Unit Value Bias (Indices) Reconsidered Price- and Unit-Value-Indices in Germany

Peter von der Lippe, Universität Duisburg-Essen Jens Mehrhoff*, Deutsche Bundesbank

$11^{\text {th }}$ Ottawa Group Meeting (Neuchâtel May 28 ${ }^{\text {th }}$ 2009)
*This paper represents the author's personal opinion and does not necessarily reflect the view of the Deutsche Bundesbank or its staff.

1. Introduction and Motivation
2. Unit value index (UVI) and Drobisch's Index (${ }^{\text {UD }}$)
3. Price and unit value indices in German foreign trade statistics (Tests of hypotheses)
4. Properties and axioms (uv, UVI, $\mathbf{P}^{\text {UD }}$)
5. Decomposition of the Unit Value Bias ($\mathrm{PU}^{\mathrm{P}} / \mathrm{P}^{\mathrm{L}} \mathrm{L}$ - and S-effect)
6. Interpretation of the S-effect in terms of covariances (using a generalized theorem of Bortkiewicz)
7. Conclusions

I Export and Import Price Index Manual (XMPI Man. IMF, 2008)

II Unit Value Indices (UVIs) are used in
Prices of trade (export/import), land, air freight and certain services (consultancy, lawyers etc)

I Literature (UVIs cannot replace price indices)
Balk 1994, 1995 (1998), 2005
Diewert 1995 (NBER paper), 2004 etc.
von der Lippe 2006 GER
http://mpra.ub.uni-muenchen.de/5525/1/MPRA _paper_5525.pdf Silver (2007), Do Unit Value Export, Import, and Terms of Trade Indices Represent or Misrepresent Price Indices, IMF Working Paper WP/07/121

1. Introduction and Motivation

2000 Jan - 2007 Dec

- Price indices -- Unit value indices

1. Unit value for the $\mathbf{k}^{\text {th }}$ commodity number (CN)

$$
\tilde{\mathrm{p}}_{\mathrm{k} 0}=\frac{\sum \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kj} 0}}{\sum \mathrm{q}_{\mathrm{kj} 0}}=\sum_{\mathrm{j}} \mathrm{p}_{\mathrm{kj} 0} \frac{\mathrm{q}_{\mathrm{kj} 0}}{\mathrm{Q}_{\mathrm{k} 0}}=\sum_{\mathrm{j} 0} \mathrm{p}_{\mathrm{kj} 0} \mathrm{~m}_{\mathrm{kj} 0}
$$

$$
\mathbf{k}=\mathbf{1}, \ldots, \mathbf{K} \quad \text { Unit vallues are not defined over all CNs }
$$

Examples for CNs

HS (Harmonized System)	Germany (Warenverzeichnis)
190590 Other Bakers' Wares, Communion Wafers, Empty Capsules, Sealing Wafers	19059045 Cakes and similar small baker's wares (8 digits)
$\mathbf{2 3} 0910$ Dog or Cat Food, Put up for Retail Sale	23091011 to 23091090 twelve (!!) CNs for dog or cat food

2. German Unit Value Index (UVI) of exports/imports

 the usual Paasche index (unit values instead of prices)3. The Unit value index (UVI) should be kept distinct from Drobisch's index (1871)

$$
\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}=\frac{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{jkt}} \mathrm{q}_{\mathrm{jkt}} / \sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{q}_{\mathrm{jkt}}}{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{jk} 0} \mathrm{q}_{\mathrm{jk} 0} / \sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{q}_{\mathrm{jk} 0}}=\frac{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{jkt}} \mathrm{q}_{\mathrm{jkt}} / \sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{kt}}}{\sum_{\mathrm{k}} \sum_{\mathrm{j}} \mathrm{p}_{\mathrm{jk} 0} \mathrm{q}_{\mathrm{jk} 0} / \sum_{\mathrm{k}} \mathrm{Q}_{\mathrm{k} 0}}
$$

Drobisch's index

$$
\mathrm{P}_{0 \mathrm{t}}^{\mathrm{DR}}=\frac{\tilde{\mathrm{p}}_{\mathrm{t}}}{\widetilde{\mathrm{P}}_{0}}=\frac{\mathrm{V}_{0 \mathrm{t}}}{\widetilde{\mathrm{Q}}_{0 \mathrm{t}}}, \quad \tilde{\mathrm{Q}}_{0 \mathrm{t}}=\frac{\mathrm{Q}_{\mathrm{t}}}{\mathrm{Q}_{0}}
$$

However, Drobisch is better known for $\quad \frac{1}{2}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}+\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}\right)$

	no information about quantities available	information about quantities
the same commodity in different outlets	"normal" usage of the term "low level"	
different goods grouped by a classification		situation of a UVI $(\Sigma$ q needed for unit value $)$

It does not make sense to consider absolute unit values ("Euro per kilogram")

Absolute Unit Values in Austrian Statistics (publication of the Austrian National Bank OeNB 2006)

Austrian Import prices rose from ≈ 20 € per kilogram in 1995 to $25 € \ldots$ in 2005
Österreichische Importpreisindizes in der Sachgütererzeugung

Glatzer et al "Globalisierung..." http://www.oenb.at/de/img/gewi_2006_3_tcm14-46922.pdf
"Because we use weights as units an increasing import price index could be explained by either rising prices or reduced weights due to quality improvement"
$2^{4}=16$ indices:
type of index (price vs quantity)
Prices (p) vs unit values (uv)
Laspeyres vs Paasche

$$
\mathrm{V}=\Sigma \mathrm{p}_{\mathrm{t}} \mathrm{q}_{\mathrm{t}} / \Sigma \mathrm{p}_{0} \mathrm{q}_{0}=\mathrm{P}^{\mathrm{P}} \mathrm{Q}^{\mathrm{L}}=\mathrm{PU}^{\mathrm{P}} \mathrm{QU}^{\mathrm{L}}
$$

Export vs import

	Price-indices		Quantity-indices	
	\mathbf{P}	$\mathbf{u v}$	\mathbf{P}	$\mathbf{u v}$
Laspeyres	$\mathbf{P}^{\mathbf{L}}$	$\mathbf{P U} \mathbf{U}^{\mathbf{L}}$	$\mathbf{Q}^{\mathbf{L}}$	$\mathbf{Q} \mathbf{Q U}^{\mathbf{L}}$
Paasche	$\mathbf{P P}$	$\mathbf{P U}$	$\mathbf{Q P}^{\mathbf{P}}$	$\mathbf{Q} \mathbf{Q}^{\mathbf{P}}$

	Price index	Unit value index
Data	Survey based (monthly), sample; more demanding (weights!)	Customs based (by-product), census, Intrastat: survey
Formula	Laspeyres	Paasche
Quality ad- justment	Yes	No (feasible?)
Prices, aggregates	Prices of specific goods at time of contracting	Average value of CNs; time of crossing border
New / dis- appearing goods	Included only when a new base period is defined; vanishing goods replaced by similar ones constant selection of goods *	Immediately included; price quotation of disappearing goods is simply discontinued variable universe of goods
Merits	Reflect pure price movement (ideally the same products over time)	"Representativity" inclusion of all products; data readily available
Published in	Fachserie 17, Reihe 11	Fachserie 7, Reihe 1

$\mathrm{CN}=$ commodity numbers * All price determining characteristics kept constant

Price index (P) Unit value index (U)

Hypothesis	Argument
1. $U<P$, growing discrepancy	Laspeyres (P) > Paasche (U) Formula of L. v. Bortkiewicz
2. Volatility U > P	U no pure price comparison (U is reflecting changes in product mix [structural changes])
3. Seasonality U > P	U no adjustment for seasonally non-availability
4. U suffers from heterogeneity	Variable vs. constant selection of goods, CN less homogeneous than specific goods
5. Lead of P	Prices refer to the earlier moment of contracting (contract-delivery lag; exchange rates)
6. Smoothing (due to quality adjustment)	Quality adjustment in P results in smoother series

$$
\begin{aligned}
& \mathrm{p}_{10}=\mathrm{p}_{1 \mathrm{t}}=\mathrm{p} \\
& \mathrm{p}_{20}=\mathrm{p}_{2 \mathrm{t}}=\lambda \mathrm{p} \\
& \mu=\mathrm{m}_{2 \mathrm{t}} / 0.5 \\
& \mathrm{~m}_{10}=\mathrm{m}_{20}=0.5
\end{aligned}
$$

$$
\Delta=\tilde{\mathrm{p}}_{\mathrm{kt}}-\tilde{\mathrm{p}}_{\mathrm{k} 0}=\frac{\mathrm{p}}{2}(1-\lambda)(1-\mu)
$$

\succ	$\lambda>1$ and $\mu<1 \rightarrow \Delta<0$	$\lambda>1$ and $\mu>1 \rightarrow \Delta>0$
$\stackrel{\vee}{\leftarrow}$	less of the more expensive good 2 unit value declining	more of the more expensive good 2 unit value rising
\succ	$\lambda<1$ and $\mu<1 \rightarrow \Delta>0$	$\lambda<1$ and $\mu>1 \rightarrow \Delta<0$
ι	less of the cheaper good 2 unit value rising	more of the cheaper good 2 unit value declining
	$\mu<1$	$\mu>1$

"... 'unit value' indices ... may therefore be affected by changes in the mix of items as well as by changes in their prices. Unit value indices cannot therefore be expected to provide good measures of average price change over time" (SNA 93, § 16.13)

1) UVI mean of uv-ratios

$$
\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}=\sum_{\mathrm{k}} \frac{\widetilde{\mathrm{p}}_{\mathrm{kt}}}{\widetilde{\mathrm{p}}_{\mathrm{k} 0}} \frac{\widetilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}{\sum_{\mathrm{k}} \tilde{\mathrm{p}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}
$$

2) Ratio of unit values \neq mean of price relatives

$$
\frac{\tilde{\mathrm{P}}_{\mathrm{kt}}}{\tilde{\mathrm{P}}_{\mathrm{k} 0}}=\sum_{\mathrm{j}} \frac{\mathrm{P}_{\mathrm{kjt}}}{\mathrm{P}_{\mathrm{kj} 0}}\left(\frac{\mathrm{P}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kjt}}}{\tilde{\mathrm{P}}_{\mathrm{k} 0} \mathrm{Q}_{\mathrm{kt}}}\right)
$$

the weights do not add up to unity, but to $\frac{\mathrm{Q}_{\mathrm{k} 0}}{\mathrm{Q}_{\mathrm{kt}}} \cdot \mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}(\mathrm{k})}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}(\mathrm{k})}}{\widetilde{\mathrm{Q}}_{0 \mathrm{t}}^{\mathrm{k}}}$
3) Proportionality (identity)
4. Properties and axioms: 4.3. UVI and Drobisch's index

Axioms Drobisch's (price) index and the German UVI (= PUP)

Axiom		Drobisch*	German PUP
Proportionality	$U\left(\mathbf{p}_{0}, \lambda \mathbf{p}_{0}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)=\lambda \quad$ (identity $\left.=1\right)$	no	no
Commensurability	$U\left(\Lambda p_{0}, \Lambda \mathbf{p}_{\mathrm{t}}, \Lambda^{-1} \mathbf{q}_{0}, \Lambda^{-1} \mathbf{q}_{\mathrm{t}}\right)=\mathrm{U}\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)$	no	no
Linear homogen.	$U\left(p_{0}, \lambda p_{t}, q_{0}, q_{t}\right)=\lambda U\left(p_{0}, p_{t}, \mathbf{q}_{0}, \mathbf{q}_{t}\right)$	yes	yes
Additivity** (in current period prices)	$\begin{aligned} & U\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}^{*}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)=\mathrm{U}\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)+ \\ & \mathrm{U}\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}^{+}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right) \text { for } \mathbf{p}_{\mathrm{t}}^{*}=\mathbf{p}_{\mathrm{t}}+\mathbf{p}_{\mathrm{t}}^{+} \end{aligned}$	yes	yes
Additivity** (in base period prices)	$\begin{aligned} & {\left[U\left(\mathbf{p}^{*}{ }_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)\right]^{-1}=\left[\mathrm{U}\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)\right]^{-1}} \\ & +\left[U\left(\mathbf{p}^{+}{ }_{0}, \mathbf{p}_{\mathrm{t}}^{+}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)\right]^{-1} \text { for } \mathbf{p}_{0}^{*}=\mathbf{p}_{0}+\mathbf{p}_{0}^{+} \end{aligned}$	yes	yes
Product test	Implicit quantity index of PUD or PU ${ }^{P}$	$\Sigma q_{t} / \Sigma q_{0}$	Q ${ }^{\text {L }}$
Time reversibility	$\begin{aligned} & U\left(\mathbf{p}_{t}, \mathbf{p}_{0}, \mathbf{q}_{\mathrm{t}}, \mathbf{q}_{0}\right)=\mathrm{U} \leftarrow \\ & =\left[\mathrm{U}\left(\mathbf{p}_{0}, \mathbf{p}_{\mathrm{t}}, \mathbf{q}_{0}, \mathbf{q}_{\mathrm{t}}\right)\right]^{-1}=[\mathrm{U} \rightarrow]^{-1} \end{aligned}$	yes	$\begin{aligned} & (\mathrm{PUP} \leftarrow)= \\ & 1 /(\mathrm{PU} \rightarrow) \end{aligned}$
Transitivity	$U\left(\mathbf{p}_{0}, \mathbf{p}_{2}, \mathbf{q}_{0}, \mathbf{q}_{2}\right)=U\left(\mathbf{p}_{0}, \mathbf{p}_{1}, \mathbf{q}_{0}, \mathbf{q}_{1}\right) \cdot U\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{q}_{1}, \mathbf{q}_{2}\right)$ yes		no

* Balk1995, Silver 2007, IMF Manual; applies also to subindex $\tilde{\mathrm{p}}_{\mathrm{kt}} / \tilde{\mathrm{p}}_{\mathrm{k} 0}$
** Inclusive of (strict) monotonicity

Value index $V_{0 t}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{P}}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}} \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}$

Bortkiewicz Formula

$\mathrm{C}=\sum_{\mathrm{i}}\left(\frac{\mathrm{p}_{\mathrm{it}}}{\mathrm{p}_{\mathrm{i} 0}}-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}\right)\left(\frac{\mathrm{q}_{\mathrm{it}}}{\mathrm{q}_{\mathrm{i} 0}}-\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}\right) \frac{\mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0}}{\sum \mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0}}$
$=\mathrm{V}_{0 \mathrm{t}}-\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}=\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}\left(\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}-\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}\right)$
Discrepancy (uv-bias)
$\mathrm{D}=\frac{\mathrm{PU}_{0 t}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}=\left(\frac{\mathrm{C}}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}} \mathrm{L}_{0 t}^{\mathrm{L}}}+1\right)\left(\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}{\mathrm{QU}_{0 t}^{\mathrm{L}}}\right)=\frac{\mathrm{P}_{0 t}^{\mathrm{P}}}{\mathrm{P}_{0 t}^{\mathrm{L}}} \cdot \frac{\mathrm{PU}_{0 t}^{\mathrm{P}}}{\mathrm{P}_{0 t}^{\mathrm{P}}}=\mathrm{L} \cdot \mathrm{S}$

Ladislaus von Bortkiewicz (1923)

$$
\mathrm{L}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{~S} \cdot \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{~S} \cdot \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}} \quad \mathrm{~S}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}{\mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{~L} \cdot \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}}=\frac{\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{~L} \cdot \mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}
$$

S >1		$\mathbf{D}^{\text {L }}$	$\mathbf{D}^{\text {P }}$
II opposite direction D indeterminate	Quadrant I same Direction D > 1		
$L<1$ III same direction $\mathrm{D}<1$	$L>1$ IV opposite direction D indeterminate	$P U^{L}$	J^{P}

In I and III we can combine two inequalities

	$\mathbf{S}<\mathbf{1}$	$\mathbf{S}=\mathbf{1}$	$\mathbf{S}>\mathbf{1}$
$\mathbf{L}<\mathbf{1}$	$\mathrm{PU}^{\mathrm{P}}<\mathrm{P}^{\mathrm{P}}<\mathrm{P}^{\mathrm{L}}$	$\mathrm{PU}^{\mathrm{P}}<\mathrm{P}^{\mathrm{L}}$	indefinite
$\mathbf{L}=\mathbf{1}$	$\mathrm{PU}^{\mathrm{P}}<\mathrm{P}^{\mathrm{L}}=\mathrm{P}^{\mathrm{P}}$	$\mathrm{PU}^{\mathrm{P}}=\mathrm{P}^{\mathrm{P}}=\mathrm{P}^{\mathrm{L}}$	$\mathrm{PU}^{\mathrm{P}}>\mathrm{P}^{\mathrm{L}}=\mathrm{P}^{\mathrm{P}}$
$\mathbf{L}>\mathbf{1}$	indefinite	$\mathrm{PU}^{\mathrm{P}}>\mathrm{P}^{\mathrm{L}}$	$\mathrm{PU}^{\mathrm{P}}>\mathrm{P}^{\mathrm{P}}>\mathrm{P}^{\mathrm{L}}$

Deflator X and M respectively taken for P^{P}
S and L independent?

— Laspeyres effect (\% pt) - - Structural component (\% pt) \cdots Discrepancy (\%)
5. The two effects L and S-3- Time path of S-L- pairs (left \rightarrow right)

Normal reaction:
L and S negative more likely in the case of imports
exports

imports

Interpretation L-Effect: contributions to the covariance (Szulc)

$$
R=\frac{P_{p}-P_{L}}{P_{L}}=\sum_{i}\left[\left(\frac{p_{i}^{1} / p_{i}^{0}-P_{L}}{P_{L}}\right) \cdot\left(\frac{q_{i}^{1} / q_{i}^{0}-Q_{L}}{Q_{L}}\right) \cdot\left(\frac{p_{i}^{0} q_{i}^{0}}{\sum p_{i}^{0} q_{i}^{0}}\right)\right]
$$

$$
\text { R a "centred" covariance } \frac{s_{\mathrm{XX}}}{\overline{\mathrm{X}} \cdot \overline{\bar{Y}}} \quad \mathrm{~L}=\mathrm{R}+1
$$

A. Chaffe, M. Lequain, G. O'Donnell, Assessing the Reliability of the CPI Basket Update in Canada Using the Bortkiewicz Decomposition, Statistics Canada, September 2007

No L-effect ($\mathrm{L}=1$) if

1. all $p^{1 /} p^{0}$ equal $\left(P_{L}\right)$ or $=1$
2. all $\mathrm{q}^{1} / \mathrm{q}^{0}=\mathrm{Q}_{\mathrm{L}}$ or $=1$
3. covariance $=0$

$$
\text { No S-effect }\left(S=Q^{L} / Q U^{L}=1\right) \text { if }
$$

1. no CNs, only individual goods (or: each $\mathrm{n}_{\mathrm{k}}=1$, perfectly homogeneous CNs)
2. all $\mathrm{q}^{1 / q^{0}}$ equal $(\mathrm{or}=1) 3$. all $\mathrm{m}_{\mathrm{kjt}}=\mathrm{m}_{\mathrm{kjo}}$ $\forall j, \mathrm{k}$ 4. all prices in 0 equal $\mathrm{P}_{\mathrm{kj0}}=\stackrel{\rightharpoonup}{\mathrm{p}} \mathrm{o}$ prices in t are irrelevant

3. Generalized theorem of Bortkiewicz for two linear indices X_{t} and X_{0}

$$
\mathrm{X}_{\mathrm{t}}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{\mathrm{t}}}
$$

$$
\mathrm{X}_{0}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{0}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}
$$

$$
\frac{X_{t}}{X_{0}}=1+\frac{s_{x y}}{\bar{X} \cdot \bar{Y}}
$$

$$
\mathrm{w}_{0}=\mathrm{x}_{0} \mathrm{y}_{0} / \sum \mathrm{x}_{0} \mathrm{y}_{0}
$$

$$
\sum \frac{\mathrm{x}_{\mathrm{t}}}{\mathrm{x}_{0}} \mathrm{w}_{0}=\overline{\mathrm{X}}=\mathrm{X}_{0}
$$

$$
\mathrm{s}_{\mathrm{xy}}=\sum\left(\frac{\mathrm{x}_{\mathrm{t}}}{\mathrm{x}_{0}}-\overline{\mathrm{X}}\right)\left(\frac{\mathrm{y}_{\mathrm{t}}}{\mathrm{y}_{0}}-\overline{\mathrm{Y}}\right) \mathrm{w}_{0}=\frac{\sum \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}}{\sum \mathrm{x}_{0} \mathrm{y}_{0}}-\overline{\mathrm{X}} \cdot \overline{\mathrm{Y}}
$$

The "usual" theorem (page 15) is a special case \rightarrow

Theorem for the L-effect $\quad \frac{X_{t}}{X_{0}}=1+\frac{s_{x y}}{\bar{X} \cdot \bar{Y}}$

$\mathrm{x}_{0}=\mathrm{p}_{0}$	$\mathrm{y}_{0}=\mathrm{q}_{0}$	$\mathrm{X}_{\mathrm{t}}=\mathrm{P}^{\mathrm{P}}$	$\mathrm{C}=\sum\left(\mathrm{p}_{\mathrm{it}}-\mathrm{p}^{\text {L }}\right.$) $\left.\mathrm{q}_{\mathrm{it}}-\mathrm{Q}^{L}\right) \mathrm{p}_{\mathrm{io}} \mathrm{q}_{\mathrm{io}}$
$\mathrm{x}_{\mathrm{t}}=\mathrm{p}_{\mathrm{t}}$	$\mathrm{y}_{\mathrm{t}}=\mathrm{q}_{\mathrm{t}}$	$\mathrm{X}_{0}=\mathrm{P}^{\mathrm{L}}$	$\left(\frac{p_{i 0}}{\mathrm{p}_{\mathrm{i}}}-\mathrm{P}_{0 \mathrm{ot}}\right)\left(\frac{\mathrm{q}_{\mathrm{i} 0}}{-\mathrm{Q}_{0 \mathrm{t}}}\right) \overline{\mathrm{p}_{\mathrm{i} 0} \mathrm{q}_{\mathrm{i} 0}}$

1. for $\mathrm{S} S=\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}} / \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}$

$\mathrm{x}_{0}=\mathrm{q}_{0}$	$\mathrm{y}_{0}=1$	$\mathrm{X}_{\mathrm{t}}=\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}(\mathrm{k})}$	$\sum\left(\frac{\mathrm{q}_{\mathrm{kjt}}}{\mathrm{q}_{\mathrm{kj} 0}}-\tilde{\mathrm{Q}}_{0 \mathrm{t}}^{\mathrm{k}}\right)\left(\mathrm{p}_{\mathrm{kj} 0}-\tilde{\mathrm{p}}_{\mathrm{k} 0}\right) \frac{\mathrm{q}_{\mathrm{kj} 0}}{\sum \mathrm{q}_{\mathrm{k} 0}} \mathrm{x}_{\mathrm{t}}=\mathrm{q}_{\mathrm{t}}$
$\mathrm{y}_{\mathrm{t}}=\mathrm{p}_{0}$	$\mathrm{X}_{0}=\tilde{\mathrm{Q}}_{0 \mathrm{t}}^{\mathrm{k}}$		

2. for $1 / \mathrm{S}$

$\mathrm{x}_{0}=\mathrm{q}_{0}$	$\mathrm{y}_{0}=\mathrm{p}_{0}$	$\mathrm{X}_{\mathrm{t}}=\tilde{Q}_{0 \mathrm{t}}^{\mathrm{k}}$	$\sum\left(\frac{\mathrm{q}_{\mathrm{kjt}}}{\mathrm{q}_{\mathrm{kj} 0}}-\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}(\mathrm{k})}\right)\left(\frac{1}{\mathrm{p}_{\mathrm{kj} 0}}-\frac{1}{\tilde{\mathrm{p}}_{\mathrm{k} 0}}\right) \frac{\mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kj} 0}}{\sum \mathrm{p}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kj} 0}}$
$\mathrm{x}_{\mathrm{t}}=\mathrm{q}_{\mathrm{t}}$	$\mathrm{y}_{\mathrm{t}}=1$	$\mathrm{X}_{0}=\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}(\mathrm{k})}$	

$$
\begin{array}{l|l}
\mathrm{p}_{10}=\mathrm{p}_{1 \mathrm{t}}=\mathrm{p} & \\
\mathrm{p}_{20}=\mathrm{p}_{2 \mathrm{t}}=\lambda \mathrm{p} \\
\mu=\mathrm{p}_{2 \mathrm{t}} / 0.5 & \begin{array}{l}
\mathrm{p} \\
10
\end{array} \\
\mathrm{p}_{2 \mathrm{t}} / \mathrm{p}_{20}=\eta \pi \\
\mathrm{m}_{10}=\mathrm{m}_{20}=0.5 &
\end{array}
$$

$\lambda>\mathbf{1}$	$\Delta<0 \rightarrow \mathrm{~S}<1$	$\Delta>0 \rightarrow \mathrm{~S}>1$
$\lambda<\mathbf{1}$	$\Delta>0 \rightarrow \mathrm{~S}>1$	$\Delta<0 \rightarrow \mathrm{~S}<1$
	$\mu<\mathbf{1}$	$\mu>\mathbf{1}$

S-effect	L-effect	$\pi=\eta=1$
$\mathrm{S}=\frac{\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}}}{\widetilde{\mathrm{Q}}_{0 \mathrm{t}}}=1+\frac{(1-\lambda)(1-\mu)}{1+\lambda}=1+\frac{\Delta}{\widetilde{\mathrm{p}}_{0}}$	$\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}=\frac{\pi(1+\eta \lambda)}{1+\lambda}$	= 1
$\mathrm{s}_{\mathrm{xy}}^{(1)}=\sum_{\mathrm{j}}\left(\frac{\mathrm{q}_{\mathrm{jt}}}{\mathrm{q}_{\mathrm{j} 0}}-\tilde{\mathrm{Q}}_{0 \mathrm{t}}\right)\left(\mathrm{p}_{\mathrm{j} 0}-\tilde{\mathrm{p}}_{0}\right) \frac{\mathrm{q}_{\mathrm{j} 0}}{\sum \mathrm{q}_{\mathrm{j} 0}}=\tilde{\mathrm{Q}}_{0 \mathrm{t}} \Delta$	$P_{0 t}^{P}=\frac{\pi(2-\mu+\eta \lambda \mu)}{2-\mu+\lambda \mu}$	$=1$
$\mathrm{s}_{\mathrm{xy}}^{(2)}=\frac{2 \tilde{\mathrm{Q}}_{0 \mathrm{t}}(\lambda-1)(1-\mu)}{\mathrm{p}(1+\lambda)^{2}}=-\frac{\Delta}{\left(\tilde{\mathrm{p}}_{0}\right)^{2}}$	$\mathrm{L}=\frac{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{P}}}{\mathrm{P}_{0 \mathrm{t}}^{\mathrm{L}}}==\frac{2-\mu+\eta \lambda \mu}{1+\eta \lambda}$	$\frac{1+\lambda}{2-\mu+\lambda \mu}$

	if $\pi=\eta=1$
$\left.\Delta^{*}=\tilde{p}_{t}-\tilde{p}_{0}=\frac{\mathrm{p}}{2}[\pi(2-\mu(1-\eta \lambda))-(1+\lambda))\right]$	$\Delta^{*}=\Delta$
$\mathrm{C}=\mathrm{s}_{\mathrm{xy}}^{(\mathrm{L})}=\frac{2 \widetilde{\mathrm{Q}}_{0 \mathrm{t}} \lambda(1-\eta)(1-\mu)}{(1+\lambda)^{2}}$	$\mathrm{C}=0$
$\Delta^{*}=\tilde{\mathrm{p}}_{\mathrm{t}}-\tilde{\mathrm{p}}_{0}=\pi \frac{\mathrm{s}_{\mathrm{xy}}^{1}}{\tilde{\mathrm{Q}}_{0 \mathrm{t}}}+\frac{\mathrm{s}_{\mathrm{xy}}^{\mathrm{L}}(1+\lambda)^{2}}{2 \tilde{Q}_{0 \mathrm{t}}}+\pi(1-\lambda \eta)-(1-\lambda)$	

7. What remains to be done

- