because (u12,ug2, us2) and

(u13,u23, u33) are linearly independent as was argued in the preceding proof.

We denote the line as

X (21,92,93) = (x1, 22 (¥1,92,93) , ¥3 (21, Y2, Y3)) - (158)

The admissible values for 7 are determined by the restriction that all com-
ponents of the # vector must remain strictly positive. Let now y° = Hy (x%).
It is clear by linearity of = (x1,y2,ys) that we can choose some § > 0,e > 0
small enough so that for all d < ¢ and e < ¢,

(x17y27y3) € Ie7d (‘rgvygvyg)
= [2f—eaY+e] x 18 —d,y3 +d] x [y3 —d,y8 +d],

we have z (z1,y2,y3) € R%,, so that the function

[ (@1,y2,y3) = hy (x (21, y2,93)) (159)

is defined in such Ioq (29,3,3) -

The function must be strictly monotone in z; for fixed y,, y3 because it
is one-to-one and continuous in x1, as Hy is one-to-one and continuous. We
assume that it is strictly increasing in z7 for (y2,y3) = (yg,yg) The case
for a strictly decreasing function can be proved similarly. First, note that
for small enough d the monotonicity must be of the same ”direction” for all
(y2,y3) € Ig (yg,yg) because otherwise we could pick sequences (y}LQ,y}w)
and (Y2 5,92 3), (Uh 2,9k 3) € I,—1 (¥9,99) for all n > d~*, so that for each
(y}ﬂ, y}13) f would be strictly increasing in x; and strictly decreasing for each
(Y7 2-ym,3)- But then lim f(af + e, 0.9 5) = f (28 +e,98,28) = f (29,28, 45)
and lim f (29 +e,45 5,95 3) = f (29 +e,99,93) < f (29,99, 43) which is im-

n—oo ’
possible. Thus we can assume that f is strictly increasing in 2 for all (yo,y3) €
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We define the functions

fold,e) = - ;2?@0 yo)f (29 — e, 92, 3) (160)
fi(d,e) = min f(x?—i—e,yz,yg)

(y2.y3)ELa(y3.43)

These exist because Iy (yg,yg) is closed and bounded. Note that because of
continuity

Cllli%fo (dv 6) = f(w(l) _e7y(2)7yg) < f(x(l)vygvyg) (161)
= ¥y <f(2+e19,98) = (%ig(l)fl (d,e). (162)
For some dy small enough, then, it must be that for all (y2,y3) € Ia, (¥3,93),

f (2} —e,ya,y3) < foldo,e) <y < fi(do,e) < f (2 +e€,y2,y3).  (163)

But this means that for all (y1,y2,y3) € I = [fo (do, €), f1 (do, €)]x1a, (¥3,93)
there is some x = (21, 72, 73) € Ri+a with zy € [wﬁ) —e,2) + e] o= (x1, 72 (21,Y2,¥3) , T3 (71, Y2,Y3))
such that y = Hy (x). But (y?, S, yg) is an interior point of I and thus there
exists an open neighbourhood A of (y?,yg,yg), A C I . Thus, the set Sy is
open.

A.6 Proof of Lemma 7

Let x op s = t. This is equivalent to

hg (X, S) =1
To + 89 = tQ . (164)
xr3 + s3 = t3

In other words xo =ty — so, x3 = t3 — s3 and
h2 (l‘l,tg—82,t3—83,81,82,83):t1. (165)

But if ho is strictly increasing, then there is just one z; for which this
equation is true, and we conclude that z is the unique solution to equation
rops=t.

