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Abstract

“Which index formula at the elementary level, where no expenditure share
weights are available, corresponds to a desired aggregate index?” To an-
swer this question, this paper develops a statistical approach. It proposes a
theoretical framework which makes it possible to achieve numerical equiv-
alence of an elementary index with the Laspeyres, Paasche or Fisher price
index. Depending on the price elasticity, different elementary indices should
be applied to different groups of goods in order to approach the desired ag-
gregate index as closely as possible. This is demonstrated empirically in an
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1 Introduction

1.1 Motivation

It is customary in official statistics, although often neglected in theoretical papers,
for most price indices to be calculated in two stages. At the first stage, elementary
indices are calculated on the basis of prices or their relatives, without having
information on quantities or expenditures. At the second stage, the aggregate
index is calculated on the basis of the elementary indices from the first stage,
using aggregate expenditure share weights.

In general, the question of “What should be measured?” directly yields the
optimal index formula at the second stage: for measuring genuine price movements,
a Laspeyres price index is used; for deflation purposes, a Paasche price index
is preferred; and for the “cost of living”, a Fisher price index, among others, is
the formula of choice. However, it is less clear which index formula should be
used at the first stage, where no expenditure share weights are available. The
existing approaches to index numbers including but not restricted to the axiomatic
approach are of little guidance in choosing the elementary index corresponding to
the characteristics of the index at the second stage.

The point in question is “How can the corresponding elementary index be se-
lected?” The answer to this question is found by the proposition of a statistical
approach. A single comprehensive framework, known as “power means”, unifies
the aggregate and elementary levels. With the aid of this approach, theoretical
conditions under which a particular index formula at the elementary level exactly
equals the desired aggregate index are identified and empirically approximated.

The remainder of the paper is organised as follows. It continues with a review
of a selection of the existing literature on elementary indices. Section 2 introduces
basic concepts and approaches in index theory along with a more thorough expla-
nation of the problem at the elementary level. Both the theoretical foundations
of power means as well as the application to the Laspeyres, Paasche and Fisher
price indices and their corresponding elementary indices are presented in detail in
Section 3. The results of an empirical application using data from German foreign
trade statistics are to be found in Section 4. The final section concludes.
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1.2 Literature Review

After a long period of research into aggregate formulas and an almost equally
long policy debate in Europe and the US on whether the Laspeyres or Fisher
formula should be used for a consumer price index (cf. Boskin et al., 1996, 1998,
and Schultze and Mackie, 2002), the focus of attention has recently moved more
to the question of which index formula should be used at the elementary level.
Nowadays, the capabilities of modern computers and the increasing coverage of
data, first and foremost, through the advent of scanner data, enables statistical
offices to calculate more refined price indices even at the elementary level (cf.
Silver, 1995, Silver and Webb, 2002, Feenstra and Shapiro, 2003, Diewert, 2004,
and Proceedings of the Meetings of the Ottawa Group).

Diewert (2004), and Diewert and Silver (2004, 2008) devote whole chapters in
the CPI, PPI and XMPI manuals to elementary indices. They deal with virtu-
ally all topics that arise around the calculation of price indices at the elementary
level. Theoretical issues, such as the problem of aggregation, are covered as well as
practical questions, such as numerical relationships between different elementary
indices. They continue by outlining the classical approaches in index theory, i.e.
the axiomatic, economic, sampling and stochastic approaches (cf. Subsection 2.3
for a discussion of all four approaches), and discuss the use of scanner data (cf.
Subsection 5.2 for an outlook on a prospective study). Currently, there is an active
ongoing discussion at Eurostat’s Working Group on Harmonisation of Consumer
Price Indices – more specifically, in the Task Force on Sampling – on which index
formula is to be used at the elementary level (cf. EC, 2001, Section I). The Com-
mission Regulation (EC, 1996, Article 7 in conjunction with Annex II) abandons
the use of the Carli index but allows the use of either the Jevons or Dutot index
(cf. Subsection 3.1.1 for the definitions of the formulae). More precisely, the Carli
index is not prohibited de jure but de facto as it would have to be shown that the
results do not differ by more than one-tenth of a percentage point from either the
Jevons or Dutot index (cf. the next-but-one paragraph for empirical evidence and
Subsection 3.1.2 for the mathematical relation).

Balk (1994) discusses the index formula problem at the elementary level. He
questions whether ratios of average prices or an average of price relatives, and
which type of average, i.e. arithmetic, geometric or harmonic, should be used.
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Turvey (1996) addresses the same problem. He also presents empirical evidence
that recalculations of elementary indices with different index formulae give signif-
icant changes in aggregate CPIs, annually by more than two percentage points, in
Finland, Sweden, Canada and France. The use of unit values (cf. Subsection 3.1.1
for a formal discussion) at the lowest level in a price index is analysed by Balk
(1998), which is commonly taken for granted to be an appropriate method of ag-
gregation for prices of homogeneous goods. He tries to answer the questions of the
conditions under which a group of goods is sufficiently homogeneous to warrant
the use of unit values, and if one needs to restrict the use of unit values to homoge-
nous goods alone. In the context of foreign trade, Silver (2008) criticises the use
of aggregate indices which are calculated from unit values at the elementary level
in favour of pure price indices. He reveals substantial biases of customs-based unit
values: they depend on the structure of quantities and hence, cannot be considered
surrogates for survey-based prices.

Szulc (1989) describes the fact that biases at the elementary level are more
severe than the pros and cons of the formula at the aggregate level. He finds
that if one ignores the particularities of the aggregate index when calculating ele-
mentary indices, this might result in surprisingly low differences between different
aggregate indices. This is because the indices at the elementary level might not
be paying attention to the characteristics of the index formula at the aggregate
level, in particular if the same elementary indices are used as building blocks of the
aggregate index – no matter which aggregate index should be used. In his 1994
paper he presents numerical evidence for the Canadian CPI that the choice of the
elementary index matters the most, particularly in the short term. Dalén (1992,
1995) discusses the impact of the choice of the wrong index formula at the elemen-
tary level in the Swedish CPI. Statistics Sweden switched over to the Carli index in
January 1990. As soon as April it was replaced by a variant of the geometric index
due to the well-known severe upward bias of the Carli index – of more than half a
percent in these three months. Using Swedish and Finnish data, he shows in his
1998 paper that the Carli index consistently gives results which are year-on-year
two index points and more larger than the Dutot and Jevons indices, while the
latter two indices are fairly close to each other. Fenwick (1999) presents evidence
that the UK HICP, which is based on the Jevons index at the elementary level,
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is annually about half a percentage point lower than the national equivalent, the
Retail Prices Index, which uses a combination of the Dutot and Carli indices, only
because of the different formulae. His main argument for this notable difference is
the relative broad item description, leading to aggregation of highly heterogeneous
items. Silver and Heravi (2007) show that the difference between the Jevons and
Dutot indices is due to different variances in the observed prices at different points
in time alone, i.e. these indices will differ if prices exhibit dispersion. From a hedo-
nic regression they derive a heterogeneity-controlled Dutot index and successfully
test their approach empirically with scanner data.

2 Aggregate Indices

2.1 First Principles

At the aggregate level, the target of measurement determines the index concept
to be used. This is either the cost of goods (COGI) or the cost of living (COLI).
In general, the former case leads to Laspeyres (1871) and Paasche (1874) price
indices, while the latter results inter alia in the Fisher (1922) price index – other
formulas include the Walsh (1901, 1921) and Törnqvist (1936) price indices.

The Laspeyres price index is the arithmetic mean of price relatives with base
period expenditure share weights. Here, pib and qib denote the price and quantity,
respectively, of the ith good at time b ∈ {0, t}.

