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Mick Silver: 

THE DIFFERENCE BETWEEN HEDONIC IMPUTATION INDEXES AND TIME DUMMY HEDONIC 

INDEXES FOR DESKTOP PCs 

 

ABSTRACT  

This paper shows why the two main approaches to estimating hedonic indexes can produce quite different 
results. The proper measurement of inflation requires the use of hedonic indexes, rather than matched 
models, for product areas which have a high turnover of differentiated models. The two main approaches to 
hedonic indexes are hedonic imputation (HI) indexes and dummy time hedonic (DTH) indexes. HI indexes 
value a fixed period�s basket of characteristics using both base period and current period hedonic 
coefficients and take the ratio of the latter to the former. HI index number formulas differ in their use of 
which period�s characteristics are held constant for the valuation. DTH indexes estimate price change using 
the coefficient on a dummy variable for time in a hedonic regression which uses both base and current 
period�s data. For DTH indexes the slope parameters are constrained to be the same for both periods to 
allow the intercept shift to measure quality-adjusted price change. For HI indexes the change in the 
parameters over time are, paradoxically, the essence of the measure. 

The study provides a formal analysis of the difference between the two approaches. It shows the conditions 
under which the approaches will provide similar results which, surprisingly, may even be when parameters 
are unstable, and the factors governing differences between the results. It shows that differences between the 
methods can be substantial and discusses why this is the case and the issue of choice between these 
measures.  An illustrative study for desktop PCs is provided. It demonstrates the importance of using 
hedonic indexes for product areas which have a high turnover of differentiated models, that the two 
approaches can differ and the factors underlying the difference. 
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The purpose of this paper is to outline and compare the two1 main and quite distinct approaches to the 

measurement of hedonic price indexes: hedonic dummy time variable indexes and hedonic imputation 

indexes. Both approaches not only correct price changes for changes in the quality of items purchased, but 

also allow the indexes to incorporate matched and unmatched models. However, they can yield quite 

different results and it is not immediately apparent which approach is preferable. The standard way price 

changes are measured by most national governments is through the use of the matched models method.  In 

this method the details and prices of a representative selection of items are collected in a base reference 

period and their matched prices collected in successive periods so that the prices of �like� are compared with 

�like�.  However, if there is a rapid turnover in available models, then the sample of product prices used to 

measure price changes becomes unrepresentative of the category as a whole as a result of both new 

unmatched models being introduced (but not included in the sample), and older unmatched models being 

retired (and thus dropping out of the sample). Hedonic indexes use matched and unmatched models and in 

doing so put an end to the matched models sample selection bias (Cole, et al. (1986), Silver and Heravi 

(2002) and Pakes (2003)).  

Our interest in hedonic indexes arose from the need to reduce bias in the measurement of the U.S. consumer 

price index (CPI), which has been the subject of three major reports, the Stigler Committee (1961), Boskin 

Commission (1996) and the report by the Committee on National Statistics (2002): the Schultze panel. Each 

found the inability to properly remove the effect on price changes of changes in quality to be a major source 

of bias. Hedonic regressions were considered to be the most promising approach to control for such quality 

changes, though the Schultze panel cautioned for the need for further research on methodology.2  

At first sight the two approaches to hedonic indexes appear quite similar and there is little to choose between 

them. Both rely on hedonic regression equations to remove the effects on price of quality changes. They can 

also incorporate a range of weighting systems, take specific functional forms for the aggregation (e.g. 

geometric and arithmetic) and can be formulated as chained or direct, fixed base comparisons. Yet they can 

give quite different results, even when using comparable weights, functional forms and the same periodic 

comparison. This is because they work on different principles. The dummy variable method constrains 

hedonic regression parameters to be the same over time while a hedonic imputation index paradoxically 
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relies on parameter change as the essence of the measure. There has been some valuable research on the two 

approaches (see Berndt and Rappaport (2001), Diewert (2002b), Silver and Heravi (2003) and Pakes 

(2003)), though no formal analysis, to the author�s knowledge, of the factors governing the differences 

between the approaches.  Berndt and Rappaport (2001) and Pakes (2003) have highlighted the fact that the 

two approaches can give different results and both advise the use of HI indexes when parameters are 

unstable, though our analysis casts more light on this proposal.  

This paper first, in section I, examines the alternative formulations of the two methods and then, in section II 

develops an expression for their differences. Section III provides an empirical study for desktop PCs and 

section IV discusses the issue of choice between the approaches in light of the findings in sections II and II; 

section V concludes. 

I. HEDONIC INDEXES 

A hedonic regression equation of the prices of i=1,...,N models of a product, pi, on their quality 

characteristics zki , where zk =1,�.,K price-determining characteristics, is given in a linear form by:   

i

K

k
kiki zp εβγ ++= �

=1
0                                                                                                  (1) 

The βk are estimates of the marginal valuations the data ascribes to each characteristic (Rosen (1974), 

Griliches (1988) and Triplett (1988), see also Diewert (2003) and Pakes (2003)). Statistical offices use 

hedonic regressions for CPI measurement when a model is no longer sold and a price adjustment for quality 

differences is needed in order that the price of the original model can be compared with that of a non-

comparable replacement model. Silver and Heravi (2001) refer to this as �patching�. However, patching can 

only make use of data outside of the matched sample when a model is missing. It may be that several new 

models are introduced in a month when there are few, if any, models needing replacements. The likely 

atypical price changes of the new models will be ignored with patching, but not with hedonic indexes. The 

needs of quality adjustment, in dynamic markets, such as PCs, is to resample each month to cover a 

representative sample of what is purchased and hedonic indexes provide the required measures. 

A. Hedonic imputation (HI) indexes  
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Hedonic imputation (hereafter�HI) indexes take a number of forms: first, as either equally-weighted or 

weighted indexes; second, depending on the functional form of the aggregator, say a geometric aggregator 

as against an arithmetic one; third, with regard to which period�s characteristic set is held constant and 

finally, as direct comparisons between periods 0 and t, or as chained indexes, with individual links being 

calculated between periods 0 and 1, 1 and 2,�.,t-1 and t, the results being combined by successive 

multiplication.  

Consider the linear hedonic function ( )000
ii zgp� =  of (1) and a semi-logarithmic form of (1) ( )000� ii zhp =  

both estimated in period 0 with a vector of K quality characteristics 00
1

0
iKii z,......,zz =  and 0N  observations 

and similarly for period t. Let quantities sold in period 0 be 0
iq and relative sales value shares, 

�=
i iiiii qpqps 00000 /  and again similarly for period t.  

A hedonic Laspeyres index for matched and unmatched period 0 models is given by: 

( )
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and a hedonic Paasche index for matched and unmatched period t models by: 
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It is apparent from equations (2) and the first expression in (3) that a hedonic Laspeyres index holds 

characteristics constant in the base period and while a hedonic Paasche index holds the characteristics 

constant in the current period. Thus the differences between the hedonic valuations in Laspeyres and 

Paasche are dictated by the extent to which the characteristics change over time; i.e. ( )t
ii zz −0 .  The further 

the iz  values are apart, say due to greater technological change, the less justifiable is the use of an 

individual estimate and the less faith there is in a compromise geometric mean of the two indexes�a Fisher 

index.3 Since neither hedonic Laspeyres and nor Paasche indexes can be considered superior, we focus in the 

analytical work on superlative indexes�the Fisher, Törnqvist and Walsh formulas�which make symmetric 



5 

 

use of information in both periods, are supported by economic theory and axiomatic considerations and are 

preferred target indexes in the forthcoming international CPI Manual (Diewert, 2004: chapters 15-18). 4 

For our consideration of matched and unmatched new and old models in the indexes we consider four 

exhaustive sets of models: ( )tSi t ∩∈ 0  matched models in period t; ( )tSi ∩∈ 00  matched models in period 

0; ( )0¬∈ tSi t  unmatched new models present in period t, but not in period 0; ( )tSi ¬∈ 00  unmatched old 

models present in period 0, but not in period t. Let the number of models in these respective sets be denoted 

by ( ) ( )tN,tN t ∩∩ 00 0 , ( )tN ¬00  and ( )0¬tN t . We also denote the set of matched models with common 

characteristics t
ii

m
i zzz == 0  in both periods as ( )tSi ∩∈ 0  enumerated over 

( ) ( ) mt NtNtN,...,i =∩=∩= 001 0 . A generalized5 hedonic Fisher index (a geometric mean of (2) and 

(3)) is given by: 
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A generalized hedonic Törnqvist index is given by: 
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where 2/)(~ 0 t
iii sss += . 

A generalized hedonic Walsh index is given by: 
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where m
i

t
ii zzz =0  for the summation over mN matched models.                                                                    

B. Dummy time hedonic (DTH) indexes 6  
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Dummy time hedonic (hereafter�DTH) indexes are a second approach which, as with HI indexes, do not 

require a matched sample.7 The formulation is similar to equation (1) except that a single regression is 

estimated on the data in the two time periods compared, ( )tSi ∪∈ 0 . The equation also includes a dummy 

variable Dt which is equal to 1 in period t, and zero otherwise:   

�
=

+++=
K

k

t,
i

t,
kik

t,t,
i zDp

1

000
10

0ln εβδδ                                                                           (7)             

The exponent of the estimated coefficient *
1δ is an estimate of the quality-adjusted price change between 

period 0 and period t. A weighted version of (7) would use a weighted least squares (WLS) estimator and 

weights 2/)(~ 00 t
iii sss +=  for matched models and 0

is  or t
is  for unmatched old and new models respectively 

(Diewert, 2002b).  

