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Abstract
In this paper we introduced a descriptive approach to measuring price and 
volume change. This is based on a framework of a transaction economy, 
defining the outcome of  an economy simply as a set  of  transactions in 
price-quality  space.  We  will  discuss  what  theoretical  and  practical 
implications our aim of decomposing the aggregate value change into price 
and volume components have.  We also re-introduce the definition of a 
flexible estimation function that,  used for separating the quality change 
and new goods problem from the index number problem, tries to measure 
the pure price change of individual transactions. We argue that it can be 
operationalized and made use of in guiding existing price index programs 
in statistical agencies.
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1. Introduction

We begin with setting up a descriptive transaction economy consisting of three elements; 
characteristics space that defines all possible transactions, a stochastic economic process 
defined onto that space, and cumulative joint probability distribution of all characteristics 
deduced from the process.  We finish the second chapter with a hopefully illustrative, 
however naive example of a simplified orange economy.  Our initial aim is to prepare 
ourselves to find a good or few good ways of decomposing the value change into what will 
be pure price change and volume change.    

Chapter  three  introduces  the  problem of  decomposing  value  change  into  price  and 
volume components and discusses solutions conditional of knowing certain aspects of the 
underlying population.  In four, we propose a family of practical solutions. We feel that 
being consistent in applying quality adjustment methods, separately from applying any 
index number formula, is a virtue itself and may also ease to operationalize the use of such 
methods into index compilation by statistical agencies. 

We also discuss some of the issues raised in Diewert [2003],  and how these relate to 
estimation in the transaction economy framework.  In particular,  we re-raise  issues  of 
weighted regression, time indicator models and restricted coefficients. With this respect we 
generally side, although for reasons stemming from different premises, with Pakes [2003] 
and make use some of his arguments to justify our stand as well.

Since price index is supposed to measure the price change of same goods, we suggest that 
only  reasonable  way  of  doing  this  is  to  mimic  the  conditions  of  goods  and  services 
transacted in one period and ask how much the price would have been in another period. 
This is the carrying theme of our paper and we will show different ways of of doing this in 
the transaction economy framework – first directly in the characteristic space and later 
with  conjunction  classification  and  relating  information  on  the  relative  importance 
between the classification groups. 

Our  approach  is  by  now  means  an  original  one.  Quality  adjustment  literature  has 
proposed hedonic imputation methods for a long time. The works of Erwin Diewert, Jack 
Tripplett, Yrjö Vartia, Ariel Pakes, and Mick Silver, just to name a few, have greatly 
influenced the author's thinking far beyond the bibliography referred in this paper. We 
are  privileged  to  have  interacted  with  them.  A  major  difference  from  mainstream 
hedonics in our approach is  that  we are not particularly interested in two somewhat 
common issues: how the price of a transaction changes as a result of unit change in each 
characteristics,  and  on  estimating  the  supply  and  demand  functions  for  each 
characteristic.  We  also  acknowledge  that  the  reason  for  our  descriptive  statistical 
approach may well stem more from ignorance rather than full appreciation of economic 
theory's applicability. Our premises and reasoning are more practical of nature. 



2. A Transaction Economy

2.1. Characteristics space

To  fully  appreciate  the  questions  the  transaction  economy  raises  on  price-volume 
decomposition we first need to explain what the hugely complex environment where we 
observe goods and services – the characteristic space – is all about. 

We don't want to restrict anything, neither for practical nor theoretical reasons, in our 
descriptive economy. We begin by listing all possible goods and services in witch money 
transactions can occur and all characteristics that are involved in the transactions with 
these goods and services. For each individual transaction these characteristics will include, 
among other things,  the value of the transaction (price),  the quantity that transaction 
refers to, all physical and non-physical characteristics describing the quality of the good, 
all  characteristics  describing  the  transaction  occasion,  etc.  It  is  this  set  of  K+1 
characteristics  that  span the  Characteristic  space. It  combines all  possible  bundles of  all 
possible characteristics and we call it simply by Ω=(X0,×X1×...× XK). These characteristics 
define what is meant with the same transaction (good) and they are the ones we want to 
control  for  in  the  price  index.  Then there  is  another  set  of  process  characteristics  that 
somehow describe how the economy produces and consumes goods and services. These 
may  include  “variables”  for  individual  tastes,  technologies,  economic  growth,  market 
conditions, etc., which do not affect the definition of a transaction and which we allow to 
change as the economy changes.1  

We assume, that this set of quality characteristics forms the choice set for all transactions. 
It fully describes all possible characteristic bundles, and consists of “quality” and price 
characteristics.  In  particular,  the  space  can  be  =X × P ,  where  P refers  to  a 
continuous  non-negative  nominal  scalar  value  of  the  transaction  and  X=(X1,...,XK) 
generally to all other quality characteristics.  

There are some remarks that should be made. First, so far we haven't paid any attention 
to actually measuring these characteristics, nor for them being numeric in any way. For 
example, quality characteristics (or subset of characteristics) describing the shades of color 
blue  or  ones  indicating  the  proximity  and  nature  of  five  closest  mid-priced  Indian 
restaurants are as valid characteristic as any others. At this point all we want to claim that 
all these characteristics are defined in the set {X1,...,XK}.  

In sequel, we are not interested in the goods themselves until we get to issues of sampling 
and classifications. Instead we define everything in the characteristic space. Needless to 
say, the characteristic space is a very complex, multidimensional, discrete space. It is just a 
set of characteristics that fully defines the choice set for all possible transactions within the 
phenomena we are  dealing  with.  The characteristics  space  defines  all  possible  price-
quality combinations within the domain in question, whether it's the economy of Europe 
Ω1, consumer purchases in England Ω2, or HP laptops with 17” wide screen sold to small 
businesses in East-London Ω3. These are all just parts of the original characteristic space 

1 In this paper we will not discuss further which of the quality, technology, taste or utility characteristics 
should be treated as quality characteristics in the definition of a transaction and which as process 
variables. In practice it depends on the use of the index and the theoretical index we are trying to 
mimic. If we hold everything constant we easily end up just stating that if everything today (period t) 
was as it was yesterday (t-1), then everything would be as it was yesterday and there would be no 
room left for any pure price change.



and clearly 2⊂1, 3⊂2 and 2∩3=∅ .

