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HEDONIC REGRESSION: THE TIME DUMMY INDEX AS A SPECIAL 

CASE OF THE IMPUTATION TÖRNQVIST INDEX 

Abstract: This paper compares a Törnqvist price index in which the �missing 
prices� are imputed using hedonic regression with the time dummy hedonic 
index. The aim is to show that the time dummy index can be interpreted as a 
special case of the imputation Törnqvist index when the regression weights 
are properly chosen. It is argued that the set of weights proposed in the recent 
literature overstates the impact of new and disappearing items. This could be 
particularly relevant for high-turnover goods like PCs. 

Keywords: consumer price index; hedonic imputation; time dummy index. 

1. Introduction 

Silver and Heravi (2004) address the difference between hedonic imputation indexes 
and time dummy variable hedonic indexes, which are the two main approaches in 
the academic literature to estimating hedonic price indexes. The larger part of their 
paper relates to the imputation Törnqvist index and the time dummy index that uses 
the regression weights proposed by Diewert (2003). They analyse the factors driving 
the difference between both approaches and show that differences may arise from 
parameter instability and changes in the average characteristics and such differences 
are compounded when both occur. Their idea of looking at the time dummy variable 
model � which constrains the parameters to be the same across the two periods � as 
one that suffers from �omitted variable bias� is particularly interesting. 

Silver and Heravi define imputation price indexes as indexes in which all prices are 
estimated using an hedonic model. That is, in addition to the imputation of �missing 
prices� of new or disappearing items, observed prices are replaced by their predicted 
values. But throwing away observed prices is not an attractive idea, certainly not for 
statistical agencies. This paper therefore focuses on the partial imputation Törnqvist 
index in which hedonic imputation is restricted to �missing prices�. It is shown that 
the time dummy approach can be interpreted as a special case of the partial hedonic 
imputation Törnqvist index when the regression weights are properly chosen. 

The paper is organized as follows. Section 2 formally defines the partial imputation 
Törnqvist index. Section 3 shows that imputing �missing prices� is essentially what a 
proper time dummy index does. Section 4 argues that the weights Diewert (2003) 
has suggested for the unmatched items in the estimation of the time dummy index 
are twice as large as they should be, at least if the partial imputation Törnqvist index 
serves as the preferred target index. Section 5 addresses some econometric issues. 
Section 6 provides empirical evidence using scanner data on personal computers for 
the Netherlands. Section 7 concludes. 
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2. The partial hedonic imputation Törnqvist index 

I start by introducing some notation. Let 0
ip  and 1

ip  denote the price of item i in the 
base period 0 and the current or comparison period 1, respectively, and let 0

is  and 
1
is  denote the corresponding expenditure shares or relative sales values. Further, let 
0S  and 1S  be the sets of models available in the respective periods. 10 SSSM ∩=  

denotes the set of matched items; 0
DS  is the set of disappearing items (those sold in 

period 0 but no longer in period 1) and 1
NS  the set of new items (those sold in period 

1 but not in period 0). First I will define what I call the full hedonic imputation (FHI) 
geometric Laspeyres (GL) and geometric Paasche (GP) indexes. They can be written 
as 
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where t
ip~  denotes the predicted price of i in period t (t= 0,1), estimated with an 

hedonic model.1 Note that the prices in the expenditure shares are not replaced by 
their predicted values. 