The regression equation (7) constrains each of the βk coefficients to be the same across the two months 

compared. In restricting the slopes to be the same, the (log of the) price change between periods 0 and t can 

be measured at any value of z, as illustrated by the difference between the dashed lines in Figure 1. For 

convenience it is evaluated at the origin as *
1δ . Bear in mind the HI indexes outlined above estimate the 

differences between price surfaces with different slopes. As such the estimates have to be conditioned on 

particular values of z, which gives rise to the two estimates considered in (2) and (3): the base HI using z0 

and the current period HI using zt
, as shown in Figure 1. The very core of the DTH method is to constrain the 

coefficients to be the same, so there is no need to condition on particular values of z. The DTH estimates 

implicitly and usefully make symmetric use of base and current period data. As with hedonic imputation 

indexes DTH indexes can take fixed and chained base forms, though they can also take a fully constrained 

form whereby a single constrained regression is estimated for say January to December with dummy 

variables for each month, though this is impractical in real time since it requires data on future observations. 

II. WHY HEDONIC IMPUTATION AND DUMMY TIME HEDONIC INDEXES DIFFER 

A. Algebraic differences 

(i) a reformulation of the hedonic indexes 
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There has been little analytical work undertaken on the factors governing differences between the two 

approaches. To compare the HI approach to the DTH approach we first need to reformulate the HI indexes. 

We note that the HI approach relies on two estimated hedonic equations, ( )t
i

t zh  and ( )00
izh  for periods 0 

and t respectively:  
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We assume that the errors in each equation are similarly distributed, then phrase the two equations as a 

single hedonic regression equation with dummy time intercept and slope variables: 
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where 1,0
0 =tD  if observations are in period t and 0 otherwise, )( 0

001 γγγ −= t , t
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t
ki zD =,0  if observations are 

in period t and 0 otherwise, and )( 0
k

t
kk βββ −= . The exponent of the estimated *

1γ is an estimate of the 

change in the intercepts of the two hedonic price equations and is thus a HI index evaluated at a particular 

value of t
kiz ,0 , i.e., 0~ ,0 =t

kz . A HI index evaluated at 0~ ,0 =t
kz  has no economic meaning. We require a mean-

value HI index evaluated at .~ ,0,0 t
k

t
k zz =  The Walsh and Törnqvist indexes can be evaluated at mean values 

and, being superlative, should closely approximate each other and the Fisher index, all of which are 

recommended as target indexes for consumer price indexes (Diewert, 2004, chapters 15 and 17). The mean 

values that correspond to the generalized Törnqvist and Walsh HI indexes of (5) and (6) are respectively:8 
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We thus do not evaluate 1γ at 0~ ,0 =t
kz , but for Törnqvist and Walsh HI indexes at t

rnöTk
t

k zz ,0,0~
−= and 

t
Walshk

t
k zz ,0,0~

−=  respectively. The required Törnqvist HI index is thus estimated (hereafter all references to 

indexes are after taking the exponents) as:  

�
=

−
∗∗ +

K

k

t,
rnTkk z

1

0
ö1 βγ                                 where *

kβ is a WLS9 estimate of )( 0
k

t
k ββ −                                   (13)                 

Figure 1 illustrates for k=1 z variable how the estimate of the difference between the two hedonic equations 

at the intercept, ∗
1γ , has an adjustment to allow it to be evaluated at the Törnqvist mean from (11), t

rnoTkz ,0
��− . 

Note that we do not estimate the equations using OLS, but an estimator whose weights correspond to a 

Törnqvist index, i.e., a WLS where the weights are those outlined after equation (7).  We focus on the case 

of the Törnqvist HI index with similar principles applying to the Walsh HI index.  

Consider now the DTH index in (7) which constrains 0)( 0 =−= k
t
kk βββ  in (10) and thus � =

K

k
t

kk D
1

,0β  to 

be zero. The DTH index in (7) corresponds to a Törnqvist (DTH) index if estimated using WLS where the 

weights are those outlined after equation (7) above. A natural question is how does the estimated DTH index 

*
1δ in (7), which is invariant to values of t

kiz
,0 , differ from the HI index evaluated at the means of t

kiz
,0 in (13)? 

(ii)  how does a Törnqvist HI index differ from a Törnqvist DTH index? 

This difference is first considered by comparing ( )∗∗ − 11 γδ , the difference in the intercepts, where 0~ ,0 =t
kz , 

between the constrained and unconstrained regression equations (7) and (10) respectively. The difference is 

�omitted variable bias� due to the omission of � =

K

k
t

kk D
1

,0β in (7). Consider the case of a single k=1 

characteristic, the principles being readily extended to more variables.  Consider further the regression, 

using data in periods 0 and t, of the omitted variable�the slope dummy variable, t
i

t
i zD 1
,0

1 =  if period t and 0 

otherwise, in (10)�on the remaining right-hand side variables, the intercept dummy tD ,0
0 and the t

iz ,0
1  

characteristics: 
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Omitted variable bias is the product of the coefficient on the omitted variable, 1β (for k=1 in (10)), and the 

coefficient *
1λ  which is estimated from the above regression (14) on t

iD ,0
1  i.e. the multicollinearity between 

the missing and included variables (Davidson and McKinnon, 1993). Thus the difference (before taking 

exponents) DTH minus HI, at the intercept is ( ) ∗∗∗∗ ×=− 1111 λβγδ and the (log of the) DTH index is thus 

given by ∗∗∗∗ +×= 1111 γλβδ . The (log of the) Törnqvist HI index at t
Törnz ,0

1− from (11) for one variable is 

estimated as: 

t
Törnz ,0

1
*
1

*
1 −+ βγ                                                                                                                                               (15) 