It should be clear that we do not want to simplify anything at the outset – apart from the 
notation, maybe. The quality characteristics describe not only the physical goods – which 
themselves are bundles of characteristic having 'attributes' in certain neighborhoods of Ω 
– but also the conditions describing the transactions. For example, in the retail market 
information on a rebate campaign of a competitor across the street could be included in 
the characteristics  of  transactions  made  in  all  other  stores  as  well,  if  this  is  seen  as 
characteristic that we want to control for. Similarly, we could also  include dimensions 
defining utility, technology, production costs, tastes – provided that they are conceptually 
seen as characteristics we want to hold constant in a pure price index. This means that the 
Ω can also include the amount of utility and cost each transaction poses to the individual 
participants  of  any  given  transaction  at  any  time.  These  characteristic  are  clearly 
something that we will have difficulties to control for and it may not always be clear which 
are ones that we should hold constant and which should be included as process variables.2

Characteristic  space  also  defines  what  classifications  are  all  about:  finding  “similar” 
characteristic bundles together to form individual goods (varieties,  models,  types, uses, 
etc.),  and further  aggregating  these  into  product  groups  and industries  based on the 
context of the economy. The use of classifications is of course elementarily important in 
practice.

2.2. Economy and process characteristics

Having  defined  the  complex  choice  set  we  next  move  to  the  actual  process  of  how 
transactions are created onto Ω. Since we are only interested in the descriptive, though 
very precise, nature of the economy we simply say that there exists a stochastic data 
generating process that describes how each transaction comes into existence! We feel it's 
unnecessary to define this process precisely since it would require several assumptions on 
the process domains and measurability of variables as well as all the possible paths the 
process  could  take.  It  would  mean  that  the  process  needed  to  accommodate  for  all 
interactions  of  all  individual  demand  and  supply  functions  of  all  economic  agents, 
economic  growth,  etc.  If  the  characteristic  space  was  a  complex  construction,  this 
stochastic process would well be described as the mother of all stochastic processes! 

We only define the realizations of the economy at time t as a set of transactions occurred 
during the period. The outcome is thus defined as a set of transactions in  Ω and, for 
illustration's sake, let's assume that we could describe all characteristics numerically. Each 
outcome could then be written as a N t×K1 matrix H t=[ p t ' xt ] where the rows 
represent the transactions and columns refer to the characteristics.  We call  the set  of 
individual transactions the process actually creates each period as an outcome of the economy 
at  time  t.  The outcomes  we  observe  in  time  is  then  time-ordered  sequence  of  these 
outcomes. Further, the nominal  size of the economy  is simply the sum of all transactions 
associated to each period: V t=∑ P i

t .

2 It is very difficult to estimate what the price of a pair of 2002 designer jeans would be in 2006 if they 
were they still in fashion, or what the utility of an old computer would be today if it still were a state-
of-the-art computer.



Let us be clear that we are not trying to say that this is a particularly useful approach to 
economic theory, since it would be, de facto, a theory of everything! Knowing the stochastic 
process would allow us to answer almost any questions in economics and also describe the 
precision of our answers. Economics would reduce to the study of this stochastic process. 

Randomness of the economy. It should be clear that uncertainty of the outcome, the 
non-systematic  part  of  the stochastic  process,  of  the economy probably  increases  the 
further in future we look. In particular, the uncertainty of the next time period, given the 
outcome of the process up to that point is smaller that the uncertainly of forecasting the 
outcome ten periods ahead. This is the result of the process responding to endogenous 
and exogenous factors (competition, legislation, population growth, labor strikes, bird flue 
pandemics, earthquakes, innovations, etc.) that affect the 'parameters' of the process and 
the observed transactions (new regions in Ω).  

2.3. Joint distribution

Having defined the outcome of  an economy,  we claim that the underlying stochastic 
process sets a joint probability distribution for the individual transactions in Ω. It is a very 
very  complex probability  distribution and  changing  in  time.  We are  not  particularly 
interested  in  the  whole  joint  distribution  itself  but  individual  marginal  distributions 
conditional on time. Further, we will actually be most interested only in the first  two 
central moments of very special conditional marginal distributions. The distribution only 
shows the relative event probabilities of the points in the characteristics space at any given 
time. All this means is that that the event probability for a neighborhood in the Ω defining 
e.g. brand new T-Fords is zero today, as it was for corresponding area defining Porsche 
Cayannes  100  years  ago.  The  distribution  just  defines  the  reduced  form (statistical) 
dependencies within the characteristics space. 

We call this conditional cumulative join distribution simply as

(2.1) F P , X∣T= t ≡F t P , X .

The distribution tells us how the possible individual outcomes, the points P i
t , X i

t∈
are distributed in the characteristic space. Now that's all we need for the moment. As an 
example and only for visual illustration's sake we have used marginal multinormal density  
distributions in picture 1 below showing an imaginary contour plot of two consecutive 
periods where the dimension of  X is  just 1. This  description of the economy is just a 
reduced  form  statistical  model  describing  the  transactions  in  terms  of  their  event 
probabilities. For example Brachinger [2003] develops statistical theory of hedonic price 
indices based on a similar approach.  



Picture 1. Contour plots of density distributions F t−1P , X  and F tP , X 

From the picture we can point out several aspects of what has happened in this particular 
– and particularly simple – economy. First,  clearly the average (expected) price of all 
transactions has decreased and the expected 'quality' defined by X has increased. Second, 
we can tell that the dispersion, both in X and in P have increased. Finally, we also notice 
that another aspect of the covariance structure has changed: the correlation between  P 
and X differ in time. Note, that with this information only we cannot tell anything about 
the change in the nominal size of the economy: it may have stayed exactly the same, 
increased or decreased. 

The  marginal  distribution  in  characteristic  space  can  well  show  that,  for  example 
relationship between some quality characteristics and utility changes in time. This is not 
so far fetched since we are convinced that the author gets only dis-utility from a ten year 
old computer he paid $2.000 at the time of the transaction. Clearly, the 'preferences' have 
changed in time! (And so have the budget constraint, technology, variety of computers, 
etc.) Another example of marginal distribution's time dependency is when new technology 
is introduced. Whether we want to condition on utility (or production technology) or only 
on technical quality characteristics is a matter of debate.

2.4. An orange economy

Before going on we want to make a simple example that could clarify the nature of the 
construction above.  Let's  take a  quick look  what  this  simple  formulation holds.  Let's 
assume  that  our  two-period  economy  consists  of  only  oranges  and  therefore  only 
transactions in both time periods involve oranges! Now, there are two types of oranges: 
Class I and Class II. However, let's assume that for some reason we cannot observe the 
difference between the two and the oranges are the only product in the economy! Our 
characteristics space is a set of continuous price, and the indicator variables for  CI and 
CII: =P×CI×CII  and the characteristic vectors refer to (P, CI, CII). We now let 
our economy run both periods and observe the outcomes on both periods. 

Period 1. 3 Class I oranges all exchanged at price of 5 and 2 Class II oranges at price 8.
Period 2.  2 Class I oranges all exchanged at price of 5 and 3 Class II oranges at price 8.



The outcomes of the economy are the following two sets of transactions in  :

{5,1,0 ,5,1,0 ,5,1,0 , 8,0,1 ,8,0,1} for period 1 and
{5,1,0 , 5,1,0 ,8,0,1 ,8,0,1 ,8,0,1} for period 2.

Alternatively, the outcome of the two-period economy is set of outcomes in 4-dimensional 
space, now including time dimension receiving values 1 or 2 is:

{5,1,0,1 ,5,1,0,1 ,8,0,1,1 ,8,0,1,1 , 8,0,1,1 ,
5,1,0,2 ,5,1,0,2 ,8,0,1,2 , 8,0,1,2 ,8,0,1,2}.

Now, from the outcome we can estimate the conditional  probability density functions 
(point  probability  distributions)  for  each  period:  { P  X=1,0∣t=1=3/5 and

P  X=0,1∣t=1=2 /5 }for  period  1  and  { P  X =1,0∣t=2=2/5 and 
P  X =0,1∣t=1=3/5 }. Note, that the probability distribution doesn't seem to be 

affected by prices, but that is of course not true. It's the properties of the stochastic process 
(complex process  affected by interactions of demand, supply, competition, technology, 
economic growth, etc.) that determine the shape of the distribution.

Now, let's  see what happened in our aggregate “orange economy”: the total value of 
transactions on the two periods were ∑  pi

1=31 and ∑  p j
2=34 . The economy 

has nominally grown 3 price units and the value change is V 2/V 1=34 /31. Since prices 
of oranges have clearly not changed, a Laspeyres price index should show no price change 
and we should assign all  of  this  change as volume change.  Clearly, making sure and 
applying  a  Paasche  quantity  index  we  confirm  that  we  get  the  same  result:

p2⋅q2/ p2⋅q1=5,8⋅2,3/5,8⋅3,2=34 /31 . However, we have a problem since the 
index is now defined for two different qualities, instead of the original single good, orange! 
Clearly the quantity of oranges has remained the same, 5 oranges per period while the 
average price increased from 6.2 to 6.8. 

Although  determining  between  the  two  classes  of  oranges  does  not  seem to  pose  a 
problem at this simple economy, in reality the changes in the probability distribution  is a 
real and difficult to measure problem. While the value change is relatively easy to measure 
and compile, what should we do with measuring price change and volume change? In the 
next chapter we will discuss the problem in more detail in the context of the transaction 
economy.

3. Defining the Problem

Now that we have defined the joint distribution in the characteristics space we can move 
to our main theme of volume–price decompositions. Recall that the nominal size of the 
economy at  any time was defined as the sum of  each and every monetary exchange 
transacted during that period.  Our aim is  to find both theoretical  and later  practical 
solutions of describing the evolution of the economy in terms of price and volume. In 
traditional index number theory price and quantity indices are determined jointly, but we 
argue that due to the complexity of the characteristic space we are forced to define the 
volume as a residual. Diewert [2004] also talks about this separation of finding a good 
price measure from that of quantity measure and we believe that in practice this is the 
only feasible way of measuring the volume change.



3.1. On volume change

Our aim is to decompose the value change of our transaction economy into price and 
volume components. This can be done in several ways but for deflation purpose we first 
define  pure price change as the change along the price characteristic axis of  Ω alone from 
one period to another while holding all  other characteristics constant.  That change – 
whether observed or theoretical – is due to the stochastic process and the process variables 
running the economy. The change in volume is then defined as the residual of  value 
change after controlling for pure price change. Volume then includes the net value effect 
of  changes  in  everything  else  in  the  economy:  quantity,  quality,  (taste,  technology, 
competition, etc).

We think this is a useful approach since there are so many changes that contribute to the 
volume change that it will not be possible to try to measure them all directly. Also, price is 
the only common and measurable characteristic to all transactions and basis for the value 
concepts. Without complicating the picture too much with problems of measuring the 
price in practice, it can usually be measured more accurately than most of the rest of the 
characteristics. 

We defined the value of the economy as sum of transactions, not the product of prices and 
quantities, as usually. This sum of course can be written in terms of price and quantity, 
either with number of multiple transactions at specific points in X or with summation of 
common quantity measure of otherwise identical transactions. We will get back to this 
later. Now, the value change can be defined either with original currency prices or in log-
prices (relative change):

(3.1)

V t /V t−1=∑ Pi
t /∑ P j

t−1

=∑ E P i
t∣X tei

t

∑ E P j
t−1∣X t−1e j

t−1
or

ln [V t /V t−1]≡∑ ln P i
t /∑ ln P j

t−1

=∑ E  ln pi
t∣X tei

t

∑ E  ln P j
t−1∣X t−1e j

t−1

and our interest  will  be how to decompose these into pure price change and volume 
changes as price and volume indices:

(3.2) V t /V t−1=Pt−1
t P , X ×Qt−1

t P , X  or
ln [V t /V t−1]=ln P t−1

t P , X ln Qt−1
t P , X  .

3.2. “Full information” 

We think it's  a legitimate question to ask how would we measure the changes in the 
economy  if  the  statistical  agency  knew  all  details  of  every  single  transaction  in  the 
economy. Hence we first consider two “full information” cases. The reason for this is that, 
depending  on  our  target  index,  the  way  we  calculate  the  index  from  a  sample  of 
observations may be affected3. Second reason for examining the underlying probability 
distribution and the outcomes of the economy is that it will shed light to what we are 
trying to achieve when we base our index number calculations on a sample. 

In the first full information case we assume that we actually knew the conditional marginal 
probability  distribution  in  two  consecutive  periods,  i.e.  that F t−1P , X  and

3 The basic difference being that the first one produces relative of averages –indices and the second one 
average of relatives –indices. See Section 4.X. 



F tP , X  are known.  Note, that in this case we have no information on the size of the 
economy since the distribution doesn't  give us any hint of how many transactions the 
stochastic process produced each period. Nor do we know anything on the individual 
outcomes of the economy, the actually observed outcomes. However, we do know what is 
the expected price of any point in X on each period since this is just the first moment of 
conditional distribution of F t P∣X  .  

In the second full  information case, we assume to also observe all  transactions in the 
economy. Now we assume to know both the outcomes of the economy, i.e. the matrices 

H t−1=[ p t−1 x t−1] and H t=[ p t xt ] and  the  conditional  expectations4.  Would  our 
measure for pure price change in this case be any different? 