Expressions (1) and (2) are generalized indexes in the sense that they incorporate all 
unmatched and matched items (see Diewert, 2003). There are two (related) problems 
with using those indexes. First, only in special circumstances will they coincide with 
the indexes based on observed prices when there are no unmatched items, depending 
on the specification of the model and the regression weights used. Second, statistical 
agencies may be reluctant to replace observed prices by predicted values, and to my 
opinion they are right. I would prefer an approach that only imputes 1~

ip  for 0
DSi ∈  

and 0~
ip  for 1

NSi ∈ , leaving all observed prices unchanged, because this minimizes 
the impact of econometric modelling. This is what statistical agencies usually mean 
by imputation anyway.2 The partial hedonic imputation (PHI) geometric Laspeyres 
index and geometric Paasche index are given by 

                                                      
1 Triplett (2004) refers to this approach as the characteristics price index method since it uses 
the implicit characteristics prices (the regression coefficients from the hedonic function) in a 
conventional index number formula. Silver and Heravi (2004) call it the hedonic imputation 
method. This name may be confusing, so I termed it full hedonic imputation. 
2 This idea is not new, of course. Triplett (2004) notes the following on the (partial) hedonic 
imputation method: �Where matched model comparisons are possible, they are used. Where 
they are not possible, a hedonic imputation is made for the item replacement. Hedonic 
imputation methods make maximum use of observed data, and minimum use of imputation, 
thereby minimizing estimation variance. The hedonic imputation method was employed in 
the hedonic computer indexes introduced into the U.S. national accounts in 1985�. Diewert 
(2003) also suggests matching items where possible and using hedonic regressions to impute 
the �missing prices�. 
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Taking the geometric average of (3) and (4) leads to the partial hedonic imputation 
Törnqvist index: 
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I prefer PHITP  as the (geometric) target index because it is a generalized superlative 
index that restricts hedonic imputation to the �missing prices�.3 

Diewert (2003) argues that the residuals from a logarithmic hedonic model are less 
likely to be heteroskedastic than those from a linear model. Most empirical studies 
seem to prefer the logarithmic specification as well. For period t (t= 0,1) the semi-
log (log-linear) model regression can be expressed as 
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where ikz  is the k-th characteristic of item i and t
kβ  the corresponding parameter; 

the errors t
iε  are assumed to be independently distributed with expected values of 

zero and constant variances. Least squares estimation of (6) on the data from each 
period separately produces regression coefficients tα~  and t

kβ~  and predicted prices 

� =
+= K

k ik
t
k

tt
i zp

1
)~~exp(~ βα .4 

3. The time dummy index 

The second main approach to estimating hedonic price indexes is the time dummy 
variable method. In this case the cross section data from period 0 and period 1 are 
pooled. The semi-log hedonic model reads 
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3 See De Haan (2004a) for a double imputation hedonic geometric index in which period 0 
and period 1 prices are imputed for both new and disappearing items (but not for matched 
items). De Haan (2002) calls the partial imputation Fisher index a generalized Fisher index. 
4 The predictors are not unbiased estimators of the actual prices. Van Dalen and Bode (2004) 
evaluate the biases in various hedonic indexes due to the use of a logarithmic hedonic model. 
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where t
iD  is a dummy variable that takes on the value of 1 if the observation comes 

from period 1 and 0 otherwise. The errors t
iε  are now assumed to be similarly and 

independently distributed in both periods, which may be rather restrictive. Model (7) 
assumes that each of the characteristics parameters is the same across the two time 
periods compared, i.e. kkk βββ == 10  for k=1,�.,K by assumption. As (7) controls 
for changes in the quality characteristics, the exponent of the estimated time dummy 
coefficient δ�  directly produces a quality-adjusted measure of price change. The 
predicted prices in period 0 and period t are denoted � =

+= K

k ikki zp
1

0 )��exp(� βα  
and � =

++= K

k ikki zp
1

1 )���exp(� βδα . Note that δ�exp�/� 01 =ii pp  for all i. 

