Lowe and Cobb-Douglas CPIs and their substitution bias

Bert M. Balk
Statistics Netherlands
and
Rotterdam School of Management
Erasmus University

Neuchâtel, 27-29 May 2009

Lowe

A Lowe price index is defined as

$$P^{Lo}(p^t,p^0;x^b) \equiv p^t \cdot x^b / p^0 \cdot x^b$$

where p^{T} (T = 0,t) is a vector of prices and x^{b} is a vector of quantities. Typically

$$b \le 0 < t$$
.

Cobb-Douglas

A Cobb-Douglas price index is defined as

$$P^{CD}(p^{t},p^{0};s^{b}) \equiv \Pi_{n}(p_{n}^{t}/p_{n}^{0})^{s_{n}^{b}}$$

where p^{T} (T = 0,t) is a vector of prices and s^{b} is a vector of value shares $p_{n}^{b}x_{n}^{b}/p^{b}\cdot x^{b}$. Typically

$$b \le 0 < t$$
.

Lowe and CD compared

Ex. (24) shows that

In $P^{Lo}(p^1,p^0;x^b)$ – In $P^{CD}(p^1,p^0;s^b)$

can be written as covariance between priceupdate factors over [b,1] and relative price changes over [0,1]. This is likely to be nonnegative, especially when [b,0] is short relative to [0,1].

Benchmark Cost-of-Living index

The target Konüs COLI is defined as

$$P^{K}(p^{1},p^{0};x^{b}) \equiv C(p^{1},U(x^{b})) / C(p^{0},U(x^{b}))$$

where U(.) is the consumer's utility function and C(.) the dual cost function.

It is assumed that in period b the consumer acts cost-minimizing:

$$C(p^b,U(x^b)) = p^b \cdot x^b.$$

Second order approximations (1)

Taylor series around pb:

$$C(p^1,U(x^b)) = p^1 \cdot x^b + e^1$$

 $C(p^0,U(x^b)) = p^0 \cdot x^b + e^0$

where e^t (t = 0,1) are second-order terms which are non-positive.

Bias of Lowe index

The relative substitution bias

$$[P^{Lo}(p^1,p^0;x^b) - P^K(p^1,p^0;x^b)] / P^K(p^1,p^0;x^b)$$

is given by ex. (29) and likely to be positive.

Second order approximations (2)

An other Taylor series around pb:

In
$$C(p^t,U(x^b)) = In C(p^b,U(x^b)) +$$

$$\sum_{n} s_n^b \ln (p_n^t/p_n^b) + \varepsilon^t$$

where ε^{t} (t = 0,1) are second-order terms which are not necessarily non-positive.

Bias of CD index

The relative substitution bias

In
$$P^{CD}(p^1, p^0; s^b)$$
 – In $P^{K}(p^1, p^0; x^b) = \epsilon^0 - \epsilon^1$

is given by ex. (34). *A priori* not much can be said about the sign of this bias.

Comparison

See section 6: On balance it is likely that the relative substitution bias of the CD is less than that of the Lowe index.

The empirical evidence of section 7 is inconclusive.