Thus the (log of the) Törnqvist DTH index minus the (log of the) Törnqvist HI index at t,z 0
Törn1− is:   

( ) ( ) ( )t,tt,t, z)(zz 0
Törn11

0
11

0
Törn111

0
Törn111111 −

∗∗∗
−

∗∗
−

∗∗∗∗∗ −−=−=+−+× λββλββγγλβ                                              (16) 

and the ratio of the DTH and HI indexes at the intercept is ( ) ( ) ( )∗∗∗∗ ×=− 1111 λβγδ expexpexp and the DTH 

index is thus given by ( ) ( ) ( )∗∗∗∗ ××= 1111 γλβδ expexpexp . The Törnqvist HI index at t
Törnz ,0

1− from (11) for one 

variable is estimated as: ( )t,** zexp 0
Törn111 −+ βγ . Thus the ratio of the Törnqvist DTH index to the Törnqvist HI 

index at t,z 0
Törn1− is:   

( )[ ]t,t

z

z)(exp
t,
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Törn11

0
11  

index HITörnqvist 
index DTHTörnqvist 

0
Törn1

−
∗∗∗ −−=��

�

�
��
�

�

−

λββ
�

                                                                  (17) 

                              where t∗
1β  and 0

1
∗β  are WLS estimates.   

If either of the two terms making up the product on the right�hand-side is close to zero then there will be 

little difference between the indexes.  Neither parameter instability nor a change in the mean characteristic 

is sufficient in itself to lead to a difference between the formulas.  The )( k
t

k
0

1
∗∗∗ −= βββ from (10) is the 

estimated marginal valuation of the characteristic between periods 0 and t, which can be positive or 

negative, but may be more generally thought to be negative to represent diminishing marginal utility/cost of 

the characteristic.  

We now consider the WLS estimated *
1λ . Bear in mind that the left-hand-side of the regression in equation 

(14), t
iD ,0

1 , is 0 in period 0 and t
iz1 in period t and that Dt on the right-hand-side is 1 in period t and zero in 
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period 0. If we assume quality characteristics are positive, 1λ will always be positive as the change from 0 in 

period 0 to their values in period t. Consider the weighted (Törnqvist ) means 0
1 Tornz −  for ( )210 ∩∈ Si  and 

( )tSi ¬∈ 00  (matched period 0 and unmatched old period 0) and t
Tornz −1  for ( )21∩∈ tSi  and ( )0¬∈ tSi t  

(matched period  t and unmatched new models in period t).   

If we assume for simplicity that t
TörnTörn zz −−−−−−−− ==== 1

0
1 , then t

Tornz −≈ 1
*
1λ since it is an estimate of the change in 

t
iD ,0

1  in (14) arising from changing from period 0, where 0,0
1 =t
iD , to period t where it is t

Tornz −1  and has an 

expectation of t
Törnz −1 . The *

1λ  estimate is conditioned in (14) on t,z 0
Törn1− , the change from 0

1 Törnz − to t
Törnz −1 , but 

since we assume these to have not changed our estimate of t
Törnz −≈ 1

*
1λ  holds true.10 Thus the second part of 

the difference expression in (14), ( )t
Törnz ,0

1
*
1 −−λ , is simply ( )t

Törn
t

Törn zz ,0
11 −− −  which, given our assumption of 

t
TörnTörn zz −− = 1

0
1 , is equal to 0. Thus from the right-hand side of (17), for samples with negligible change in 

the mean values of the characteristics, the DTH and HI will be similar irrespective of any parameter 

instability. Diewert (2002b) and Aizcorbe (2003) have shown that the DTH and HI indexes will be the same 

for matched models and this analysis gives support to their finding. However, we find first, that it is not 

matching per se that dictates the relationship; for unmatched models all that is required is that 

t,t zz 0
Törn1Törn1 −− = which may occur without matching�it simply requires the means of the characteristics not to 

change. Second, that even when the means change the two approaches will be equal if 00 =− *
k

t*
k ββ , i.e. 

there is parameter stability. Finally, it follows that if either of the two right-hand side expressions in (17) are 

large, the differences between the indexes will be compounded.  

But what if t
TörnTörn zz −−−−−−−− ≠≠≠≠ 1

0
1 ? The estimated coefficient *

1λ  from (14) regression is given by:11  

tt,t
z

t

t,tt,
i

t,
iz

tt
*

N)zz()NN(
)zz)(z,Dcov(N)NN(z

20
11

2

0
11

0
1

0
1

2
1

1 −−−
−−−

=
σ

σλ                                                                                   (18) 

for an unweighted regression where tN and N  are the respective number of observations in period t and 

both periods 0 and t, 2
zσ is the variance of z and ( ) zzNz)z,Dcov( tttt,

i
t,

i � −= 20
1

0
1 is the covariance of 

t
iD ,0

1 and t
iz ,0

1 from (14). Readers are reminded that from (17): 
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Törn1

−
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                                                                 (19) 

First, as noted, if there is either negligible parameter instability or a negligible change in the mean of the 

characteristic, then there will be little difference between the formulas. However, as parameter instability 

increases and the change in the mean characteristic increases, the multiplicative effect on the difference 

between the indexes is compounded. The likely direction and magnitude of any difference is not 

immediately obvious.  Assume diminishing marginal valuations of characteristics, so that 0)( 0*
1

*
1 �− ββ t . 

Second, even assuming a positive technological advance, 00
11 �− )zz( t,t , and given )( tNN − , ),cov( ,0

1
,0

1
t

i
t

i zD , 

tz1  and 2
zσ  are positive, it remains difficult to establish from (18) the effect on *

1λ  of changes in its 

constituent parts. However, third, as tN becomes an increasing share of N , and at the limit if tN  takes up 

all of N (i.e. 0)( =− tNN ), then 2,0
1

,0
1 ),cov( z

t
i

t
i zD σ→ and more importantly, t,t zz 0

11 → and the difference 

between the formulas is dictated by ( )tt z ,0
1

0*
1

*
1 )( −− ββ ; i.e. a DTH index will exceed a HI index. Note that 

(18) is based on an OLS estimator and for a WLS Törnqvist estimator similar principles apply, though the 

determining factor for a DTH index to exceed a HI index is for the weights of new models to be increasing, 

a much more reasonable scenario. Thus other things being equal, the nature and extent of any differences 

between the two indexes will depend on (i) changes in the mean quality of models )zz( t,t 0
11 − , (ii) the 

relative number of models in each period, )( tNN − , (iii) the dispersion in z, 2
zσ , (iv) the absolute mean of 

the characteristics in period t, tz1 , (v) the ),cov( ,0
1

,0
1

t
i

t
i zD  which as 0)( →− tNN , i.e. tN  takes up all of N , 

then 2,0
1

,0
1 ),cov( z

t
i

t
i zD σ→ and 11 zz t = and 0*

1 =λ , and (vi) parameter instability, )( *t* 0
11 ββ − .  

B. Treatment of unmatched observations 

Diewert (2002b) and Aizcorbe (2003) show that while the DTH and HI indexes will be the same for 

matched models, they differ in their treatment of unmatched data.  Consider hedonic functions ( )tit
i zh  and 

( )00
ii zh  for periods t and 0 respectively as in (8) and (9) and a (constrained) time dummy regression equation 

(7). Consider an unmatched observation only available in period t. A base period HI index such as (2) would 

exclude it, while a current period HI index such as (3) would include it and a geometric mean of the two (4) 
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would give it half the weight in the calculation of that of a matched observation. A Törnqvist hedonic index 

(5) would also give an unmatched model half the weight of a matched one. For a DTH index such as (7) an 

unmatched period t model would appear only once in period t in the estimation of constrained parameters, as 

opposed to twice for matched data. We would therefore expect superlative HI indexes, such as (4), to be 

closer to DTH indexes than their constituent elements, (2) and (3) because they make symmetric use of the 

data. 

C. Observations with undue influence 

Silver (2002) has shown that while HI indexes such as (2)-(6) explicitly incorporate weights, they are only 

implicitly incorporated in the OLS or WLS estimator used for DTH indexes in a manner that may not be 

fully representative of the weights used. Adverse influence and leverage effects are shown to be generated 

by observations with unusual characteristics and above average residuals.  

D. Chaining 

Chained base HI indexes are preferred to fixed base ones, especially when matched samples degrade rapidly 

and their use reduces the spread between Laspeyres and Paasche. However, caution is advised in the use of 

chained monthly series when prices may oscillate around a trend (i.e. �bounce�) and as a result, chained 

indexes can �drift� (Forsyth and Fowler, 1981 and Szulc, 1983). 

 

III. EMPIRICAL STUDY: DESKTOP PCs 

The empirical study is of the measurement of quality-adjusted monthly prices of UK desktop PCs in 1998.  

The data were monthly scanner data from the bar-code readers of PC retailers.  There were 7,387 

observations (models in a month sold in a specialized or non-specialized PC store-type) representing a sales 

volume of 1.5 million models worth £1.57 billion pounds over the year.  Table 1 shows that in the January to 

February price comparison there were 584 matched models available in both months for the price 

comparison.  However, for the January to December price comparison only 161 matched models were 

available with 509 unmatched �old� models (available in January, but unmatched in December) and 436 

unmatched �new� models (available in December but unavailable in January for matching). 
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The calculation of hedonic indices first require the estimation of hedonic regressions.  To simplify the 

illustration only one variable was included, the speed in MHz.  The regressions were for each month for the 

HI indexes and over January and the current month, including a dummy variable for the latter, for the DTH 

indexes. The estimated coefficients for speed in the hedonic regressions were statistically significant 

coefficients with the expected positive signs. 12   

The selectivity bias inherent in a matched models Törnqvist index is shown in Table 1 by the fall of 24% 

which understates the fall of around 50% for the two Törnqvist hedonic indexes which use all of the data.  

The particular concern of this paper is that the HI and DTH Törnqvist indexes give different results: falls of 

55% and 50% respectively�a difference of nearly 10%�with no immediate explanation as to which is 

better.  Having shown the need for hedonic indices we now turn to an explanation in Table 2 of the 

differences between the results from the two methods. 

Table 2 column (1) shows the ratio of the two estimates, finding the DTH estimate to consistently fall at a 

slower rate.  The early months have very little quality-adjusted price change compared with January and the 

difference between the formulas are less amenable to analysis.  However, from later months it is clear that 

while the parameter instability ( )0*
1

*
1 ββ −t  in column (2) is an important driver of the differences between 

the hedonic indexes, other factors are at work.  For example, in September and December the differences 

between the parameters were about the same, yet the differences between the HI and DTH indexes in 

column (1) are higher in December than September.  Furthermore, in October and November the parameter 

instability falls compared with September, yet the differences between the indexes increase.  The other 

factor at work and affecting the difference, as shown in equation (17), is of course ( )t
rnoTz ,0

1
*
1 ��−−λ  which in 

column (3) of Table 2 is seen to increase (in absolute values) in October, November and December. This 

increase explains that part of the differences in hedonic indexes unexplained by the parameter instability.  

The product of the two terms in column (3) shows an overall increase in October, November and December 

and, indeed, the exponent of column (3) equals column (1) by equation (17). 

A driver of the substantial fall in ( )t
rnoTz ,0

1
*
1 ��−−λ  can be seem from columns (5) and (6) to be relatively large 

increase in t
rnoTz ,0

1 ��− , the average speed of PCs over the two periods compared, an increase from 208 MHz for 
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the January to February comparison to 273 MHz. for the January to December comparison.  Bear in mind 

that the indexes were estimated using Törnqvist weights as outlined following equation (7). The overall sales 

value weight given to December models compared with January models increased by 

( )[ ]29027073601 .. =−−  29% and the resulting fall in the statistic in column 9 of Table 2 is at least one of 

the reasons why the DTH index exceeded the HI index. Equation (18) and columns (7) to (10) of Table 2 

show how *
1λ  can be decomposed, though the complexity of equation (18) makes it difficult to explain the 

factors that dictate its change, unless tt zz ,0
11 =  which is clearly not the case. 

IV. CHOICE BETWEEN HEDONIC INDEXES AND TIME DUMMY HEDONIC INDEXES 

The question of choice between these approaches has mainly been considered13 from a perspective of 

concern over parameter instability. Berndt and Rappaport (2001) found, for example, from 1987 to 1999 for 

desktop PCs, the null hypothesis of adjacent-year equality to be rejected in all but one case. For mobile PCs 

the null hypothesis of parameter stability was rejected in eight of the 12 adjacent-year comparisons. Berndt 

and Rappaport�s (2001) preferred the use of HI indexes if there was evidence of parameter instability.  Pakes 

(2003) using quarterly data for hedonic regressions for desktop PCs over the period 1995 to 1999 rejected 

just about any hypothesis on the constancy of the coefficients. He also advocated HI indexes on the grounds 

that �....since hedonic coefficients vary across periods it [the DTH index approach] has no theoretical 

justification.� Pakes (2003: 1593). However, equation (19) showed how the ratio of DTH and HI indexes 

was not solely dependent on parameter instability. It depended on the exponent of the product of two 

components: the change over time in the (WLS estimated) hedonic coefficients and the difference in 

(statistics that relate to) the (weighted) mean values of the characteristic. Even if parameters were unstable, 

the difference between the indexes may still be small due to a minimal change in the other component.  

Consider two forms of �spread�. The first arises because the basis of a DTH index is the constraining of 

parameters over time to be the same. Constraining the estimated coefficients to either t*
1β or 0

1
*β  may give 

quite different results and this difference is the spread. A DTH index constrains the parameters to be the 

same, an average of the two. There is a sense in which we have less confidence in an index based on 

constraining similar parameters than one based on constraining two disparate parameters. This is the 
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(implicit) stance taken by Berndt and Rappaport (2001) in their advice to avoid DTH indexes when there is 

parameter instability and to use HI indexes.  

But there is a second type of spread and this relates to HI indexes. This is the difference between base and 

current period hedonic indexes, between (2) and (3), and arises from the use of a constant t
iz as against 0

iz . 

The difference or spread between the indexes is dictated by the choice between which period�s 

characteristics are held constant and there is a sense in which we have more confidence in an index based on 

an average of 0
iz  and t

iz  that has relatively small spread, than one based on an average of 0
iz  and t

iz  in 

which they were very different. There is thus a case to avoid HI indexes and use DTH indexes when 

characteristics change. If neither )( t 0
11
∗∗ − ββ  nor ( )t,z 0

Törn11 −
∗ −λ  is particularly large14 relative to the other, 

then a symmetric average, say geometric mean, of the two indexes is to be preferred. If both differences are 

significant, but differ, a more appropriate estimate might be a weighted mean such as: 

( ) ( )
( ) ( )t,t

t,t

zexpexp
DTHzexpHIexp

0
Törn11

0
11

0
Törn11

0
11

−
∗∗∗

−
∗∗∗

−+−
×−+×−

λββ
λββ

                                                                                                         (20) 

V. CONCLUSIONS 

It is recognised that extensive product differentiation with a high model turnover is an increasing feature of 

product markets (Triplett, 1999). The motivation of this paper lay in the failure of the matched models 

method to adequately deal with price measurement in this context and the need for hedonic indexes as the 

most promising alternative (Schultze and Mackie, 2002). The paper first developed in section I generalized 

superlative hedonic indexes, i.e. index number formulas which are generalized to deal with matched and 

unmatched models, use hedonic regressions to control for quality changes and are superlative in that they 

have a good foundations in economic theory and axiomatic considerations (Diewert, 2004). The paper 

second, considered the two main approaches to hedonic index numbers, HI, and DTH indexes. Their  

commonalities in terms of functional form of aggregator, weighting and periodicity of comparison, makes it 

difficult to justify one approach against the other, yet the two approaches can yield quite different results. 

This is of concern if they are to be the principle tools for dealing with quality adjustment in price 

measurement for product markets with high model turnover. In section II the paper provided a formal 

exposition of the factors underlying the difference between the two approaches. It was shown that 
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differences between the two approaches may arise from both parameter instability and changes in the 

characteristics and such differences are compounded when both occur.  It further showed that similarities 

between the two approaches resulted if there was little difference in either component.  The empirical study 

of desktop PCs showed the superiority of hedonic indexes over matched model indexes, that DTH and HI 

indexes can differ, and that parameter instability need not be the main factor dictating such differences. 

Consideration of the issue of choice between the two approaches was based in section IV on minimising two 

concepts of spread. The analysis led to the advice that (i) Either the DTH or HI index approach is acceptable 

if either the parameters are relatively stable or the characteristics do not change over time, otherwise (ii) 

DTH indexes be avoided and HI indexes used when there is evidence of parameter instability, (iii) HI 

indexes be avoided and DTH indexes used when there is evidence of changes in quality characteristics of the 

form given in the last term of (19), and (iv) that when both characteristics and parameters change 

substantially, an average, such as (20), of the two approaches be used.  
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Notes 

1. An alternative approach to hedonic indexes is to use a fixed effects panel estimator in which instead of hedonic characteristics 

on the right-hand-side of the regression, each model, other than a benchmark one, has a dummy variable (suggested by Diewert in 

(2002a)�see Aizcorbe (2003) for an application). In practice the panel estimation procedure is much simpler; the price deviations 

for each model from their mean over time are regressed on the deviations of the explanatory dummy variables for each model for 

all t with an adjustment for degrees of freedom (Davidson and MacKinnon, 1993: 323).  For a direct fixed base comparison the 

estimate reduces to a matched models one. 

2. �Hedonic techniques currently offer the most promising approach for explicitly adjusting observed prices to account for 

changing product quality. But our analysis suggests that there are still substantial unresolved econometric, data, and other 

measurement issues that need further attention.� (Committee on National Statistics, 2002: 6). 

3. As an estimate of a COLI index the spread is irrelevant since the need is to include substitution effects and Fisher meets this 

need. However, Laspeyres and Paasche answer meaningful question and act as bounds on models of economic behaviour that 

different consumer might pursue. A Fisher estimate with less �spread� is more satisfactory  

4.Pakes (2003) advocates a Laspeyres hedonic as an upper bound to a target compensating index but notes that a Paasche hedonic 

index may be more feasible in real time, again raising issues as to the extent of the difference. 

5. Diewert (2002b) referred to indexes that incorporated all unmatched and matched data as generalized forms. 

6. See De Haan (2003) for a variant that uses matched data when available and the time dummy only for unmatched data�his 

double imputation method. 

7. Mean value weights that apply to price changes differ from those that apply to prices in the Walsh index. The former are 

0000
ipi

t
iqiqipt

iqiq � for matched models, as opposed to �i
t
iqiqt

iqiq 00 , but it is the latter that concern us. 

8. The weights used to correspond to a generalized Törnqvist index were outlined following equation (7) .                                    

9. We are not requiring t
TörnTörn zz −− = 1

0
1 ; unconditioned estimates might be evaluated by examining omitted variable bias in (12). 

10. The estimated coefficient on 1x of a regression of y on 1x  and 2x  is given by: 
( )� �−�

� � � �−
2

21
2
2

2
1

212
2
21

xxxx

xxyxxyx
 

11. Bear in mind that the indexes estimated in this paper are weighted by shares in sales values and that the fall-off in the coverage 

of the matched sample by sales is even more dramatic: for the January to December comparison matched models made up only 

71% of the January sales value and a mere 12% of the December sales value. 

12. The F-statistics for the null hypothesis of coefficients being equal to zero averaged 34.2 for HI indexes and 53.4 for DTH 

indexes, consistently rejecting the null at a 0.01% level and lower. The explanatory power of the estimated equations were 

naturally low for this specification with a single explanatory variable, especially since they did not include dummy variables on 

brand. Details of estimates from a fully specified model are available from the authors.  

 

13. Diewert (2002b) points out that the main advantage of hedonic imputed indexes is that it they are more flexible; i.e., changes 

in tastes between periods can readily be accommodated.  HI indexes are argued to have a disadvantage that two distinct estimates 

will be generated and it is somewhat arbitrary how these two estimates are to be averaged to form a single estimate of price 

change. Diewert (2002b) further identifies the main advantages of the DTH method are that it conserves degrees of freedom and is 

less subject to multicollinearity  problems. 

14. Note that statistical significance tests should not dictate whether a difference is large or small, it is also the magnitude of the 

differences that matters. 
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Table 1, Number of matched and unmatched models and matched models and hedonic indexes 
 

Number 
of 
matched 
models 

Number of 
unmatched 
old models 
in January 
of the 
comparison 

 
 
 
 
 
 
Number of 
unmatched 
new models in 
the current 
month of the 
comparison 

 
 
 
 
 
Matched 
models 
Törnqvist 
index 

 

 

 

HI 

Törnqvist 

index 

 

 

 

DTH 

Törnqvist 

index 

 Figures are for comparisons between 

January and each current month 

Fixed base, January 1998=1.000 

February 
584 86 104 0.945 0.939 0.939 

March 
577 93 181 0.887 0.877 0.877 

April 
346 324 191 0.825 0.802 0.802 

May 
315 355 227 0.767 0.738 0.737 

June 
297 373 265 0.736 0.656 0.658 

July 
282 388 301 0.765 0.618 0.623 

August  
276 394 351 0.769 0.616 0.626 

September  
247 423 382 0.777 0.599 0.629 

October  
193 477 402 0.772 0.518 0.551 

November  
164 506 435 0.765 0.458 0.495 

December 
161 509 436 0.764 0.452 0.496 
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Table 2, Decomposition of differences between HI and Törnqvist indexes for desktop PCs, January 1998=1.000*  

 HI ÷ DTH 

Törnqvist 

indexes 

(1) 

 

 

( 0*
1

*
1 ββ −t

 (2) 

 

 

( )t,z 0
Törn11 −

∗ −λ  
(3) 

 

( )t,z 0
Törn11 −

∗ −λ  

)( *t* 0
11 ββ −×  

(4) 

 

 
t,z 0
Törn1−  

(5) 

 

 
∗
1λ  

(6) 

 

 

)zz( t,t 0
11 −

(7) 

 

 

),cov( ,0
1

,0
1

t
i

t
i zD   

(8) 

 

 

)s(
t(Si

t,
i�

∈

− 02

 

(9)� 

 

 
2
zσ       

(10)        

 

 
tz1  

(11) 

Fixed base, January 1998=1.000          

February 
0.999999 -0.00042 0.00292 -0.0000012 208.0586 208.0616 -0.15937 1193.948 0.9975 2383.568 207.8993 

March 
1.000001 -0.0000021 -0.05901 0.0000013 211.0463 210.9873 0.961408 1323.364 0.98284 2339.425 212.0077 

April 
1.000121 0.000588 0.20158 0.0001186 219.3599 219.5615 7.047697 1952.174 0.993321 2431.949 226.4076 

May 
0.998721 0.00069 -1.86554 -0.0012871 225.0111 223.1456 11.53865 2911.7 0.957149 2822.441 236.5498 

June 
1.002505 -0.00033 -7.59551 0.0025079 231.0368 223.4413 16.03635 4207.419 0.879115 3395.21 247.0731 

July 
1.008229 -0.00078 -10.56785 0.0082167 236.5226 225.9548 18.31796 4804.071 0.830078 3640.906 254.8406 

August  
1.015499 -0.00081 -19.01683 0.0154110 244.4779 225.4611 23.22285 6481.596 0.796006 4599.436 267.7008 

September  
1.050295 -0.00172 -28.49892 0.0491427 250.8653 222.3664 26.35361 8272.112 0.754089 5888.89 277.2189 

October  
1.063765 -0.00154 -40.14595 0.0619327 262.9021 222.7562 34.28005 10189.09 0.732207 6729.035 297.1822 

November  
1.079882 -0.00166 -46.48257 0.0770125 269.5905 223.1079 37.8419 11185.42 0.717218 7220.941 307.4324 

December 
1.097709 -0.00177 -52.66507 0.0933989 273.4374 220.7723 39.68194 12243.07 0.70736 7995.446 313.1193 

• All statistics are weighted using the weights commensurate with a Törnqvist index as outlined in the text following equation (7). 
�        The expression )s(

t(Si

t,
i�

∈

− 02  replaces )( tNN −  in (17) since the statistics are weighted. The difference is that between the sum of the shares over the two periods, i.e. 2, 

  and the sum of that share arising from observations in period t . With new models taking on an increased share of sales the statistic falls. 



1 

 

Figure 1 
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