We may ask the question under what circumstances δ�exp  can be interpreted as an 
aggregate price index, based on a conventional  index number formula. Silver (2003) 
criticises the use of Ordinary Least Squares (OLS) to estimate (7). The observations 
should be weighted according to their economic importance. Thus, a certain type of 
Weighted Least Squares (WLS) should be used. Van der Grient and De Haan (2003) 
present a decomposition of the WLS time dummy index which I will repeat here and 
extend for further analysis. Let 0

iw  and 1
iw  denote the regression weights for 0Si ∈  

and 1Si ∈ , respectively. That is, each observation in period t counts t
iw  times in the 

estimation procedure. Because a constant term is included in (7), the residuals sum 
to zero in each period and the following relation holds: 
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Some rearranging and subsequently substituting δ�exp�/� 01 =ii pp  for MSi ∈  leads 
to a decomposition of the WLS time dummy index: 
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where � ∈
=

MSi iM ww 11 . 

Van der Grient and De Haan (2003) formulate two requirements equation (9) should 
satisfy. The first requirement is that the resulting index should be based on observed 
prices when there are no new or disappearing items. Quality changes do not occur in 
that case, although the quality mix may change because of changes in the quantities 
sold, and we want the outcome to be independent of the set of characteristics. The 
second factor of (9) contains the period 0 residuals of the matched items and usually 
differs from unity. Hence, the first requirement will not be met. We therefore impose 
the restriction iii www == 10  (independent of time) for MSi ∈ , which assures that 
the time dummy index equals the matched-item index Mi

M

ww

Si iiM ppP /01 )/(∏ ∈
= , 

where � ∈
=

MSi iM ww , when there are only matched items.5 This yields 

                                                      
5 This restriction does not hold if there is no weighting of the observations involved (OLS), 
unless the number of observations is constant over time (e.g., under the fixed-size sampling 
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Equation (10) shows an important property of the time dummy index satisfying the 
above restriction: it can be viewed as an index where all observed prices, including 
those of the unmatched items, are kept and not replaced by their predicted values. 
This is in line with the partial hedonic imputation indexes defined in section 2. What 
I did not realize before was that, by using δ�exp�/� 01 =ii pp  for 0

DSi ∈  and 1
NSi ∈ , 

equation (10) can be rewritten as 
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where � ∈
= 0

00

DSi iD ww  and � ∈
= 1

11

NSi iN ww . Notice that the term between square 
brackets has the same structure as PHITP  given by (5). The time dummy index (11) 
can also be written as a weighted geometric mean of the matched-model index MP  
defined above and hedonic imputation indexes for disappearing and new items: 
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A second requirement is that the resulting index number formula can be defended on 
theoretical grounds. This implies that the price relatives must somehow be weighted 
by expenditure shares.6 The use of OLS is no longer an option unless we are dealing 
with fixed-size sets of items sampled proportional to expenditure (De Haan, 2003). 
The choice of regression weights is explored in section 4. 

4. Choice of weights 

For the matched items we have expenditure shares of both period 0 and period 1. For 
reasons of symmetry their unweighted arithmetic average is a natural choice, which 
also meets the first requirement. This choice has been suggested by Diewert (2003); 
the time dummy index would then equal the superlative Törnqvist index when there 
are only matched items. Substituting 2/)( 10

iii ssw +=  for MSi ∈  into (11) yields 
the (pseudo) generalized Törnqvist index 

                                                                                                                                         

schemes applied by most statistical agencies). Yet the use of OLS always satisfies the first 
requirement: it produces the unweighted geometric index when all items are matched. 
6 Various authors, for example Silver and Heravi (2002) and Van Mulligen (2003), have used 
the quantities sold in the respective periods as weights in the WLS estimation of time dummy 
indexes. This procedure violates both requirements and should be adviced against. 
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using 2/)( 10
MMM ssw += , where � ∈

=
MSi iM ss 00  and � ∈

=
MSi iM ss 11  denote the 

matched items expenditure shares in period 0 and period 1, respectively. 