Distributions known.  In the first  case of  know conditional  marginal  distributions, 
natural candidate for the measure of overall pure price change would be calculating it 
based on four conditional “price expectation points”:

(3.3) E [P t−1∣E  X t−1] , E [P t∣E X t] and E [P t−1∣E  X t] , E [P t∣E  X t−1] . 

In picture 2 below these points refer to A and B for the first set and C and D for the 
second one. Using the rule of moving along P-axis only for the pure price change, a good 
choice would be the distance between the conditional price expectations, conditioned on 
an average quality point. Which one of the two should we choose, or should we take an 
average of the two? If we want to fix everything at the base period t-1 , then the pure price 
index  could  be  the  distance  (log-difference)  or  relative  of  the  expected  prices:

C−A: h t X t−1−P t−1 or ht X t−1/ P t−1 .  Identically,  we  could  fix  for  the  current 
period t quality and B−D : P t−ht−1 X t or P t /ht−1 X t or take an average of the two 
differences or relatives5. Alternatively, had we information on the joint distribution F(P, 
X,T)  we  could  use  the  unconditional  expectation  E(X,T)  as  the  point  in  which  we 
measure the pure price change.

Picture (2). Pure price change when distribution E P∣X , t  is known.

4 Assuming that the characteristics can meaningfully be assigned numerical values. Otherwise we just 
mark them as two sets of known characteristic arguments. 

5 These indices will, as one might expect, be the hedonic Laspeyres, Paasche and Fisher indices and 
their geometric counterparts. We will get to then in more detail in chapter 4. 



Above, the function ht x ≡E P∣X ,T= t  is the true conditional expectation of price 
for period t.

Let's  assume  we  don't  know the  joint  distribution  in  time.  Hence,  to  get  the  most 
representative  quality  point  we  will  propose  that  the  pure  price  change  with  known 
marginal price distribution should be an average of the base and current fixed period 
measures. For the geometric average of the two relative geometric changes we can write:

(3.4)  P t−1
t Fi = ln ht X t−1

ln ht−1 X t−1
×

ln ht  X t
ln h t−1 X t

or

(3.5)
ln P t−1

t Fi =1
2
[ln ht X t−1−ln ht−1 X t P t− Pt−1]

=1
2
[ln ht X t−1− P t−1 P t−ln ht−1 X t]

.

The arithmetic counterpart using arithmetic average of the two is similarly:

 (3.6)  P t−1
t Fi =1

2
[h

t  X t−1
ht−1 X t−1

ht X t
ht−1 X t

] .

We will  get back to the geometric means later and propose that when estimating the 
function h we could actually estimate the logarithmic transformation of price in the first 
place so that lnP = p. 

Transactions known.  In the second case we could proceed exactly the same way. 
However, the situation is different in two accounts. First, since we assumed we knew all 
transactions as well as the marginal distributions we now have a degree of randomness in 
the price index reflecting the actual realization of the stochastic process. Should we take 
this  into account  or only describe the underlying process? Second,  we also know the 
relative importance of the aggregate economy at the two periods. How, if at all, should 
this information affect our ideal price measure? 

Now, in (3.4) we could simply replace the distribution parameters E P t , X t with the 
known occurred population parameters  X t , P t . This may differ from the distribution 
parameters, while the function ht  x  stays the same. 

Alternatively, we could calculate the index based on the individual transactions. For the 
base period fixed quality type index we could choose a geometric or arithmetic average 
change along the price-axis :

(3.7) ln P t−1
t = 1

N t−1 ∑
ln ht x it−1

t 

ln P i
t−1

or P t−1
t = 1

N t−1 ∑
ht x it−1

t 

Pi
t−1

.

Picture  (3)  describes  the  situation  again  in  the  simplistic  2-dimensional  multinormal 
distribution  case.  For  the  geometric  case  imagine  that  the  price  axis  is  measured  in 
logarithms.  



Picture (3). Pure price change when all transactions are known

To use all the information we have, we propose that, just as in the first full information 
case, a good and meaningful measure would be to take an average price changes of all 
transactions from both periods. In the logarithmic case this would mean:

(3.8)

ln P t−1
t = 1

N t−1N t
[∑

ln ht xit −1

t 

ln P i
t

∑ ln Pi
t−1

ln ht−1 xit

t 
]

= N t−1

N t−1N t ∑
ln ht  xit−1

t 

ln P i
t  N t

N t−1N t ∑
ln Pi

t−1

ln ht−1 xi t

t 

=
1

N t−1N t [∑ ln P i
t−∑ ln P i

t−1∑ ln ht−1 xit−1
t −∑ ln ht  xit

t ]

.

This just says that the grand geometric average uses N t−1 price relatives of observations 
from  the  base  period  and N t price  relatives  from  the  second.  It  is  relatively 
straightforward to show that, assuming some simplifications, this is an identical formula to 
well-known and in may ways recommendable Törnqvist price index formula:

(3.9) ln P t−1
t T = 1

N
∑ 1

2
v j

tv j
t−1ln

P j
t

P j
t−1

 , where

the weights are value shares of transactions of J different types of “products” and prices 

geometric average prices within each “product” in both period: v j
t =∑

i

Pij
t /∑

j
∑

i

P ij
t

and  ln P j
t= ln P ij

t .  The  characteristics  space  is  partitioned  and  we  may  observe 
different  number  of  transactions  in  all  partition  cells  in  both  periods  but  still  have 
observation of all J products in both period. Defined this way, ordinary price index theory 
concerns non-problematic part  of  the actual measuring.  In picture 4 we illustrate the 
overall average of N t−1N t price relatives once more.



Picture 4. Overall average of price relatives

Note, that the idea follows those of the Laspeyres and Paasche indices of reprising the 
same set of transactions in two time periods. Alternatively, from using average prices we 
could assume that we have multiple transactions in the “same” characteristics space points

x i
t−1 . Then we could write it in term of ps and qs. The qs would only tell us about the 

shape of underlying point probability distribution and is reflected in the formula (3.8) 
automatically! This, of course takes away the whole idea of quality change both within 
and between the partition of Ω into J products/groups. However, this in fact the case in 
many real life situations when we need to collect data on prices, quantities and qualities. 
However,  in  the  transaction  economy  it  will  only  be  a  question  of  sampling  a 
representative sample, not a question of whether weighting the sample or not! 

In practice we have an idea (from separate survey data at aggregated level) of the relative 
importance of products or product groups. These are typically value estimates we use to 
aggregate elementary indices further and we treat them separately. But products are just 
regions in X and product groups are combinations of these regions. So we have a rough 
idea of the shape of the (density) distribution of X at an aggregate level, where we can't 
control the detailed characteristics6. The question in practice is then more to do with the 
elementary aggregates and how to control the quality at this level.  So, in practice we 
separate the overall (P,X) distribution to individual implicit regions and hope there are no 
systematic price – quality dependencies between the regions other than their relative share. 
However, provided that we have the information on all transactions of the economy, the 
formula (3.8) is valid for example for the overall CPI or PPI.

The  price  indices  statistical  agencies  produce  do  not  have  the  lone  purpose  of 
decomposing the overall value change from period to period. The price index itself and its 
sub-indices  have  important  uses  as  such.  Second,  the  procedure  of  first  computing 
elementary  aggregate  indices  for  nearly  homogeneous  products  and  then  aggregating 
them together using appropriate weights for their relative importance is the usual way in 

6 We will miss some information. For example, there may be a substantial substitution effect between 
products within a group, that would mean that we can't fix the “quality” at enough detailed level when 
forming the price relatives. 



index compilation – dictated by the available data. This is perfectly compatible with the 
transaction economy approach. As described before, we partition the characteristic space 
for products and examine marginal distributions for each partition separately. Using an 
appropriate formula for aggregation  it will not make any difference to our discussion 
earlier. Only difference in the overall price measure would be result of possible cross-
partition  dependencies  that  cannot  be  accounted  for  if  each  partition  is  examined 
independently. This is a risk we're taking in practice, say in the CPI, that we control the 
price change of apples independently of that of cheeses! We take it for granted that the 
apple index would not react to any changes in cheese market conditions, although the 
upper level indices would catch some of the possible apple–cheese “substitution” through 
their weights.

Indeed, the transaction economy approach may be most fruitful (in practical terms) when 
applied  at  the  elementary  aggregate  level  or  at  one  step  more  aggregated  level.  By 
considering only few products at a time, (why not laptops and PC:s together) we can better 
try to find the most relevant characteristics to be used in the estimation of ht x . The 
separation of the two products as separate indices is then just a question of conditioning. 

3.3. Sampling in Ω 

Unfortunately,  the  assumption  of  knowing  either  the  marginal  conditional  price 
distributions or all transactions of the economy in full detail are far from feasible even in 
small local regions of Ω. Instead, we need to compromise in two fronts. First, we do not 
observe prices of all transactions but instead a sample of them. Second, we do not observe 
the quality characteristics in detail either but only a subset – or a set of proxy variables – 
of the true characteristics. The methods of choosing the transactions and measuring the 
characteristics will also affect the degree of quality change we control for the pure price 
change: change along the price axis controlling for changes in everything else. The actual 
price index we get will be influenced by the choices we make both about the sample 
selection and the estimation of the price – quality relation. 

Are we actually sampling transactions or goods? As far as the transaction economy 
is concerned, the main task is to measure the price change of transactions. Goods are just 
more aggregated level “entities” and hence not directly observable in the characteristics 
space. However, in practice the sampling is often applied in at least two or three stages: 
first industries, then products, and finally product variants or varieties (the elementary 
aggregate, still not single points in Ω). (CPI using expenditure survey starting with relevant 
sub-groups:  then  products  and  varieties  sampled  within;  PPI  industry  survey/census 
starting  with  a  certain  digit-level  in  a  product  or  industry  classification:  products  – 
transaction sampled within.) 

The transaction specifications we are interested in are in fact observed only after all these 
sampling  steps.  Regardless  of  how good  our  sample  efficiency  for  a  “representative” 
sample is on the price axis alone or on certain quality characteristics, the sampling frame 
is most likely not efficient to inference the population parameters of the joint distribution 
(P,X) in  the  characteristic  space.  What  we  observe  is  a  sample  of  aggregate  level 
observation P , X  , where X is hopefully relevant measurable characteristics. 

Obviously we cannot measure and control for all relevant characteristics. For example, it 
it difficult to make sure a utility level from a transaction does not change, or control for 
weather's effect for ice cream sales and price (if we deem these to quality variables intead 



of  process  variables).  But,  we  claim,  the  best  we  can  do  is  to  forecast  the observed 
transaction's price at the previous or consecutive period. Whether this forecast is best done 
by  “matched  model”  approach  or  a  large  covariance  model  of  several  products  is 
irrelevant for now. What we want to underline is the idea that we in fact try to mimic one 
period's transaction conditions on another period's price axis conditioning over all quality 
characteristics.  We will  show that  it  is  not  necessary  to  explicitly  condition  over  all 
relevant variables. Instead, we claim that by controlling only for characteristics whose 
average values change is enough for the index to be unbiased provided that the sample of 
goods/varieties provide a representative sample in the characteristics space.  That's the 
sole idea of measuring pure price change in this transaction economy. How alien it is to 
typical statistical agency approach, will be left as an open question. [See also section 4.3.] 

Sample attrition. Since we usually first sample the goods and keep them fixed as long 
as there are transactions associated with that good/variety, we run into problem of not 
finding similar transactions and eventually even similar goods/varieties. The very similar 
problem concerns classifications themselves: when is a new transaction deemed a new 
good, and how should these new goods be classified. Sample attrition refers to sampling at 
one period and not finding the transactions in another period. Generally, this is just an 
outcome of changes  in the occurred transactions in  the characteristics space. The real 
problem of this type of sampling is that we're trying to estimate population parameters 
using a sample from another population (using a sample vector x t−1 from Pt−1 , X 
instead of Pt , X  ). Old computers are not produced and sold any more and personal 
low-flying hydrogen-burning vehicles cannot be observed yet, though they may well be 
defined in the characteristics space. 

In practice, of course, there is other kind of sample attrition as well. Transactions within a 
region may have a relatively large positive probability but none are still not observed for 
various practical reasons. A rotating sample, as used by many statistical agencies, tries to 
tackle this problem.  In the short term the problem is biggest with high technology goods 
but tailored goods and services generally fall into the same category.  

4. Finding a Solution

Based on the full information solution, we already have an idea of how to find a good pure 
price change measure. In this section we first define two types of possible true hedonic 
price indices and then discuss how to estimate them using a sample of transactions. As 
already in Manninen [2004] we re-introduce a simple framework based on a flexible 
estimation  function that  covers most  conventional  quality adjustment  methods.  Later,  in 
section 5, we will discuss how this framework could be operationalized in actual price 
index compilation and how an implementation could instantly bring valuable information 
to guide the general compilation process.  

4.1. The True Hedonic Indices 

Whether we start from a set of axioms or from economic theory (simplifying assumptions 
on the stochastic process) for the true hedonic index, we should be able to verify any 
definition of a  true hedonic  index with the full  information cases in the previous section. 
Alternatively, we might want to  define the true index with the full information solutions 



based on the unknown stochastic process and joint distribution. Either way, we should 
have a true hedonic index in mind as a target index we want to estimate before beginning 
to compile an actual index from a sample of transactions. 

We first offer several possible alternative definitions for Laspeyres index. Let's first return 
to  the  full  information  case  with  known ht x  and  apply  Laspeyres'  classic  idea  of 
holding  base  period  quantity  constant.  Instead  of  just  quantity,  we  now  hold  all 
characteristics  constant  at  base  period,  giving  us  a  natural  choice  for  the pure  price 
measure as  the expected price change at  base period expected/average  quality point

E P t /P t−1∣X t−1 or E P t∣X t−1/E P t−1∣X t−1 . For the first one to be meaningful, 
we would need to define what is meant by P t /P t−1 since it is not an observable measure 
itself but instead a function of the joint distribution.  

Alternatively, instead of changes in the price level, we may want to only measure relative 
changes. In this case log–price change would be a good measure. The true log–Laspeyres 
(or  geometric  Laspeyres)  index  can  then  be  defined  identically  as  log-inverse  of  the 
distance along log–price axis between the conditional expected log–price between periods 
t and t-1 at the expected average quality point E  X t−1 . 

In summary, the true ordinary and hedonic log-Laspeyres indices in this case can be 
defined as:

(4.1)
P t−1

t La=E [P t∣X t−1]/E [P t−1∣X t−1]
=ht  X t−1/ht−1 X t−1=ht  X t−1/ P t−1

and

(4.2)
ln P t−1

t La=E [ ln Pt∣ X t−1]−E [ ln P t−1∣ X t−1]
= ht X t−1−ht−1 X t−1= ht X t−1−ln P t−1 ,

where the ht x  is the conditional expectation of log–price at X=x. 

The formula in (4.1) is essentially the same formula as proposed by at least Brachinger 
[2003] as the true hedonic Laspeyres price index. If we accept this, then Paasche and 
Fisher indices can be defined similarly (e.g. for log–Paasche and Fisher):

(4.3) P t−1
t Pa=

P t

ht−1 X t
and ln P t−1

t Pa= ln P t

ht−1 X t
for Paasche, and 

(4.4)  P t−1
t Fi =h t X t−1

P t−1
×

P t

h t−1 X t
and

(4.5)  
ln P t−1

t Fi =
1
2
[ ht  xt−1−ln pt−1ln pt−ht−1 xt]

=
1
2
[ ln pt−ln pt−1 ht xt−1− ht−1 xt]

for Fisher.

From (4.5)  we see that  the log–Fisher,  if  defined this  way,  can be interpreted as the 
average price difference measured at the average quality points of each period7. In the 
picture 5 above it is the average of C-A and B-D or B-A and C-D.  The interpretation will 

7 Both periods get the same weight in this formulation of Fisher index. 



remain the same if we add 'weights' – in the sense of either multiplicative observations in 
X or as an aggregated level with average prices of “goods” – to the formula. The averages 
will only be weighted averages8. 

Picture (5) Estimation functions 

Alternatively, just as when assuming we also knew the outcome of the economy, we could 
define the two Laspeyres indices as  averages of  price relatives.  As hinted earlier,  two 
versions of Laspeyres index (ordinary and log-Laspeyres) based on the outcome of the 
economy could be defined. For example:

(4.6) P t−1
t La= 1

N t−1 ∑
ht x i

t−1
p i

t−1 or

(4.7) ln P t−1
t La= 1

N t−1 ∑
h tx i

t−1
ln p i

t−1 =ht x i
t−1−ln p t−1 .

By the same logic  we can define Paasche and Fisher  indices.  As  in (3.8)  a  potential 
candidate for a good overall measure is the following geometric (Törnqvist type) index:

(4.8) ln P t−1
t Fi = 1

N t−1N t
[∑ ln P i

t−∑ ln P i
t−1∑ ln ht−1x

i t−1

t −∑ ln ht x
it

t ] . 

Strictly  speaking we cannot  calculate  a  Törngvist  index using transactions  from both 
periods. However, the log-Fisher index would become a Tornqvist in a situation where 
the transactions of both periods are observed in exactly the same points in X. However, 
this  would reduce to the classical  index number problem defined in quality space X 
instead for goods. 

8 In this paper we will not pursue the weighted indices further. 



4.2. Estimating the Hedonic Regression in Ω 

Finally,  the hedonic  regression estimation,  as  already  discussed  in  Manninen [2004], 
involves estimating the systematic part of the conditional price expectation E P t∣X 
from the distribution function F t P , X  . To recall, this distribution was induced by 
the stochastic economic process onto the complex characteristics space. From this joint 
distribution  we  can  implicitly  deduce  the  systematic  and  random  parts

p i
t=E  ln P∣X te i

t . We follow Vartia & Koskimäki [1999] and call the estimate of 
the systematic part simply as: 

(4.9) f t x≡est { E ln P∣X t}=est { hx t} .

Note, that we do not restrict the estimation method in any way. What follows is very 
simple. With hedonic regression, or any other estimation method, we try to approximate 
the distribution's behavior by estimating it with simple parametric functions. To construct 
the sample  versions  of  the true  hedonic  price  indices,  our  unknown function  of  the 
conditional expectation is replaced by the estimate. 

Before applying corresponding sample parameter estimates, three issues of the estimating 
function needs explaining. First, as discussed in 3.3 about sampling in the characteristics 
space, we indicate the relevant observable and measurable part of the characteristics space 
with X . Clearly, it is not necessarily a strict subset of the true characteristics space but 
instead a set of proxy variables that we hope to capture as much of the systematic part of 
the price–quality relation as possible. For simplicity, we drop off the tilde from x but keep 
in mind that the quality characteristic we actually use may or may not enter the 'true 
hedonic model' in the first place. And we will never know it either.9 

Second, we interpret the estimation function in a very wide sense. In particular, we by no 
means want  to restrict  to OLS regression but  instead also leave room for non-linear 
models, non-parametric estimation, guesstimates and so forth. The simple notation hides 
even the most complex and simple estimation methods, as briefly re-introduced in 4.4.   

Finally, while  estimating the f t x  we do not necessarily restrict ourselves to the use of 
data on x t only to the period t, while f t x  is used to forecast prices to that period 
only. For example, estimating a pooled time indicator model we effectively get several 
functions f tx  from one single  estimation .  The use  of  the f t x  is  restricted to 
forecasting only.10 

Now, from (4.1) and (4.2), an estimated hedonic Laspeyres price index could be either 

(4.10)
ln P t−1

t La= ht  X t−1− ht−1 X t−1= ht  X t−1−ln P t−1

 f t xt−1−ln pt−1 or

9 We think this is conceptually an important issue since in reality we will never know the true function. 
Of course, there also exists the best approximation using the x , which could be derived from the

E P t∣ X  . However, this is not the same relation induced by the underlying stochastic process. 
10 While we maintain the main use of hedonic regression in this concept as just another forecast tool, we 

do not claim that it is never useful to estimate structural models. For example, studying wage 
differences between men and women from regression coefficients is perfectly legitimate. It will, 
however, involve other issues of model specification than pure forecast model we consider here.



(4.11)
P t−1

t La= ht  X t−1/ ht−1 X t−1= ht X t−1/ P t−1


f t xt−1
f t−1 xt−1

=
f t xt−1
pt−1

.

Defining the target index according to (4.6) and (4.7), and assuming that our estimating 
function is  defined on log-price and is  linear with respect  to it's  parameters  we have 
similarly:

(4.12)
ln P t−1

t La= 1
N t−1 ∑

ht xi
t−1

ln P i
t−1  1

n t−1 ∑
f txi

t−1
ln pi

t−1

= f t xi
t−1−ln p t−1= ln pt−ln pt−1

and

(4.13) P t−1
t La 1

N t−1 ∑
f t x i

t−1

pi
t−1

= 1

N t−1 ∑
pi t−1

t

pi
t−1

.

With Paasche defined respectively, we get for example a log–Fisher index either as relative 
of averages

(4.14) ln P t−1
t Fi =1

2
[ ln pt−ln pt−1 f t x

t−1− f t−1x
t] or average of relatives

(4.14)
ln P t−1

t Fi =1
2
[ln P t−ln P t−1 ht xt−1−ht−1xt]

1
2
[ ln pt−ln pt−1 f t xt−1− f t−1xt]

. 

4.3. Weights and regression estimation

The questions is now simply how to get a representative picture of the Pt , X  joint 
distributions and, in particular, the conditional expectation of the marginal distribution

E P t∣X  for both periods. With simple random sampling of transactions, we clearly 
cannot have any weight information other that having multiple identical observations in 
X. Using PPS sampling (using population Q :s as size measure) would be more efficient if 
we wanted to estimate the population mean price. However, it may not be the best way to 
choose data for the estimation of the price – quality relation itself. 

Without getting into regression estimation yet, we illustrate this point with an example. In 
an extreme case where,  for  example we knew that the  p  –  x relation  must be linear, 
estimating the regression coefficient efficiently would mean that we divide our sample at 
relevant minimum and maximum points in X, e.g. equally at min xi , max xi , collect 
multiple  prices  for  these  quality  points  and  estimate  the  coefficient.  This  would  be 
arguably be the most accurate way of estimating the linear regression coefficient. Here, 
estimating the relation with weighted least square (WLS) having either the quantities or 
value shares as weights would not make any sense, however the population is distributed 
in X!  



Our  point  is  that  the  regression  estimation  (hedonic  regression)  to  be  used  in  price 
forecasting should be separated from the index number compilation. That would mean 
that the weights reflecting the shape of our quality distribution should be used cautiously 
in regression estimation in the price index context. Hence we take a more skeptical view 
on weighted regression than e.g. Diewert [2003] and deHaan []. Diewert proposed that 
weighted regression should be used on representativity grounds, but why should we, at least 
a priori, believe that weights describing the probability distribution of X should improve 
our estimation of expectation E P∣X  ? In some cases this may be true but we have 
difficulty of finding the benefit of it since the weights could still be used in the actual index 
compilation using the tow sets of now identical transactions – in our view a separate issue 
from the quality adjustment procedure. At least we should be clear what we believe to 
achieve when using  weighted regression.

What  we  mean  by  weights in  the  transaction  economy  can  only  mean  multiple 
observations  at  single  quality  point  or  single  measurable  quality  point,  as  mentioned 
earlier. Since our original characteristics space could be seen almost infinitely fine (we 
can't step to the same river twice), no same transactions can occur! 

To be more realistic, let's assume that we actually have multiple observations in X at least 
in the observable and measurable world, if not necessarily in the true characteristics space. 
Let's also assume that we only observe prices for the very same quality points in the two 
periods but the number of observation in each quality point differ – just as in the “Orange 
economy”  example.  We  can  write  this  as  a  4n  vector   p t−1 , Qt−1 x , pt , Qt x or 
 p t−1 , q t−1 , pt , q t , where Q :s are (n x n) diagonal matrices of quantities,  x is the same 

vector defining the quality points in both periods, and p t=At p t (ordering the p-vector, 
a (n x nt) matrix of ones and zeros that picks the the first “same quality” price from the 
original p-vector).  This is exactly the typical starting point of price index theory! The 
difference to our transaction economy is only notational. Where we would have had p-
vectors  of  different  lengths  referring  to  different  quality  points  pi

t , x i
t in  ,  the  

traditional index number theory restricts it's scope to changes of point probability function 
parameters (the event probabilities of fixed quality points in  X) and allows prices not to 
vary at the same quality point within a time period. Otherwise the analysis is the same but 
not elaborated further. Starting from the formulas in 2.2. and writing them in terms of Q 
one should  end up in more familiar index number formulas for Lapseyres, Paasche and 
Fisher.

4.4. Different estimation functions re-introduced

As already discussed in Manninen [2004], we list the different kind of estimation methods 
anew. As before, all of these methods are special cases of forecasting the prices of one 
period  transactions  to  another  period.  The  forecasting  do  not  have  to  be  based  on 
regression analysis, but we can use all the quality adjustment methods know and fit them 
into the same framework. 

Unit-value indices are often used at the elementary aggregate level. These can either be 
grand  unit-values  over  all  elementary  aggregate  observations  or  unit-values  for  a 
classification within a particular elementary aggregate: 

f t x=at or f t x=atb1
t D1⋯bC

t DC=ac
t , 



where  D:s  indicate  whether  quality  point  x belongs  to  a  class  c.  These  methods  are 
perfectly useful as long as the average quality does not change within the class, in which 
case no quality adjustment is needed in the first place. The unit-value method relies on 
proper classification and requires little information on the transaction characteristics but 
one should note that the unit value methods can also be interpreted as regression based 
forecast models. 

In practice, the method is used with imputing missing observations when no matched 
transaction can be found. In that case we base our price (change) estimate on the average 
price (change) within the classification group, or the next aggregation level, depending on 
our regression model. The estimated price for missing price for transaction i in period t 
would be simply p i

t=at . The unit value method can also be generalized to include the 
full classification system used for an overall index in question at the most detailed level. 

Matched model can also be seen as an estimation. As its name suggest, matched model 
follows the prices of  same transactions.  This  can be presented in terms of  estimation 
function f returning the observed price for each period t. A possible notation of this is 

f t x= pi
t for all transactions for which x i is the same for both periods. The method 

does not utilize data for transactions that do not have matches. In an extreme case (or if 
the  “quality”  could  be  measured  to  a  fine  enough  degree)  it  may  be  impossible  to 
construct a price measure if there are not matching transactions at all. Matching – since it 
implicitly controls for a part of unmeasurable part of characteristic space X – can be very 
useful practice and is  usually the cornerstone method of  statistical  agencies compiling 
price indices. 

Patched  match  model  is  a  matched  model  index  with  imputed  missing  values:
f t x =p i

t , if a match can be found and f t x= x ' t , if not. Pakes [2003] regards 
this type of quality adjustment in one way as the most  accurate. Pakes argues that using 
the  matches  where  possible  decreases  the  variance  of  the  overall  index  but  also 
acknowledges the possible pitfalls. If the conditional expectation for matching (surviving) 
transactions/goods  differ  from the  rest  of  the population,  then  our  price  measure  is 
potentially biased. We could, however, try to estimate the extent and direction of this bias. 

Other methods that use matches whenever possible and other methods for the missing 
prices fall into this category as well. The international price index manuals for CPI and 
PPI  recommend this  kind of  method for  temporarily  missing  prices.  However,  some 
methods  that  are  in  use  are  fundamentally  flawed.  For  example,  in  the presence  of 
changed quality of a transaction, we should not base the price change estimate on an 
estimate of how much of the price change  is due to change in quality. If the price does not 
change, there cannot be any quality change either.  Nor can there be positive quality 
change associated with price decline. 

Regression models were discussed already. The important thing to notice is that any 
regression model  can use  the idea of  imputing all  one  period's  transaction prices  on 
another period, thus creating nt price pairs of equal quality. The index compilation is 
thus separated from the estimation of regression models and hence from quality changes 
and problems associated with new and disappearing transactions/goods. The same rule 
can be applied to pooled regression models as well as adjacent period models, although 
one could derive the price index directly from regression coefficients as well. The resulting 
index numbers will of course stay exactly the same.



  

5. On practicalities of the approach

We actually  believe  that  the  estimation  function  presented  above  can  have  practical 
utility.  In  Statistics  Finland  there's  a  project  on  building  a  price  index  engine,  a 
conceptually coherent yet workable system for compiling and maintaining various index 
number programs. We hope that the estimation function will be, albeit a small detail of 
the whole system, in the core of operationalising the link between sampled elementary 
aggregate item/transaction price–quality data sets from two periods into a meaningful 
constant  quality  price  measure.  The  price  index  engine  begins  with  a  conceptual 
framework describing the real world phenomena and links it with actual data collection 
under suitable classification systems. Using consecutive period matched model approach – 
likely in the form of estimation function – as its basis it defines and associates two constant 
quality elementary aggregate level price data sets for each first level aggregation. Since the 
project is still at a development phase and we have not been closely collaborating for a 
while we refer to Statistics Finland representatives for additional information on the actual 
project's progress. 

5.1. Operating with the estimation function in practice

As briefly described in the Statistics Finland case, the estimation function could be used as 
a  bridge  between  the  data  collection  and  elementary  aggregate  index  calculation. 
Estimation function always  returns “matching pairs”,  whether using period  t  function

f tx  on  period  t-1 transactions, f t−1x  on  period  t transactions  or  both 
simultaneously (perhaps retroactively after  gathering later  period aggregate weights  as 
well). The derivation of individual estimation functions or larger functions for groups of 
elementary aggregates can be programmed into the index application's data manipulation 
applet  and be  integrated into  the data validation process.  A major  benefit  using  the 
estimation function is that this way one can separate the treatment of quality changes, 
missing prices and new goods, as well as sample representativity issues, from the rather 
straightforward actual  aggregation.  A default  method of  matched model  “estimation” 
together with proper implicit  adjustment methods for missing items and replacements 
could probably be used for most product groups. However, regression based estimations 
could be used as an option the index compiler can choose for some more difficult goods. 
While the basic application stays the same hedonic models could be included into the 
estimation function by the user defining the variables included in the regression11.

5.2. To log or not to log?

Which functional  form the  hedonic  regression  takes  place  is  determined  by  the join 
distribution  of F t P , X  since  that  also  describes  the  relationship  of 

E P∣X ,T =t ≡ht x  ,  the hedonic regression surface.  However,  to  determine the 
functional form requires information on all relevant characteristics which we don't have. If 
we accept that in practice we are interested in the forecast model, then all we need to do is 
to find a suitable estimate. We fully agree with Pakes [2005, p. 10] who states that “Any 

11 Of course, initial research on the set of relevant explanatory variables is needed for specifying the 
regression model. However, we believe that this may not need to be very labor intensive nor requiring 
collection of a large number of quality characteristics. 



sufficiently  rich functional  form will  do,  and all  sufficiently rich functional  forms will 
generate approximately the same result.” Similarly there should not be any constraints on 
the  coefficients.  Further,  if  –  and  often  when  –  the  data  suggest  a  logarithmic 
transformation of price to provide a good fit, and practical index compiler's elementary 
index is a geometric average, we could well proceed with forecasting logarithmic prices 
received from OLS estimation. By no means is this necessary but it will give us some 
direct  quantitative  information  on  the  effect  of  quality  corrections.  By  using  a 
decomposition  similar  to  the  Oaxaca  decomposition  we  separate  the  direct  quality 
change,  possible  covariance  effects  between  weights  (if  we  use  a  combination  of 
classification and continuous quality characteristics in the regression) and the pure price 
change.  

5.3. Other issues

We will continue with the transaction economy approach into a few particular directions. 
First, we will combine the classification and regression estimation. Second, we hope to 
discuss the economic approach of index numbers and show what restrictions economic 
theory may pose on the joint  distribution F t P , X  and the conditional expectation 

E P∣X ,T =t  . With that respect, we will discuss the role of process variables and how 
changes in utility and technology could show up in the probability distribution and what 
that means for a theoretical target index. Further, we hope to illustrate how low level 
product indices can be derived from the overall joint distribution describing the overall 
economic frame in question (e.g. CPI, PPI) just by defining the conditioning set. We also 
hope to build a multi-product regression model from real data to demonstrate the use of 
the estimation function in practice. 
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