A.7 Proof of Lemmas 8 and 9

By Lemma 7 and bijectivity of Hy the function x is well-defined. By the
previous previous two lemmas there exist for all ¢ € R | some z,y € R} | such
that c¢(x,y) = ¢. Also, Let z,y,u,v € R?’H and x —y = u — v. Rearranging
gives  + v = y + u. Then we have

[Hy (v) or ¢(x,y)] or Hu (y) (166)
= Hy(v)or [c(x,y) or Hu (¥)] (167)
= HU (V) op HU (X) (168)

Hy (v+x)=Hy (y +u)
[Hy (u)]orHuy (y) .
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Therefore, by applying the uniqueness result, Lemma 7, we see that Hy (v) op
¢(x,y) = Hy (u). As we have also Hy (v) op ¢(u,v) = Hy (u), applying the
lemma again, it must be that ¢(x,y) = ¢(u,v). Thus the notation ¢ (x,y) =
H (x —y) is warranted. Now, if z € R}, then there are clearly u,v € R%
such that x = u — v which implies that Hy (u — v) op Hy (v) = Hy (u) which
in turn means that H (u—v) = Hy (u—v). Hy is thus the restriction of H
into Ri+'

A.8 Proof of Lemma 10

Let 2,y € S be arbitrary. By definition there exist w1, ue, v1,v9 € R?’H such that
T =u—v1, y=uz—vz and H (x) op Hy (v1) = Hy (w1), H (y) or Hy (v2) =
Huy (u2). Using the definitions we have

(H(x) op H(y)) or Hu (v1 + v2) (169)
= (H(x)or H(y)) or Hy (v1) o Hy (v2) (170)
H (x) op Hy (v1) o H(y) op Hy (v2)
= Hy (u;) or Hy (u2)
U (u + ug). (171)

By the uniqueness of solutions this implies that

H (x) or H(y) H(u +uz — (v, +v2))
= H((u; —v1) + (uz — v2))
H ((u1 —v1) + (a2 — v2))
(x+

y)-

Also, if H (x) = H (y) then H (x)opHy (v1) = Hy (u1) and H (y)orpHy (v1) =
Hy (uy). But this means that y = u; —v; = x. Thus H is a bijection.

= H

A.9 Proof of Lemma 11

It is obvious that G is a bijection. Note that H is of the form H (x) =
3 3

<h (x), > upx;, Zuwaz) . As G(t) = H(V~'t) then G (x) = VA ! (x)
i=1 i=1

for all z € RBJr +.l From the proof of Lemma 3 it then follows that x op y =
G (G (x)+G ™' (y)). Take now any ¢ = V. It must be that

gn(t) = hx)=h(V't)

3

g2 (t) = 2%2561 =1
i=1
3

g3 (t) = ZUiB-Ti =t3.
i—1

A.10 Proof of Lemma 12

First we prove that for any s € S there is some xg € Ri . such that s —x¢ € S.
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If s € S then there are z,y € R3, such that cop Hy (y) = Hy (x) and
¢ = (c1,¢2,¢3) = H (s). This is equivalent to

<C1,ZU12 — i) Zum ), Hu (y )> — hy (21,22, 23) = 0.
(172)

It is clear that the function

—92< Zuﬂ 1_t yz Zqu 1_t )HU(Y)>
—hu (1 -1)x)

is defined for all ¢ € R4 and some ¢ € [0,t9). The function m is continuous and
strictly increasing in c for a fixed ¢. Because tlir(r)ler (c1 —e,t)=m(c; —e,0) <
0 and flin01+m (c1 +e,t) =m(c1 +¢,0) > 0, there must be some ¢; > 0 such that

m(c; —e,t1) <0< m(cy +e,ty). Therefore there is some ¢y € (¢; —e,¢1 +¢€)
such that m (cq,t;) = 0. This implies that for

= (CZ’Zuﬂ (1 —t1)m; —ys) Zuzd (1=t )>

we have
¢z or Hu (y) = Hu (1 - t1) %),
or
¢ = H(1L-t)x—y)=H(x—ytx)
— H(s—xo),

so that s —xg € S.
If (Sn)nEN’S" € S is a sequence that has s, — s = ¢ — y,with z,y € R++,
then for large enough n, s, — (s —xo) = (s, —s) + o € R, therefore

lim H(s,) = lim Hy(s, —s+x0)or H(s—xq) (173)
= Hy (x0)orH(s —x0) =H(s), (174)

because of continuity of Hy. As H is continuous, so is G.

Also, as for each s € S there is some xg € Ri . for which s — 9 € S and
because R% | C S,and S is a subsemigroup of (R?,+) also Jq = (zo1,zo1 + d) X
(xo2, o2 + d) X (x03, 203 +d) C S for any d > 0 and it is clear that for large
enough d s is an interior point of J;. Thus S is open, and so is T because it is
a linear transformation of S.

Assume now that G~lis not contlnuous at sorne 0 € R3 74, so that there is
a sequence x,, — zg with t, = G71(x,) » G~ (x¢) = t. But we know that
the index number formula is continuous so that for any fixed y = G (r) € R3 |,
refl,

znzxnoFy:G(tn—l—Gfl(y))—>G(t+r)=z:xooFy.
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As

g(t, +s)
Zp = tn,2 + 7o 5 (175)
tn3+73

the two last components of t,, clearly must converge to (¢, t3) for z, to converge
to z. Write the first equation as

21 = My (tn,h tn,27 tn,S) =g (tn + I‘) . (176)

Because g is continuous in t and G is a bijection, m,. must be strictly monotonous
in t,1 for a fixed (¢5,2,%n,3). Assume that it is strictly increasing. The case
for a strictly decreasing can be proven similarly. Note that as in the proof
of Lemma 6 the direction of the monotonicity must be the same for all the
points in some neighbourhood of (t2,t3). As t, - t there exists some ¢ >
0 such that |[t, —t|| > ¢ for all n. But as (t,2,tn3) — (f2,t3) this im-
plies that [t, 1 —t1]| > %5 for all n large enough. Therefore f (tn.1,tn2,tn,3) >
f (t1 + 38, tn.2,tn 3) which implies that lm f (tn1,tn2,tn3) = f (t1,t2,t3) =

lim f (t1 + 3&,tn,2,tn3) = f (t1 +€,t2,t3). This is a contradiction. Therefore
n—oo

it must be that G~ 'is continuous in z¢ and, in fact, continuous in all of R3 .

A.11 Proof of Theorem 3

Let zopy = B~ (B (x) +B(y)) , and let B : R3 _ — S be a continuous bijection
and linear homogeneous in (z2,x3) . Also assume that B (x) = (b (x) , 2, z3)for
all z. It is clear that there must exist U = [ u; us us ] , U € Ri+ such that
By =[ B(u;) B(uz) B(us) | is non-singular, because otherwise S would
be two-dimensional. Define

3
Hy (x) =B™! (inB (ui)> x €RY . (177)

This is clearly a continuous bijection so that condition 2 is satisfied. Condi-
tion 3 is satisfied because Ilir%B_l (kB (x)+B(y)) = y. It is clear that the

3
function can be extended to H (x) = B~} (leB (u1)> Jfor all x such that
i=1

3

S a;B(u;) € S, or, put otherwise for all z € Bg'S. As B is a continuous
i=1

bijection b (z1,x2, x3) is strictly monotonous in x; for fixed zo, x3. Taking

(Bil)1 (b (1‘1 +€,$2,x3),x2,$3) = x1+e>x (178)

= (Bil)l(b($17x27$3)7x27x3)7
we see that (B™'), or the first component of the inverse of B~ must also be
strictly monotone in the same direction as b in x; if o and x5 are kept fixed.

Thus (Bfl)l (b(z1 + e, @, 23) +b (Y1, y2,Y3) ; T2 + Y2, 03 + y3) > (Bfl)l (b (21, 22,23) +b (Y1, Y2, Y3) , ¥2 +2
and condition 4 holds as well.
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A.12 Proof of Lemma 23
The linear homogeneity test is equivalent to the demand that
b (k‘l‘l, X9, k$3) =d; (k) b ($1, Ta, l‘g) +do (k) To + d3 (k‘) xs3. (179)

Note that because the left-hand side is continuous in k the functions d; must be
continuous. Because b is linear homogeneous, if we define r (z,y) = b(x,1,y)
then the above equation is equivalent to

r(kz, ky) = di (k)7 (z,y) + da (k) + d3 (k) y. (180)
Let for any z # = we have
r(kx, ky) —r (kz, ky) = di (k) [r (z,y) — r (2,9)], (181)
or defining m (x,y,2) = r (z,y) — r (2,9)
Now
_ Nz Ly 2= ¥z
m(m,y,z)—m(x 1,z ek a:) dl(az)m<1,x,x), (183)
and
- ky kz
m(kx,ky,kz) = dy(kx)m (1, T E) (184)

On the other hand,
m(kkayJCz) = d (k)m(m,y,z) (185)
= di(k)d (x)m(l Y f)
1 1 ) SL', T .

L)

So, either m (1,4, 2) is identically zero so that

r(12)=r(3.2), (186)

x z T
which is clearly impossible because 7 (£, £) has to be strictly monotone in z, or
dy (k) dy () = dy (k). (187)

This is a version of the Cauchy equation and the continuous solutions to this
are of the form (see e.g. Aczél [2])

dy (x) = z°. (188)
The equation r (kx, ky) = dy (k) r (z,y) + d2 (k) + d3 (k) y implies that

r(z,y) = (1, (189)

SHES

) +de (@) +ds (@)
+ %



If (180) holds then

r(kz ky) = kz°f (% + dy (k) + ds (kz) % (190)
= k% (2,y) +da (k) +d3 (k)y
_— [xc]v (%) +d () + ds () %} +d (k) +ds (k) y,

N———

which means that
dz (k) + d (ko) & = k¢ [da () + d () 2] + do (B) + s (B)y. - (191)
Rearranging this becomes
dy (kz) — k°dy (x) — da (k) = [k°d3 (z) 2! —ds (ka)z~" +d3 (k)] y.  (192)
As the left-hand side depends only on k and = this means that
kedz (x)x~! — d3 (kx)x~' +d3 (k) =0, (193)
which in turn implies that
dy (kz) — k°dy () — da (k) = 0. (194)

Taking the former of these into consideration first we divide it on the both sides
with k£ and rearrange, to get

ds (kx) k'™ = k* Vg (x) 2™t 4 ds (k) k. (195)
Denoting
g(x) =ds (x) ™ (196)
this becomes
g(ka) = kg (z) +g(k), (197)

which is a variation of an equation solved for example in Aczél [2, 148-159]. It
is relatively easy to find all continuous solutions to this. First, note that setting
k=1
9(@)=g@)+g(1), (198)
so that g (1) = 0. Interchanging the variables gives
g(ke) =229 (k) + 9 (x). (199)
Together with (197) this implies that
vy (k) +g(x) =k g(x) +g(k), (200)

or

gx) (k' =1) =g (k) (" =1). (201)

20



If c =1 so that k¢~ =1 for all £ > 0 then (197) becomes just

g(kr) =g () +g(k), (202)

which is a variation on the Cauchy equation with the only continuous solutions
being either the zero function or

g (z) = alogz. (203)

If ¢ # 1 then we may choose some fixed kg # 1 and get

g (k‘o) 261 _ 21
g(z) = P - ( 1) =3( 1). (204)

Together these results imply that either
ds () = azxlogz, c=1 (205)
or
ds(x) =0z —x),c# 1 (206)
Turning now to the functional equation (194), rearranging gives
dy (kx) = kda (x) + da (k) (207)
which is clearly identical to (199) so that the solutions are either
da () = Alogz, ¢=0 (208)
or
dy(x)=p(z¢—1),c#0. (209)

Combining these we get the solutions

ray) = f(%)+Aogz—p@-1)L, (210)
rzy) = of (£)+p@—1)+aylogz, (211)
C y C C T

rlwy) = of (5)FpE D HBE D) e A0 eEL (212)
or
b(xy,22,23) = w2f (;ZZ>+>\$210g$1—5($1—1)z—ja (213)
b(x1,29,23) = xoxyf (%) + pxo (1 — 1) + axzlog zy, (214)
b(x1,x2,23) = xoxf (aj;)—|—px2(x§—1)+[3z—j(x‘i—xl),c#(),c(%l&i)
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simplifying these with linear transformations gives the functions

T T
b(xy,w2,23) = x2f( > >+)\x210gx1+[3—3, (216)
T1T2 Al
T
b(z1,72,23) = xow1f < 3 ) + proxy + axslogxy, (217)
12
T _
b(z1,T2,23) = x2x§f (—3) + pxox| + frax t (218)
T1X9
¢ # 0,c#1,

which can be further simplified to those given in the lemma. Note that for any
solution to define an index number formula the parameters must be such that
the function b is strictly monotone in z;. Note also that all of these forms are
linear homogeneous in 2 and x3.

A.13 Proof of Lemma 24

It is simple to verify that both functions are strictly increasing in x; and satisfy
the factor reversal test. To prove that they are the only one satisfying the
requirements we have to tackle the three functional forms given in the above
lemma one by one. Remembering that for the factor reversal test to hold it is
necessary and sufficient that

X
b <—3 7562,%3) = —b(z1, 22, 23) + doxs + dzx3,
12

we get for the first functional form

$2f (xl) + Axo log 3 (219)
T1X2
= —QL‘Qf ( 3 ) — )\372 IOgﬂfl + dgﬂ?g + d3$3
1T
Dividing this by z9 it becomes
x3
Al 220
F (1) + Mog - (220)
= —f ( et ) —Alogzy +da + dgxglxg.
1T

so that we see that both sides of the equation depend only on z; and ﬁ; which

are the price relative and the quantity relative. The expressions z; and I—”f;—z

are independently determined and we may write 7 = x; and kK = ﬁ—z The
equation is now:

f(m)+Alogr =—f (k) — Aogm + do + d37k.
Setting k = 1 gives
f(m)=—f(1) = Alogm + dz + ds, (221)

or
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f(m)=[do— f(1)] + dsm — Alogm. (222)
Substituting the expression for f (7) into the original equation gives

[da — f ()] 4+ dsm — Aogm + Alog (223)
= —[[d2 = f(D)] +dsk — Alog k] — Alogm + da + d37k. (224)

Rearranging and canceling out gives
[d> = f ()] + dsm = f (1) + d3r + d3mr,

which is true only if d3 = 0. Therefore

f(m) = [d2—f(1)]—Alogm (225)
= ~v—Alogm, (226)
which gives
b (xl, To, $3) = x9y — Axzlog 3 + Azo log xq (227)
21

= o9y + 2A\z2logx — Axglog E,
)

and this defines same formula as the first function given at the presentation of
the lemma. For the second functional form given by the previous lemma we use
a similar technique to arrive at the equation

kf(m) +arkrlogk = —7f (k) — akmlogm + dgy + d3k. (228)
Again setting kK = 1 gives
f(m)=da+(ds— f(1))m — arlogn. (229)
Substituting this into the original equation and rearranging gives
dok+ (ds — f (1)) km = —dom + f (1) 7k + da,

which is true only if do = 0. Substituting this into the expression for f (7) gives

f(m = +(ds—f(Q)7m—arlogn (230)
= ym—arlogm, (231)
so that
b(x1,x2,3) = YT2x1 s _ aToT1 T3 g 23 (232)
122 T1T2 T1T2

+axs log xq

= ~x3+ 2ax3logxr; — axslog ﬂ,
€2

which clearly defines the same formula as the second function given at the
presentation of the lemma. It remains to show that the third type of quasilinear
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index satisfying the linear homogeneity test cannot satisfy factor reversal. Using
a similar technique as above we arrive at the equation

Kef(m) = —mf (k) + d2 + dgkm. (233)
Setting k = 1 gives
f(m)=do+dsm— f(1)7°. (234)
Substituting this in the previous equation we get

K da + dym — £ (1) 7] (235)
= —w[da+dsk— f (1) K]+ da + d3k,

and rearranging gives

dak® + dgkm — f (1) K¢ (236)
= —dom® — dskm® + f (1) K" + da + d3kT,

which is true only if dy =0, d3 =0 and f (1) = 0, which would imply that
fm) =—f(1)r=0. (237)

Thus we have established the claim.
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