For the unmatched items the choice of weights is less obvious. I propose to take half 
the expenditure shares in the periods they are available, i.e. 2/00

ii sw =  for 0
DSi ∈  

and 2/11
ii sw =  for 1

NSi ∈ . Substituting those weights into (12) gives 
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since now 2/)1( 00
MD sw −=  and 2/)1( 11

MN sw −= , so that 110 =++ NDM www . 
Expression (13) is similar to (5). Thus, using the proposed weights, the time dummy 
index is a special case of the partial hedonic imputation Törnqvist price index (5) in 
which the �missing prices� are automatically imputed according to the time dummy 
variable model (7). Notice that the regression weights are identical to the weights 
used to aggregate the price relatives. De Haan (2004a) also applies (7) in a hedonic 
imputation approach and refers to this as an indirect time dummy approach. In the 
special case discussed here the direct and indirect approaches coincide. This seems a 
desirable property. 

Diewert (2003), on the other hand, suggests taking the full expenditure shares of the 
unmatched items as regression weights. His suggestion has been followed by Silver 
and Heravi (2004) and also by Van der Grient and De Haan (2003), Van der Grient 
(2004), and De Haan (2004b) � it is mentioned in the new CPI manual (ILO, 2004) 
as well.7 Substituting 00

ii sw =  for 0
DSi ∈  and 11

ii sw =  for 1
NSi ∈  into (12) yields 
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I find it difficult to justify this choice of weights since expression (14) has no clear 
interpretation as a generalized Törnqvist index. The weight of the matched items is 
understated and the weights of new and disappearing items overstated. The overall 
impact depends on the imputed prices of the unmatched items, which will naturally 
differ using different weights. However, if the model specification is satisfactory, 
then we may expect this effect to be relatively small compared to the effect of the 
�wrong� weights with which the price relatives are implicitly aggregated. 

                                                      
7 See Silver (2003) for a general discussion on the use of weights.  
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Now that we have determined the optimal regression weights, various expressions or 
decompositions of the time dummy index can be derived in order to provide further 
insight. For example, equation (13) can be rewritten in the form of (11�), yielding 
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where ∏ ∈
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the hedonic imputation geometric Laspeyres index and geometric Paasche index for 
disappearing items and new items, where the imputations are based on model (7). 

A second and perhaps more convenient decomposition results from substituting the 
proposed weights into (10). Denoting the regression residuals t

i
t
i pp �lnln −  by t

iu  
and the expenditure share weighted average residuals of new and disappearing items 
by �� ∈∈

= 11
1111 /

NN Si iSi iiN susu  and �� ∈∈
= 00
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DD Si iSi iiD susu , we obtain 
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Under perfect competition 0
Du  and 1

Nu  are likely to approximate zero. The so-called 
law of one quality-adjusted price predicts that there will be no items whose prices 
are relatively high or low given their characteristics: there should be no �unusual� 
prices. Equation (16) shows that the time dummy index will then be approximately 
equal to the matched-item index ∏ ∈

++

M

MMii

Si
ssss

ii pp )/()(01 1010

)/( . But under imperfect 
competition there are economic reasons to expect that such unusual prices will exist 
(Silver and Heravi, 2002; Triplett, 2004). 

5. Econometric considerations 

Because the time dummy index (13) is a special case of the broader class of (partial) 
imputation Törnqvist indexes, one could argue that it would be better to estimate the 
�missing prices� explicitly, based on econometric arguments, rather than implicitly as 
the time dummy index does. From an econometric point of view, there are again the 
issues of pooling data and weighting. Pooling data is of course not necessary for an 
imputation approach. The assumption of constant parameters is rather stringent, and 
estimating (log-linear) hedonic models from data of each period separately would in 
principle be best. Indeed, this has been suggested in section 2 and it is also what 
Silver and Heravi (2004) do in the estimation of the full hedonic imputation indexes. 
But pooling data has two advantages. First, there is an expected gain in efficiency by 
saving degrees of freedom, which can be particularly helpful when the sample size is 
relatively small. Second, it makes the estimation of period 0 prices possible for new 
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items having characteristics that did not exist at that time. Moreover, although the 
underlying assumption is restrictive in theory, many if not most empirical studies 
find the parameters to be fairly stable in the short run. 

Let us compare the proposed time dummy index with the partial hedonic imputation 
Törnqvist index estimated on data from each period separately. Dividing (13) by (5) 
and substituting the expressions for the unmatched items� predicted prices gives 
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where � �∈ ∈
= 0 0

000 /
D DSi Si iikiDk szsz  and � �∈ ∈

= 1 1
111 /

N NSi Si iikiNk szsz  denote the 
expenditure-weighted average characteristics of disappearing and new items. If the 
assumption of constant characteristics parameters (approximately) holds, we expect 
to find 10 ~~�

kkk βββ ≈≈ . For simplicity I assume that 01
MM ss ≈ . Now (17) reduces to 
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Expression (18) does not seem helpful at first sight because the time dummy index 
δ�exp)( =HTDP  appears on the right-hand side. However, it underlines the fact that, 

from an imputation point of view, δ  in (7) is viewed as a common shift parameter 
needed to justify the pooling of data from two data sets, pertaining to two periods, 
under the assumptions of constant characteristics parameters and independently and 
identically distributed errors. Stated otherwise, under these assumptions δ�  is merely 
an estimator of 01 αα − , and )(HTDP  is likely to differ only marginally from PHITP . 

)(HTDP  is the more efficient estimator due to the pooling of data. 

The choice of weights has to do with representativity. The chosen weights � or any 
other set of weights for that matter � may not be optimal from an econometric point 
of view. Econometrics textbooks recommend the use of WLS to reduce the variance 
of the coefficients if there is evidence of heteroskedasticity. On the other hand, if the 
errors are homoskedastic (as assumed), OLS is preferred in general and WLS could 
introduce some loss in efficiency.8 That would partly compensate the efficiency gain 
resulting from the pooling of data. The problem is of course that by using OLS to 
estimate model (7) on the pooled data we are �running around in circles� because the 
similarity between the (direct) time dummy approach and the imputation Törnqvist 
index (the �indirect� time dummy approach) no longer holds. To avoid interpretation 
problems, the proposed time dummy index might well be the only serious option if 
                                                      
8 If the weights are exogenous, least squares estimators remain unbiased. The weights are not 
truly exogenous since they contain the dependent variable (price) of the model, which makes 
them stochastic variables. This could introduce some bias in the WLS estimators. 
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one wishes to pool cross-section data to estimate a quality-adjusted price index using 
a logarithmic hedonic model. 

The time dummy index essentially imputes �missing prices�. As with any imputation 
method, we have to act as if the data had been generated by the underlying model. In 
this particular case it is assumed that the (log of) prices are generated according to 
model (7). One issue I mentioned earlier (De Haan, 2003, 2004a; Van der Grient and 
De Haan, 2003) keeps bothering me. Suppose we find empirically that the weighted 
average residuals of the unmatched items in expression (16) differ substantially from 
zero. If the number of unmatched items is sufficiently large, this could be taken as 
evidence of systematic patterns in the unmatched items� residuals. This suggests that 
the assumption of a zero expected value of the errors is violated, so that estimating 
(7) by least squares regression produces biased parameter estimators. Isn�t there an 
inconsistency in assuming that the (log of) prices are generated according to model 
(7) and at the same time finding that the observed (log of) prices of the unmatched 
items differ systematically from their model-based predictions? De Haan (2003) has 
argued that the direct time dummy approach cannot cope with such systematic price 
effects of unmatched items and suggested to incorporate dummy variables for those 
items. But that is beyond the scope of this paper. 

6. Empirical illustration: PCs 

The effect of the use of the �wrong� regression weights on the time dummy index is 
an empirical matter. This section presents empirical evidence for PCs using scanner 
data from market research company GfK. The monthly data on prices (unit values), 
quantities sold and product characteristics cover the entire Dutch consumer market 
during 1999-2001. A comprehensive data description can be found in Van der Grient 
(2004). 

Individual PC models are usually identified by model numbers or, as in our case, by 
bar codes assigned by the manufacturers. A specific model sold in different outlets 
does not necessarily yield the same utility to the consumer. PCs having identical bar 
codes but sold in different types of outlets are therefore treated as different items. 
Six outlet types are distinguished in the data set, e.g. chains, buying combinations, 
independents, and specialized stores. The latter are responsible for the greater part of 
PCs sales. The market for PCS is an extremely dynamic one. On average only two 
thirds of the items are matched between adjacent months. Because the best selling 
items have a relatively long �lifetime�, the average monthly expenditure share of the 
matched items is somewhat higher and amounts to 0.8. To give an example: only 5% 
of the items stay on the market for more than a year, but they account for 30% of 
total turnover. 

New PC models often have new features, e.g. a �faster� processor. The time dummy 
index deals with this by estimating and imputing base period prices for such models. 
This poses theoretical problems, however, if the new technology was not available 
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in the base period. This will be particularly problematic when the base period and 
the current period are far apart. Apart from that, it seems undesirable to maintain the 
assumption of constant parameters for a long time span in highly dynamic markets. 
High-frequency chaining is inevitable here. So unlike Silver and Heravi (2004), who 
compute direct indexes, I will estimate monthly chained indexes. This may not be 
without problems either because PC sales exhibit a seasonal pattern.9 As is well 
known, seasonality might create drift in monthly-chained indexes. 

The semi-log time dummy models include dummy variables for both brand and type 
of outlet. See De Haan (2004b) for some (OLS) regression results. Most coefficients 
differ significantly from zero at the 5%-level and their signs are in accordance with a 
priori expectations. No evidence of heteroskedasticity was found. The adjusted 2R  
does not exceed 0.71, which is rather disappointing. This may be due to the fact that 
only a limited number of technical or performance characteristics, such as type of 
processor and availability of a monitor, are available in the data set. Unobserved 
relevant characteristics could give rise to omitted variables bias. 
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Figure 1. Monthly chained price indexes for PCs (January 1999= 100) 

 
Figure 1 depicts four series of monthly-chained price indexes. The first two series 
pertain to WLS time dummy hedonic indexes, estimated with the proposed weights 
and the weights suggested by Diewert (2003), respectively. The third series pertains 
to the OLS time dummy index and the fourth series to the matched-item Törnqvist 
index 
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∈∏= , where t
iMs  is the share of i in the period t 

expenditures of the matched-items. The latter two series are added for comparison. 

                                                      
9 This is true at the aggregate level. However, since most models are available on the market 
for less than a year, it is difficult to speak of seasonality at the level of individual items. 
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All indexes have similar trends and point towards large declines in quality-adjusted 
PC prices, as expected. The time dummy index estimated with the �wrong� weights 
falls at a faster rate than the proposed time dummy index, although the difference is 
very small compared to the huge price decrease itself. In January 2002 the index 
numbers are 31.84 and 34.57. This result indicates that new and disappearing items 
had a combined downward effect on the quality-adjusted index. 

The use of the matched-item Törnqvist index would have led to an annual average 
upward bias of 1.5%-points during the three-year period. Surprisingly, the OLS time 
dummy index, despite being an unweighted index, performs quite well. 

7. Conclusion 

Using a simple framework this paper argues that the time dummy hedonic index can 
be interpreted as a special case of the hedonic imputation Törnqvist price index if 
the regression weights are properly chosen. The weights for the unmatched (new and 
disappearing) items suggested in the recent literature on hedonics are twice as large 
as they should be if the aim is to estimate a generalized Törnqvist index. The choice 
of weights most likely affects the index for high-turnover goods like computers. An 
empirical illustration on scanner data for the Netherlands indicated that the use of 
the �wrong� weights would have underestimated the monthly chained time dummy 
index for PCs during 1999 � 2001 by some 2.7 index points. 
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