P L =

n∑
i=1

pit

pi0

pi0qi0∑n
i=1 pi0qi0

=

∑n
i=1 pitqi0∑n
i=1 pi0qi0

(1)

This is the only price index which ensures the principle of pure price comparison
(cf. von der Lippe, 2001) over multiple periods by using a fixed basket of goods
and which is consistent in aggregation (Subsection 2.2 provides a discussion of this
property).

For volume measurement, one would opt for the Laspeyres quantity index QL,
with QL = V/P P , where V is the ratio of expenditures at times t and 0 or the
value index and P P is the Paasche price index. One might call QL a (volume)
index in constant prices (COPI). The Paasche price index is the harmonic mean
of price relatives with current period expenditure share weights.
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P P =

(
n∑

i=1

(
pit

pi0

)−1
pitqit∑n
i=1 pitqit

)−1

=

∑n
i=1 pitqit∑n
i=1 pi0qit

(2)

This is the only price index leading to volume measures in constant prices which are
consistent in aggregation and purely comparable over multiple periods (Laspeyres
principle for the quantity index).

The Fisher price index, among others, is a superlative index. It is defined as
the geometric mean of the Laspeyres and Paasche price indices.

P F =

√√√√√
∑n

i=1
pit

pi0

pi0qi0∑n
i=1 pi0qi0∑n

i=1

(
pit

pi0

)−1
pitqit∑n

i=1 pitqit

=
√

P LP P (3)

This is the most famous price index approximating the change in the minimum ex-
penditures, which preserve utility at a constant level, owing to changes in (relative)
prices (cf. Allen, 1975).

2.2 Two-staged indices

In what follows, the relation between the elementary and aggregate level of two-
staged indices is analysed. Firstly, two-staged indices with the same index formula
at both levels are described. Secondly, as in the practice of official statistics,
different index formulae are applied at the two levels.

While the Laspeyres and Paasche price indices are consistent in aggregation,
the first source of aggregation bias arises from the fact that the Fisher price index
is not. This means that the result of a two-staged index calculation does not
necessarily coincide with that of a calculation in a single stage. However, as
Diewert (1978) shows, superlative indices, such as the Fisher price index, are
approximatively consistent in aggregation. Still, the remaining inconsistency can
lead to puzzling results. The one-staged index is not necessarily restricted to lie
in-between the elementary indices of a two-staged calculation. Even though all
elementary indices show decreasing prices, i.e. P F

k < 1 ∀ k (P F
k being the Fisher

price index for the kth group of goods), the aggregate index can show increasing
prices, i.e. P F > 1, and vice versa. Additionally, von der Lippe (2007) proposes
the Equality Test and shows that even if all elementary indices are equal, the
aggregate index can differ.

Page 6 of 42



Much more severe than this defect of the Fisher price index is the second source
of aggregation bias which occurs when statistical offices cannot use a quantity or
expenditure-weighted formula at the first stage of the aggregation process. Ow-
ing to the unavailability of this information they have to rely on an unweighted
index which might not reflect the characteristics of the index formula at the ag-
gregate level. This elementary index bias is equally applicable to the Laspeyres
and Paasche price indices as well as to the Fisher price index, no matter which
unweighted index is used. A two-staged index with a non-according formula at
the elementary level, e.g. P (J)L, the Laspeyres price index with Jevons indices
as building blocks, can lead to a different conclusion than the true price index.
Similarly, as before, one can have decreasing prices with the two-staged index, i.e.
P (J)L < 1, while the true price index shows increasing prices, i.e. P L > 1, and
vice versa. This becomes even worse for the Fisher price index which, in addition,
if it is calculated in two stages, can lie outside the bounds of the true Laspeyres
and Paasche price indices, i.e. P (J)F > P L or P (J)F < P P . Both scenarios are due
to the fact that the elementary indices may not even be close to the desired tar-
get index. Hence, more attention should be paid to the calculation of elementary
indices.

2.3 Index Theory

From an index theoretical standpoint, there exist four approaches which offer guid-
ance in the choice of an index formula at both the aggregate and elementary levels.
These are the economic, axiomatic, stochastic and sampling approaches and they
are described below.

The economic approach gives a microeconomic interpretation to consumer’s
optimising behaviour. Konüs (1924) develops this approach and derives the cost
of living index as the solution to a cost minimisation problem. Moreover, he shows
that the upper and lower bounds are, in general, the Laspeyres and Paasche price
indices: P P ≤ P COLI ≤ P L. A COLI measures the change in the minimum ex-
penditures in order to maintain a given level of utility and hence, substitution
between goods is permitted. In practice, these indices are approximated by su-
perlative indices, such as the Fisher price index, as discussed in Diewert (1976).
This approach assumes that timely information on quantities or expenditures is
available. Page 7 of 42



The Fisher price index is typically the preferred formula from the viewpoint of
the axiomatic approach, too. The axiomatic approach states properties which an
index formula should desirably fulfil and checks which axioms are actually fulfilled.
Eichhorn (1978), and Diewert (1995) discuss this approach to elementary indices
in detail. However, the elementary and aggregate levels are treated individually.
In order to fill this gap, an integrated approach for two-staged indices would be
desirable. The importance of axioms in general depends heavily on the target of
measurement (the possible target indices are introduced in Subsection 2.1) and,
to some extent, on personal preferences.

Selvanathan and Prasada Rao (1994) describe a stochastic approach to index
numbers in general. In this approach, the price index is the least squares estimator
of a weighted regression of price relatives, enabling the calculation of standard
errors and confidence intervals. The shortcoming of this approach is that it does
not distinguish the fit of the model from the sampling error. The variance of an
estimator is rather the expression of the heterogeneity of the price representatives
forming the group of goods. One should not take the lowest variance as a measure
for determining the most suitable index. Thus, this approach is not designed for
judging the adequacy of an index formula. In any case, its main purpose lies in
international comparisons.

The sampling approach for elementary indices is presented by Balk (2005).
This approach studies elementary indices as sample estimators of unknown popu-
lation price indices and the required sampling design for unbiasedness. Under an
appropriate sampling scheme, both the Dutot and Carli indices can be justified
as sample counterparts of the Laspeyres price index. The appropriate sampling
scheme in both cases is “probability proportional to size” (PPS) sampling. For the
Dutot index to equal the Laspeyres price index, the price representatives should be
sampled according to their quantities in the base period. Should the Carli index
equal the Laspeyres price index, the appropriate PPS weights are base period ex-
penditures. This approach has the merit of making it possible to achieve numerical
equivalence of an elementary index with the desired target index, i.e. E(P D) = P L

or E(P C) = P L. The demerit is that the informational requirements (quantities
or expenditures) are generally not met by statistical offices. If they were met, the
desired target index could be calculated directly.
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Thus, owing to the aforementioned limitations, none of these four approaches
is followed here but a new, fifth approach is proposed. Although a different path
is trodden, the goal which is to be achieved is the same as that of the sampling
approach: numerical equivalence. The following statistical approach using power
means does not rely on PPS but on simple random sampling (SRS), which requires
much less additional information and is easier to implement.

3 Corresponding Elementary Indices

3.1 Theoretical Foundations

In order to achieve numerical equivalence between an elementary index and an
arbitrary aggregate index, a statistical approach is developed. In Subsection 3.1.1
it is firstly demonstrated that every weighted index can be expressed one-to-one
and onto as a “power mean”, as long as the former satisfies the strict mean value
property. The power mean represents a whole class of unweighted elementary
indices, such as the Carli and Jevons indices. However, an analytical derivation
of the concrete power mean of a weighted index, aggregate or elementary, is not
possible without further assumptions. Hence, secondly the log-normal distribution
is introduced in Subsection 3.1.2 and the power means – which correspond to the
Laspeyres, Paasche and Fisher price indices, as well as to the Dutot and unit value
indices – are related to the distribution’s parameters. Although, at that stage,
one would be able to numerically calculate elementary indices, corresponding to
the desired aggregate ones, the present paper goes one step further and gives an
economic interpretation to the parameters through a partial adjustment model in
Subsection 3.1.3. Thirdly, the log-normal distribution parameters are related to
the price elasticity. Finally, it is shown in the succeeding Subsections 3.2 and 3.3
that the choice of the elementary indices which correspond to the desired aggregate
ones can be based on the price elasticity only.
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3.1.1 Power Mean

Right at the very beginning, Lemma 1 is needed for the discussion of the problem
at the elementary level. Proof for this and all following lemmata and theorems are
to be found in the Appendix.

Lemma 1. The price indices of Laspeyres and Paasche as well as the Fisher
price index, Equations (1), (2) and (3), respectively, pass the Mean Value Test of
Eichhorn and Voeller (1976):

min

(
pit

pi0

)
≤ P ∗ ≤ max

(
pit

pi0

)
, (4)

where P ∗ stands for any of the three price indices. This test says that the price
index should be greater than or equal to the lowest price relative and less than or
equal to the highest one, with equality if and only if all price relatives are equal.

Given this, the problem of choosing the elementary index corresponding to the
Laspeyres, Paasche or Fisher price indices becomes solvable. To this end, it is
shown that every weighted aggregate index can be written as an unweighted power
mean of price relatives.

Definition 1. Let pit/pi0 denote the price relative of the ith good at time t, where
i = 1, 2, . . . , n and n ≥ 2. Furthermore, all price relatives are assumed to be
positive real numbers, 0 < pit/pi0 <∞∀ i. Then, their power mean is defined as

P r = r

√√√√ 1

n

n∑
i=1

(
pit

pi0

)r

. (5)

By choosing the appropriate powers r, the resulting power means equal some
of the most important elementary indices (cf. Table 1). Figure 1 exemplifies the
typical shape of the power mean as a function of its argument r. Its analytical
properties are stated in Lemma 2.

Lemma 2. The power mean is a mapping from the affinely extended real numbers
R ∪ (−∞, +∞) on the closed interval [P min, P max], or technically speaking

P r : R ∪ (−∞, +∞)→ [P min, P max]. (6)
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Figure 1: Power Mean of Price Relatives

From these intermediate results, the following theorem is deduced.

Theorem 1. If not all price relatives are equal, ∃ i �= j : pit/pi0 �= pjt/pj0, i.e.
the trivial case of perfect homogeneity is neglected, then for any aggregate index
P ∗ that satisfies the mean value property there exists one and only one real r for
which the power mean is numerically equivalent,

∃! r ∈ R : P r = P ∗. (7)

Theorem 1 provides the basis for the following derivation of the corresponding
elementary indices in the case of the Laspeyres, Paasche or Fisher price indices
as desired aggregate indices. An intuitive interpretation of the theorem goes as
follows. The aggregate index P ∗ lies between the smallest and largest price relative,
P min and P max, respectively. The power mean P r covers the whole range between
these two price relatives. Moreover, it is a continuous function and hence, it has to
take on the value of the aggregate index at least once. Uniqueness of the power r is
secured through the proposition that not all price relatives are equal and therefore,
the power mean is a strictly monotonic increasing function in r.

Table 1 depicts some of the most frequently used formulae at the elementary
level (cf. Subsection 3.3 for the definitions of quadratic means).
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Table 1: Power Means and their Formulae
r Power Mean Price Index Formula
−2 reciprocal quadratic – P r(−2) =

√
n/
∑n

i=1(pi0/pit)2

−1 harmonic Coggeshall (1887) P h = n/
∑n

i=1(pi0/pit)

0† geometric Jevons (1863, 1865) P J = n
√∏n

i=1(pit/pi0)
1 arithmetic Carli (1764) P C =

∑n
i=1(pit/pi0)/n

2 quadratic – P r(2) =
√∑n

i=1(pit/pi0)2/n
† The Jevons index is the limit of P r as r approaches zero.

Another very famous formula at the elementary level is the one of Dutot (1738),
the ratio of arithmetic mean prices:

P D =
1
n

∑n
i=1 pit

1
n

∑n
i=1 pi0

. (8)

Carruthers et al. (1980) show that this index is related to the Jevons index to the
second order via P J ≈ P D[1 + Var(p∗0)/2−Var(p∗t )/2], where Var(p∗0) and Var(p∗t )

are the variances of the relative deviations of the prices from their arithmetic mean
in the respective periods: νib = (pib/p̄b)−1, b ∈ {0, t}. Hence, the two indices will
closely approximate each other if the variance of the prices remains constant over
time. For this reason, the Dutot index is frequently put on a par with the Jevons
index.

Drobisch (1871) proposes another index which is of importance at the elemen-
tary level. This is the ratio of unit values or the unit value index:

P UV =

∑n
i=1 pitqit/

∑n
i=1 qit∑n

i=1 pi0qi0/
∑n

i=1 qi0
. (9)

Note that the summation of quantities must be defined and should be economically
meaningful. The unit value index is an elementary index in the sense of being a sur-
rogate for a price index (cf. Silver, 2008, and von der Lippe and Mehrhoff, 2009).
Using the theorem of von Bortkiewicz (1923), Párniczky (1974) derives criteria un-
der which the unit value index equals the Paasche price index, while Balk (1998)
does this for the Fisher price index. They arrive at the following expressions for the
ratio of the unit value index to the two indices: P UV /P P = 1 + relCov(p0, qt/q0)
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and P UV /P F =
√

[1 + relCov(p0, qt/q0)][1 + relCov(pt, qt/q0)], respectively, where
relCov(X, Y ) = Cov(X, Y )/[E(X)E(Y )]. For the unit value index to equal the
Paasche price index, at least one of the following criteria has to hold: a) all
base period prices have to be equal, b) all quantity relatives have to be equal, or
c) there is no correlation between base period prices and quantity relatives. In the
case of the Fisher price index, the situations a) and c) have to hold for current
period prices as well. For the reason of Lemma 3, the unit value index is not a
price index in the classical meaning.

Lemma 3. The unit value index in Equation (9) violates the mean value property
from Equation (4).

However, with respect to its importance in both consumer prices and foreign
trade, it will be analysed along with power means and the Dutot index in the next
subsection.

3.1.2 Log-Normal Distribution

The power r in Subsection 3.1.1 cannot be derived analytically without making any
further assumptions. Based on Theorem 2, a closed form solution is provided as to
which power corresponds to a given aggregate index as well as to the practically
relevant Dutot and unit value indices.

Theorem 2. Under weak assumptions on the underlying data generating pro-
cess, which are outlined in the proof (cf. Appendix), prices pib and quantities qib,
b ∈ {0, t}, are jointly log-normally distributed:

[
pi

qi

]
∼ LN

([
μp

μq

]
,

[
Σp,p Σp,q

Σq,p Σq,q

])
. (10)

Upon this, an explicit formula is derived by which the power can be computed
directly from the log-normal distribution parameters. In Subsection 3.1.3, these
distribution parameters will be linked to the price elasticity.

The characteristic run of the log-normal distribution can be inferred from Fig-
ure 2.
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pib

qib

f(pib, qib)

Figure 2: Joint Log-Normal Distribution of Prices and Quantities

The assumption of a quadrivariate log-normal distribution of prices and quanti-
ties seems reasonable and predecessors are found in the literature. Moulton (1993),
and Dalén (1999) use the log-normal distribution assumption for price relatives,
while Silver and Heravi (2007) use it for prices in their own right. Note that the
latter assumption is a generalisation of the former one. Log-normal distribution of
price relatives is a direct consequence of log-normal distribution of prices. In fact,
for power means the results are the same from either of the assumptions. However,
it would not be possible to analyse the Dutot and unit value indices without the
more general assumption.

The link between the power mean, and the Dutot and unit value indices on the
one side, and the log-normal distribution parameters on the other side is built in
the following theorem.

Theorem 3. The power mean in Equation (5) corresponds to the rth root of the
rth raw moment of the marginal distribution of price relatives, which is also the
log-normal distribution. It follows that

P r = exp

(
μpt − μp0 + r

σ2
pt

+ σ2
p0
− 2σpt,p0

2

)
. (11)
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The Dutot index in Equation (8) is the ratio of the first raw moments of the
marginal distributions of current and base period prices. One finds that

P D = exp

(
μpt − μp0 +

σ2
pt
− σ2

p0

2

)
. (12)

The unit value index in Equation (9) is found to be a ratio of ratios. The ratios,
either in the current or base period, are those of the first raw product moment of
the marginal distribution of prices and quantities and the first raw moment of the
marginal distribution of quantities. This results in

P UV = exp

(
μpt − μp0 +

σ2
pt
− σ2

p0
+ 2σpt,qt − 2σp0,q0

2

)
. (13)

From Theorem 3, it can be seen that the Carli index (r = 1), unlike the Jevons
index (r → 0), is an increasing function of the variance of the price relatives.
Hence, a mathematical argument for the upward bias of the Carli index compared
with the Jevons index is given through this: the more heterogeneous the goods
become at the elementary level, the higher will be the bias.

Theorem 4 establishes the link between the Laspeyres and Paasche price indices
and the log-normal distribution parameters (cf. Subsection 3.3 for the solution in
the case of the Fisher price index). Moreover, it firstly gives an exact expression
for the power mean corresponding to either of the two price indices, and secondly
shows to which power mean the Dutot and unit value indices relate.

Theorem 4. The Laspeyres price index corresponds to the ratio of the first raw
product moment of the marginal distribution of current period prices and base
period quantities, and the first raw product moment of the marginal distribution of
base period prices and quantities. It turns out that

P L = exp

(
μpt − μp0 +

σ2
pt
− σ2

p0
+ 2σpt,q0 − 2σp0,q0

2

)
. (14)
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The Paasche price index’ correspondence is the same as the one of the Laspeyres
price index but with the difference that here there are current period quantities
instead of base period ones. It becomes

P P = exp

(
μpt − μp0 +

σ2
pt
− σ2

p0
+ 2σpt,qt − 2σp0,qt

2

)
. (15)

Equating P r from Equation (11) with P L and P P from Equations (14) and (15),
respectively, and solving for r yields after some algebra:

P r = P L ⇐⇒ rL =
σ2

pt
− σ2

p0
+ 2σpt,q0 − 2σp0,q0

σ2
pt

+ σ2
p0
− 2σpt,p0

, (16)

P r = P P ⇐⇒ rP =
σ2

pt
− σ2

p0
+ 2σpt,qt − 2σp0,qt

σ2
pt

+ σ2
p0
− 2σpt,p0

. (17)

Finally, the Dutot and unit value indices from Equations (12) and (13), respec-
tively, are related to the power mean as follows:

P r = P D ⇐⇒ rD =
σ2

pt
− σ2

p0

σ2
pt

+ σ2
p0
− 2σpt,p0

, (18)

P r = P UV ⇐⇒ rUV =
σ2

pt
− σ2

p0
+ 2σpt,qt − 2σp0,q0

σ2
pt

+ σ2
p0
− 2σpt,p0

. (19)

3.1.3 Partial Adjustment Model

Next, the implied power r of the Laspeyres and Paasche price indices as well
as of the Dutot and unit value indices, Equations (16) and (17) in addition to
Equations (18) and (19), is connected to the price elasticity derived from a partial
adjustment model as in Definition 2.

Definition 2. It is assumed that there exists an equilibrium quantity traded for
each good i = 1, 2, . . . , n and time b ∈ {0, t}. This quantity is related to the
price of the good, which, in turn, is assumed to be predetermined, and to other,
strictly exogenous variables, such as time dummies or a trend. The parameter ηq

i

is a panel fixed effect, accounting for unobserved heterogeneity in the data.

ln qib = α + β ln pib + xibδ + ηq
i (20)
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The adjustment to the equilibrium in Equation (20) is assumed to be both incom-
plete and erroneous. This is mirrored by the introduction of lagged quantity and
an i.i.d. error term. Here, β∗ := (1− ρ)β denotes the effective price elasticity.

ln qib = (1− ρ) ln qib + ρ ln qib−1 + εq
ib

= (1− ρ)α + β∗ ln pib + ρ ln qib−1 + xib(1− ρ)δ + [(1− ρ)ηq
i + εq

ib] (21)

Prices are assumed to follow a panel AR(1) process:

ln pib = γ0 + γ1 ln pib−1 + (ηp
i + εp

ib). (22)

Three remarks have to be made regarding the chosen model. First, the implied
cross-price elasticity in Equation (20) is zero. Second, the underlying equilibrium
price elasticity β is attenuated by sluggish adjustment of quantities. Third, owing
to the problem of identification with observed data on prices and quantities, the
estimated effective price elasticity β∗ has to be understood as being the one of the
supply-demand equilibrium rather than the one of demand. As the focus of this
paper is on the effective price elasticity only, it is referred to simply as the price
elasticity in what follows.

Using Equations (21) and (22), the covariance matrices can be derived subject
to the model parameters. The results are collected in Theorem 5.

Theorem 5. The covariance matrices Σp,p and Σp,q = Σ′
q,p of the log-normal

distribution as given in Equation (10) are as follows (the elements of Σq,q do not
appear in the calculation of the power r):

Σp,p =

[
σ2

pt
σpt,p0

σpt,p0 σ2
p0

]
= σ2

p

[
1 γt

1

γt
1 1

]
, (23)

Σp,q =

[
σpt,qt σpt,q0

σp0,qt σp0,q0

]
= β∗σ2

p

⎡
⎣ 1

1−ργ1

γt
1

1−ργ1(
γt
1−ρt

1− ρ
γ1

+ ρt

1−ργ1

)
1

1−ργ1

⎤
⎦ . (24)

In the derivation of Equations (23) and (24) use was made of the weak station-
arity assumption, especially of stationarity in covariance.
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3.2 Laspeyres and Paasche Price Indices

It turns out that the solution to the problem of corresponding elementary indices
depends on the empirical correlation between prices and quantities. In particular,
the power r is a function of the price elasticity only. The succeeding theorem
summarises the results for the Laspeyres and Paasche price indices (again, cf.
Subsection 3.3 for the solution in the case of the Fisher price index) as well as the
Dutot and unit value indices.

Theorem 6. Combining the equations relating the power mean to the log-normal
distribution parameters, Equations (16), (17), (18) and (19), with those relating
the log-normal distribution parameters to the model coefficients, Equations (23)
and (24), gives the final results:

rL = −β∗ 1

1− ργ1

≈ −β∗, (25)

rP
t→∞−−−→ β∗ 1

1− ργ1
≈ β∗, (26)

rD = 0, (27)

rUV = 0. (28)

From Theorem 6, the general results for the power mean are as follows. A
power mean with power r equal to minus the price elasticity (−β∗) yields ap-
proximately the same result as the Laspeyres price index. Hence, if the price
elasticity is minus one, for example, the power must equal one and the Carli
index (cf. Table 1) at the elementary level will correspond to the Laspeyres
price index as target index. This can be seen in the simplest form from the
following example: from qi0 = q̄0/pi0, where q̄0 is an arbitrary constant, follows
P L = [

∑n
i=1 pit(q̄0/pi0)]/[

∑n
i=1 pi0(q̄0/pi0)] =

∑n
i=1(pit/pi0)/n = P C. However, if

the Paasche price index should be replicated, the power of the power mean must
equal the price elasticity, in the above example minus one. Thus, the harmonic
index gives the same result and therefore, in this case it should be used at the
elementary level.
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Under the assumption of stationarity in covariance (cf. Subsection 3.1.3), the
Dutot and unit value indices both equal the Jevons index. But if price dispersion
takes place in reality, violating this assumption, the indices will differ. This is even
more the case for the unit value index than for the Dutot index.

3.3 Fisher Price Index

The Fisher price index is derived from the Laspeyres and Paasche price indices as
their geometric mean. Owing to the symmetry of the power means which corre-
spond to the Laspeyres and Paasche price indices, a quadratic mean corresponds
to the Fisher price index. In Definition 3 the properties of quadratic means in
general are presented.

Definition 3. A quadratic mean of price relatives of order q is defined as follows:

P q =

⎛
⎜⎝

1
n

∑n
i=1

(
pit

pi0

) q
2

1
n

∑n
i=1

(
pit

pi0

)− q
2

⎞
⎟⎠

1
q

(29)

The index defined by Equation (29) is symmetric, i.e. P q = P−q = P |q|. Fur-
thermore, it is either increasing or decreasing in |q|, depending on the data. Both
characteristics can also be seen from Figure 3. Note that a quadratic mean of
order q, P q, should not be mistaken for the quadratic index, P r(2) (cf. Table 1).

q
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P q

�
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Figure 3: Quadratic Mean of Price Relatives
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Dalén (1992), and Diewert (1995) show via a Taylor series expansion that
all quadratic means approximate each other to the second order. However, as
Hill (2006) demonstrates, the limit of P q if q diverges is P∞ =

√
P minP max. He

concludes that quadratic means are not necessarily numerically similar.
For q → 0 the quadratic mean becomes the Jevons index. For q = 1 a hybrid

index results, which was first described by Balk (2005) and independently devised
by Mehrhoff (2007) as a linear approximation to the Jevons index by crossing the
implicit quantities of the Carli and harmonic indices, which explains the name.
Implicit quantities are derived by equating the Carli index to the Laspeyres price
index and the harmonic index to the Paasche price index; these are the inverses
of base and current period prices, respectively (cf. Subsection 3.2). Lastly, one
arrives at the CSWD index (Carruthers, Sellwood and Ward, 1980, and Dalén,
1992) for q = 2, which is the geometric mean of the Carli and harmonic indices.
Table 2 contrasts these indices.

Table 2: Quadratic Means and their Formulae
q Quadratic Mean Formula
0† Jevons P J = n

√∏n
i=1(pit/pi0)

1 Hybrid P H =
∑n

i=1

√
(pit/pi0)/

∑n
i=1

√
(pi0/pit)

2 CSWD P CSWD =
√∑n

i=1(pit/pi0)/
√∑n

i=1(pi0/pit)

3 cubic P q(3) = 3

√∑n
i=1

√
(pit/pi0)3/ 3

√∑n
i=1

√
(pi0/pit)3

4 quartic P q(4) = 4
√∑n

i=1(pit/pi0)2/ 4
√∑n

i=1(pi0/pit)2

† The Jevons index is the limit of P q as q approaches zero.

Applying the preceding definitions gives the final result which is stated in
Theorem 7.

Theorem 7. A quadratic mean of order two times the absolute price elasticity
corresponds to the Fisher price index:

P F ≈

√√√√( 1

n

n∑
i=1

(
pit

pi0

)−β∗)− 1
β∗ (

1

n

n∑
i=1

(
pit

pi0

)β∗) 1
β∗

= P q(2|β∗|). (30)

The approximate equality in Equation (30) follows from Equations (25) and (26)
in conjunction with Equation (5).
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4 Findings in Foreign Trade Statistics

4.1 Data Description

For the purpose of illustrating the methodology outlined here, an application to
scanner data for homogeneous goods would be suited best because information on
both prices and quantities at the elementary level would be necessary. Unfortu-
nately, scanner data are not available for the German CPI. Hence, as an empirical
application, data from German foreign trade statistics are analysed as an alterna-
tive. The source of these data is the German Federal Statistical Office. At the
time of frontier crossing, movements of goods in special trade are to be reported
for statistical purposes; with member states of the European Union in the Intra-
stat system, and with non-member states via the customs’ Single Administrative
Document (EC, 2006). Declarations are to be made according to the Commodity
Classification for Foreign Trade Statistics and consist inter alia of the goods’ values
and quantities, the latter generally in terms of the weights. Based on these decla-
rations, albeit not derived from homogeneous goods, unit values are calculated at
the elementary level as p̃ib = (

∑n
i=1 pibqib)/(

∑n
i=1 qib), b ∈ {0, t}, which, in turn,

form the basis for the succeeding analysis.
Owing to the nature of collected data, their structure is repeated cross-sections

rather than a panel. Repeated cross-sections arise by independent cross-sectional
surveys at consecutive points in time. Unlike in price statistics, it is not ensured in
foreign trade statistics that the same goods are observed over time. The coverage
of the universe of goods is time-varying and it is not possible to establish a one-to-
one correspondence between goods over time. In this case, Deaton (1985) suggests
estimation to be performed on a pseudo panel. This is averaging the data within
a cohort, where a cohort is a group of goods sharing common characteristics and
every good belongs to one group and one group only which is the same over time.
Here, unique transactions are aggregated at the lowest level available, that is their
reporting level: the eight-digit code of the Commodity Classification. These lower
level aggregates are the individual observations which are nested at the four-digit
code level to form an upper level aggregate.
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The data set covers 1,264 pseudo panels (nests) consisting of 12,948 groups of
goods (cohorts), for exports as well as for imports, and a total of 1,839,384 obser-
vations over the period January 2000 to December 2007. Only goods measured in
kilograms – these are about three-quarters of all goods – are included in the anal-
ysis. The data, unit values in e1,000 per 100 kg (hereafter “prices”) and weights
in 100 kg (hereafter “quantities”), are transformed into their natural logarithms.
Although the goods at the elementary level are not homogeneous, they are treated
as if they were for the following analysis.

4.2 Regression Results

As weak stationarity of prices and quantities is assumed in the derivation of cor-
responding elementary indices (cf. Subsection 3.1.3), panel unit root tests are
performed prior to estimation in order to test the validity of this assumption. In
particular, these are the test of Levin, Lin and Chu (LLC, 2002), Breitung (2000),
Im, Pesaran and Shin (IPS, 2003), augmented Dickey and Fuller (ADF, 1979), and
Phillips and Perron (PP, 1988). The first two assume a common unit root process
under the null hypothesis and no unit root under the alternative. The last three,
by contrast, test the null hypothesis of an individual unit root process against
the alternative of some cross-sections without a unit root. The latter two tests
for panel data are derived as a combination of their time series variants using the
results of Fisher (1925). Included in the test specification are individual effects
and individual linear trends. Lag lengths, if necessary, are selected automatically
based on the Schwarz information criterion; if applicable, the spectral estimator’s
bandwidth is selected according to Newey and West (1994) using the Bartlett ker-
nel.

As can be seen from Table 3, the tests show stationarity of both prices and
quantities for almost all panels in exports as well as in imports. Throughout,
quantities perform better than prices, and exports and imports do equally well.
That not all of them are stationary is largely due to non-unity power of the tests.
Thus, the issue of (co-)integration can safely be ignored for the remainder of the
analysis.

Page 22 of 42



Table 3: Percentages of Stationary Panels at the 5% Significance Level
Exports Imports

Test Prices Quantities Prices Quantities
LLC 89.81% 94.82% 90.46% 93.07%
Breitung 84.47% 90.88% 85.66% 92.26%
IPS 93.34% 97.70% 92.50% 97.72%
ADF 93.51% 97.78% 93.07% 98.04%
PP 96.87% 98.72% 96.88% 99.36%

The price elasticity β∗ is estimated in the framework of the log-linear partial
adjustment model given in Equation (21) by means of dynamic panel data one-step
system GMM (Arellano and Bover, 1995, and Blundell and Bond, 1998). Neither
time dummies nor a deterministic trend are included. Prices are assumed to be
predetermined and are instrumented accordingly. The instrument set is collapsed
in order to reduce the instrument count.

The overall results are fairly robust to different specifications of the model
(inclusion of dummies or a trend), choice of instruments (limited lag depth) and
estimation methods (fixed effects or difference GMM). Thus, only results which
are derived from the above set-up are reported.

After adjusting for outliers, 1,246 panels in exports and 1,249 in imports re-
main. The distribution of the price elasticity in exports and imports can be gath-
ered from Figure 4. The histograms show positive excess kurtosis, or leptokurtosis,
for exports as well as for imports. Compared with the associated normal distri-
bution, the peak around the mean is more pronounced, i.e. there is a higher
probability of values near the mean, and the tails are fatter, i.e. there is a higher
probability of extreme values. However, the distributions look both quite unimodal
and symmetric. The distribution of imports lies slightly more to the right than
the one of exports.

As a goodness-of-fit measure, a Pseudo-R2 = Corr2(ln qib, ln q̂ib) is used. This is
the squared coefficient of correlation between observed and fitted values with the
obvious interpretation of explained variance of a regression of observed on fitted
values and an intercept.
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Figure 4: Density Histogram (Bin Width = 0.1) and Normal Density Plot of β∗

The most important descriptive summary statistics are collected in Table 4.
The average price elasticity (β∗) for exports is −0.99, ranging from −3.9 to 1.1.
Adjustment to the equilibrium is strong with the adjustment parameter (1 − ρ)
being 0.80 on average, lying in the range from 0.0 (no adjustment) to 1.6 (over-
adjustment). The goodness-of-fit measure is high at 0.51 on average, covering the
whole range from 0.0 to 1.0. The results for imports are almost the same with the
notable difference of the average price elasticity, which is −0.89, i.e. a significant
0.1 point lower than for exports. Adjustment and goodness-of-fit are as strong as
for exports. Yet results for imports are less stable than those for exports. This is
due to higher heterogeneity of observed data owing to the large number of different
countries from which German companies import goods.
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Table 4: Descriptive Summary Statistics of the Partial Adjustment Model
Exports Imports

Statistic β∗ 1− ρ Pseudo-R2 β∗ 1− ρ Pseudo-R2

Mean −0.9911 0.8014 0.5060 −0.8877 0.8071 0.5116
Variance 0.3055 0.0466 0.0775 0.3055 0.0425 0.0748
Minimum −3.8923 −0.0157 0.0001 −3.3727 0.0491 0.0000
Maximum 1.0826 1.6344 0.9961 1.9547 1.4127 0.9850

Persistence of the process of prices given in Equation (22) is relatively low; on
average, the autoregressive parameter γ1 is 0.17 for exports and 0.19 for imports,
thus rendering the simplification of Theorem 6 valid.

More important than the regression results itself are their implications for price
statistics. These are summarised in Tables 5 and 6, respectively, in terms of the
proportions to which each of the elementary indices corresponds to the Laspeyres,
Paasche and Fisher price indices for panels with at least two groups of goods.

For the Laspeyres price index as the desired aggregate index, 70% of the panels
in exports and 72% in imports imply the use of the Carli index at the elementary
level. This means that if one wants to calculate a Laspeyres price index at the
aggregate level, the Carli index will yield approximately the same result at the
elementary level in these panels (as it is shown in an example in Subsection 3.2).
Regarding trade values, these figures reduce to 62% and 66%, respectively. The
Jevons index performs best at the first stage in 14% of the panels in exports and
17% in imports with much higher shares with respect to trade value, i.e. 29%
and 28%, respectively. In 15% of the panels in exports and 10% in imports, the
quadratic index is desirable at the lower level of aggregation; trade value shares
here are 7% and 5%, respectively. Shares missing to 100% reflect other indices.

Table 5: Elementary Indices Corresponding to a Laspeyres Price Index
Panels Trade Values

r Price Index Exports Imports Exports Imports
0 Jevons 14% 17% 29% 28%
1 Carli 70% 72% 62% 66%
2 quadratic 15% 10% 7% 5%
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If the Paasche price index is taken as the desired aggregate index, the cor-
responding power means are inverted: instead of the Carli index, the harmonic
index, and, instead of the quadratic index, the reciprocal quadratic index have to
be used. As mentioned before, if the Jevons index corresponds to the Laspeyres
price index, it does so for the Paasche price index, too.

If the desired aggregate index is chosen to be the Fisher price index, the results
are as follows. The use of the Jevons index is suggested by 6% of the panels in
exports and 7% in imports; with respect to trade values these shares increase to
20% and 17%, respectively. The hybrid index is found to be superior in 21% of
the panels in exports (trade values: 19%) and 28% (25%) in imports. 46% of the
panels in exports (48%) and 44% in imports (43%) favour the CSWD index. A
quadratic mean of cubic order should be used for 21% of the panels in exports
(9%) and 15% in imports (12%). For a quadratic mean of quartic order the figures
are 6% (3%) and 4% (2%), respectively. Again, quintic and higher orders make up
shares missing to 100%.

Table 6: Elementary Indices Corresponding to a Fisher Price Index
Panels Trade Values

q Price Index Exports Imports Exports Imports
0 Jevons 6% 7% 20% 17%
1 Hybrid 21% 28% 19% 25%
2 CSWD 46% 44% 48% 43%
3 cubic 21% 15% 9% 12%
4 quartic 6% 4% 3% 2%

All in all, different elementary indices should be applied to each panel in order
to approach the Laspeyres, Paasche or Fisher price index as closely as possible.

4.3 A Case Study

In Subsection 4.2 neither the Dutot nor the unit value index could be analysed.
The presumption that these indices will differ from the Jevons index due to price
dispersion (as discussed in Subsection 3.2) can only be tested with sufficient data.
The intention of the following case study is firstly to discuss the empirical behaviour
of these two indices, and secondly to test the results from Subsection 4.2 for their
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robustness. Exports of passenger cars are chosen as an example. With an export
value of more than e100 billion in 2007, the more than five million cars exported
make up more than 10% of trade value of all exported goods. The panel 8703 (four-
digit code of the Commodity Classification: motor cars and other motor vehicles
principally designed for the transport of persons, including station-wagons and
racing cars) consists of 21 groups of goods and 1,895 observations of trade values
and quantities in terms of both weight and number (the average 2007 car weights
about 1.5 tonnes). The data set ends in 2007 and hence, is not affected by the
recent financial crisis which has hit car makers hard around the world.

Both prices and quantities with respect to weight as well as number pass all
of the five panel unit root tests of Subsection 4.2 at any conventional significance
level. The partial adjustment model is robust to the specification of quantities
as either weight or number as the results in Table 7 indicate. Irrespective of the
definition of quantities, the results are virtually the same. The price elasticity
for exports is close to zero and insignificant. The adjustment to the equilibrium,
at 81%, is as strong as the Pseudo-R2 is high at 95%. Hence, the Jevons index,
corresponding to a price elasticity of zero, seems appropriate for all three, the
Laspeyres, Paasche and Fisher, price indices.

Table 7: Partial Adjustment Model for Passenger Cars
Weight Number

Statistic β∗ 1− ρ Pseudo-R2 β∗ 1− ρ Pseudo-R2

Parameter 0.0469 0.8078 0.9572 −0.0277 0.8111 0.9525
Standard Error 0.0303 0.0317 — 0.0290 0.0317 —

Explanations for the counterintuitive result of equal car sales irrespective of
prices are threefold, two of which are technical and one is economic. First, the price
elasticity derived from the partial adjustment model is the effective one, i.e. lagged
adjustment to the equilibrium lowers the absolute value of the price elasticity.
Second, the estimated price elasticity should not be mistaken for the one of demand
owing to the problem of identification (as explained in Subsection 3.1.3). Third,
car makers might be wanting to hold sales stable by compensating for exchange
rate fluctuations, and might thus be willing to accept short-term reductions in
their profits.
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After balancing the panel, 15 groups of goods remain for robustness testing of
the regression results. Given the strongly balanced feature of this new panel, time
series of the desired aggregate indices can be directly calculated. The power mean
P r, Equation (5), which minimises the root mean squared error (RMSE) to the
desired aggregate index P ∗, that is either the Laspeyres or Paasche price index,
Equations (1) and (2), respectively, is found by non-linear least squares:

rmin = arg min
r∈R

√√√√1

t

t∑
b=1

(P ∗
b − P r

b )2. (31)

Analogously to Equation (31), one finds the quadratic mean P q, Equation (29),
which minimises the root mean squared error to the Fisher price index, Equa-
tion (3).

In Table 8 the outcomes of the partial adjustment model and non-linear optimi-
sation are compared, along with the corresponding power means of the Dutot and
unit value indices. The findings do not change qualitatively. In fact, the deviation
from the symmetry proposition is insignificant and it turns out that the regression
results coincide with the direct calculation of the power mean. The use of the
Jevons index is justified. Note that the linear regression is based on a panel data
set of 1,817 observations, while the non-linear direct calculation is based on a time
series of 95 observations, which makes the latter more prone to erratic behaviour.

Table 8: Partial Adjustment Model Compared to Non-Linear Optimisation
Statistic β∗ rL rP q rD rUV

Expectation — −β∗ β∗ 2|β∗| 0 0
Parameter 0.0469 0.3000 −0.4224 0.0000 0.2508 0.9920
Standard Error 0.0303 0.1399 0.1453 † 0.0428 0.1528
Pseudo-R2 0.9572 0.1957 0.1437 0.1548 0.9328 0.2754
RMSE — 0.0404 0.0388 0.0389 — —

† Standard error of q is not stable with respect to different initial values.

That the implied power means of the Dutot and unit value indices are signif-
icantly off their expectations can be explained with recourse to Equations (18)
and (19). While scanner data in a CPI may be well-behaved in terms of their
covariance stability, things are different in an export or import price index (cf.
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Subsections 1.2 and 3.1.1 for empirical and theoretical evidence, respectively).
Unlike scanner data, the basis of index calculation is not a panel but rather re-
peated cross-sections with time-varying coverage of the universe of goods, i.e. new
goods are introduced while others disappear. Thus, the relative broad item de-
scription in foreign trade is likely to cause heterogeneity to increase over time (cf.
Subsection 3.2 for a discussion of this issue). Neither the variance of prices nor
the concurrent covariance between prices and quantities is stable over time. While
the variance is increasing, the covariance is decreasing, which explains the gap
between the indices and to their expectations.

However, when allowing for non-power means as the Dutot and unit value in-
dices, the findings change slightly. For all three target indices, the Dutot index has
a lower RMSE than the Jevons index, which shows a lower RMSE than the unit
value index. This is depicted in Table 9, which compares the RMSEs of the respec-
tive elementary indices as estimators of the desired aggregate ones. Nonetheless,
the Dutot and Jevons indices are numerically very close.

Table 9: RMSEs of Elementary Indices to Desired Aggregate Ones
Estimator Laspeyres (rL) Paasche (rP ) Fisher (q)
β∗ 0.0418 0.0413 0.0389
rmin / qmin 0.0404 0.0388 0.0389
Jevons Index 0.0415 0.0408 0.0389
Dutot Index 0.0338 0.0387 0.0338
Unit Value Index 0.0418 0.0650 0.0531

In Figure 5 the time series of the Dutot, Jevons and unit value indices as
estimators of the Fisher price index are drawn on the semi-logarithmic scale with
base month January 2000 = 100. Both the Dutot and Jevons indices are similar
to the Fisher price index and to each other. This was to be expected from the
regression results as well as non-linear optimisation (cf. Table 8). Owing to missing
expenditure share weights, these approximations to the Fisher price index are the
closest that one can get. The unit value index is much more volatile (cf. Table 9)
and lies well above the Fisher price index, although it is fairly close at the beginning
of the time series. This was to be expected as well given the aforementioned
time-varying variances of prices and covariances between concurrent prices and
quantities.
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Figure 5: Elementary Indices as Estimators of the Fisher Price Index

5 Conclusion

5.1 Summary

This paper addresses the problem of index calculation at the elementary level,
where no expenditure share weights are available. The question of “Which index
formula at the elementary level corresponds to the characteristics of the index
at the aggregate level?” is dealt with. A statistical approach is proposed which
makes it theoretically possible to achieve numerical equivalence of an elementary
index with the desired aggregate index – in this instance, the Laspeyres, Paasche
or Fisher price index. Based on “power means” and the assumption of joint log-
normal distribution of prices and quantities, it is shown that the solution depends
on the price elasticity only, which is derived from a partial adjustment model.
Thus, a feasible framework is provided which aids the choice of the corresponding
elementary index. The results are graphically produced in Figure 6.

From an empirical application to German foreign trade statistics, it can be
seen that the choice of the elementary index does matter (cf. Figure 5). The
choice itself depends on the characteristics of prices and quantities. Therefore,
depending on the price elasticity, different elementary indices should be applied
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Figure 6: Overview of Corresponding Elementary Indices

to each group of goods in order to approach the Laspeyres, Paasche or Fisher
price index as closely as possible. While not relying on axiomatic considerations,
this paper finds notable empirical differences between different elementary indices
and aggregate indices formed from them. Furthermore, the results indicate that a
range of elementary indices should be applied in the calculation of price indices.
This is in line with the findings of other authors (cf. the review of the empirical
literature in Subsection 1.2). In particular, the Carli index performs remarkably
well at the elementary level of a Laspeyres price index, corresponding to a price
elasticity of minus one. Sometimes, it is argued that the Carli index is upward
biased. However, this holds only in comparison with the Jevons index. Yet, the
comparison in question is not with another elementary index but with the desired
aggregate index. So, it may be the case that the Carli index is unbiased or even
downward biased compared with the Laspeyres price index (cf. Subsection 3.1.2
for the discussion of the Carli index’ upward bias).
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5.2 Outlook

Two possible applications of the approach outlined in this paper arise immediately
after a decision has been taken on which aggregate index is desired. Firstly, in-
dex calculation can be rendered more precisely if different elementary indices are
applied to each group of goods, reflecting their specific price elasticities. At least
for prominent groups of goods with high expenditure shares, studies on the price
elasticity should be available. This will drive down biases of official price indices.
In fact, the desired aggregate index can be approximated by using appropriate
elementary indices. Secondly, for different purposes, different elementary indices
should be calculated. This means that if the Carli index is applied as the single
formula at the elementary level of a Laspeyres price index, implying a price elas-
ticity of minus one, for the same data, the harmonic index must be used at the
elementary level of a Paasche price index. Still, this is in contrast to the current
practice as regards foreign trade in Germany, where the Carli index is used at
the elementary level in both price statistics and volume measurement in national
accounts. The former task is achieved via the Laspeyres price index, while the
latter results in an implicit deflator in the form of the Paasche price index.

An application of this approach to scanner data in a CPI would be worthwhile.
Scanner data in its most familiar form are collected at the checkouts of retail stores
by the scanning of bar codes. Thus, they provide a census of all transactions
rather than a sample. Furthermore, they are collected continuously and provide
simultaneous information on both prices and quantities, unlike discrete surveys
of prices alone. Lastly, qualitative information may be linked to scanner data,
allowing for hedonic adjustment. The foreign trade application of this paper and
the prospective study of scanner data are different subject matters. In foreign
trade statistics, the data are intermediately aggregated and unit values are used,
which are neither seasonally nor quality adjusted, rather than observed purchase
prices. Disaggregate scanner data allow the calculation of unbiased price indices
and hence, a more thorough analysis based on them might change the results.
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Appendix: Proof of Lemmata and Theorems

Proof of Lemma 1. The Laspeyres and Paasche price indices are basket indices,
i.e. they are a weighted means of price relatives, either arithmetic with base
period expenditure share weights or harmonic with current period expenditure
share weights. Either way, the weights ωi > 0 sum up to one,

∑n
i=1 ωi = 1 and

the proposition follows. This holds as well for the Fisher price index as it is the
geometric mean of the Laspeyres and Paasche price indices.

Proof of Lemma 2. That the limits towards r → ±∞ are the maximum and mini-
mum, respectively, can be shown by straightforward algebraic manipulations. The
geometric index as the limit towards r → 0 is found via a Taylor series expansion.
From this the proposition follows.

Proof of Theorem 1. From Lemma 1, it follows that the aggregate index P ∗ lies
between the smallest and largest price relative, P min and P max, respectively. To
reiterate, the exclusion of the trivial case of perfect homogeneity ensures that the
mean value property is fulfilled in its strict from.

P min < P ∗ < Pmax

That the power mean P r is continuous on its whole domain follows from Lemma 2.
Moreover, it covers the whole range between the smallest and largest price relative
as its co-domain. Over and above that, the strict mean value property leads to r

being real, r ∈ R.
Pmin < P r < Pmax

In addition, from the intermediate value theorem (under a continuous function the
image of a connected space is connected), it follows that the power mean takes on
all values of its co-domain, of which the aggregate index is an element, at least
once. Hence, the image equals the co-domain.

P ∗ ∈ (P min, Pmax)← R :P r
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Eventually, the uniqueness of the power r is secured through the proposition that
not all price relatives are equal, and with Jensen’s inequality it can be shown that
the power mean is a strictly monotonic increasing function.

P s > P r ∀ s > r

From this, it follows that the power mean is bijective and therefore an inverse
function exists.

Proof of Lemma 3. If one writes the unit value index in its price relatives form,∑n
i=1(pit/pi0)ωi, the assigned weights ωi = (pi0qit/

∑n
i=1 qit)/(

∑n
i=1 pi0qi0/

∑n
i=1 qi0)

do not necessarily sum up to unity. This contradiction proves the proposition.

Proof of Theorem 2. The processes of prices and quantities are assumed to have
both started in the infinite past.

pi,t = pi,−∞ · . . . · pi,0

pi,−1

· pi,1

pi,0

· pi,2

pi,1

· . . . · pi,t−1

pi,t−2

· pi,t

pi,t−1

qi,t = qi,−∞ · . . . · qi,0

qi,−1
· qi,1

qi,0
· qi,2

qi,1
· . . . · qi,t−1

qi,t−2
· qi,t

qi,t−1

However, the period-to-period changes are not independently distributed. The
sequences are assumed to satisfy a mixing condition, which implies ergodicity;
hence, a central limit theorem under weak dependence becomes applicable. Thus,
it follows that prices and quantities are marginally log-normally distributed. Hav-
ing proven marginal log-normal distribution, it follows that they are also jointly
log-normally distributed by imposing a functional relationship between prices and
quantities and autoregressive relationships within them.
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Proof of Theorem 3. The expectation of a log-normally distributed random vari-
able is given by exp(μ + σ2/2). After taking natural logarithms it applies that
a ln X ± b ln Y ∼ N (aμX ± bμY , a2σ2

X + b2σ2
Y ± 2abσX,Y ). Using this and the def-

initions of the power mean, and the Dutot and unit value indices one finds the
following results.

P r = r

√
E

(
pr

it

pr
i0

)
= exp

[
1

r

(
r(μpt − μp0) + r2

σ2
pt

+ σ2
p0
− 2σpt,p0

2

)]

P D =
E(pit)

E(pi0)
=

exp
(
μpt +

σ2
pt

2

)
exp

(
μp0 +

σ2
p0

2

)

P UV =
E(pitqit)/E(qit)

E(pi0qi0)/E(qi0)
=

exp
(
μpt + μqt +

σ2
pt

+σ2
qt

+2σpt,qt

2

)
/ exp

(
μqt +

σ2
qt

2

)
exp

(
μp0 + μq0 +

σ2
p0

+σ2
q0

+2σp0,q0

2

)
/ exp

(
μq0 +

σ2
q0

2

)

By reducing the terms, the proposition follows.

Proof of Theorem 4. Using the definitions of the Laspeyres and Paasche price in-
dices, the expectations are as follows.

P L =
E(pitqi0)

E(pi0qi0)
=

exp
(
μpt + μq0 +

σ2
pt

+σ2
q0

+2σpt,q0

2

)
exp

(
μp0 + μq0 +

σ2
p0

+σ2
q0

+2σp0,q0

2

)

P P =
E(pitqit)

E(pi0qit)
=

exp
(
μpt + μqt +

σ2
pt

+σ2
qt

+2σpt,qt

2

)
exp

(
μp0 + μqt +

σ2
p0

+σ2
qt

+2σp0,qt

2

)

The proposition follows by reducing the terms. The corresponding power means
are found by solving the equations for r.

Proof of Theorem 5. Stationarity in covariance of the processes, i.e. 0 ≤ ρ < 1

and 0 ≤ γ1 < 1, imply that the covariance between any two observations depends
only on the lag between them. For the covariance of logarithmic prices, it follows
that it is an exponentially decreasing function.

σpκ,p�
= γ

|κ−�|
1 σ2

p
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Using the lag operator and inverting the lag polynom in the function of logarithmic
quantities, it can be written as follows.

ln qib = α + β∗
∞∑

τ=0

ρτ ln pib−τ +

( ∞∑
τ=0

ρτxib−τ

)
(1− ρ)δ +

(
ηq

i +

∞∑
τ=0

ρτεq
ib−τ

)

Taking the expectation and subtracting it on both sides yields the following ex-
pression.

ln qib − μq = β∗
∞∑

τ=0

ρτ (ln pib−τ − μp) +

∞∑
τ=0

ρτεq
ib−τ

Multiplying this expression with ln piξ − μp and taking the expectation results in
the desired covariances.

σpξ,qb
= β∗

∞∑
τ=0

ρτσpξ,pb−τ
= β∗σ2

p

∞∑
τ=0

ρτγ
|ξ−(b−τ)|
1

Substituting the appropriate expressions for ξ and b, either 0 or t, the proposition
follows by applying the formula for the sum of a geometric series.

Proof of Theorem 6. Substituting the respective expressions into the equations di-
rectly yields the stated results. Under the stationarity in covariance assumption,
the difference of (co-)variances at different points in time vanishes and approaches
zero. For the powers corresponding to the Laspeyres and Paasche price indices,
rL and rP , respectively, it is assumed that the product of the autoregressive pa-
rameters is sufficiently small to be negligible, i.e. the sluggishness of adjustment
of quantities or the persistence of the process of prices is low: ργ1 → 0. The
power corresponding to the Paasche price index is derived under the additional
assumptions of sufficiently large t in order for the serial correlation to converge to
zero: ρt → 0 and γt

1 → 0.

Proof of Theorem 7. The proposition follows directly by reducing the terms.
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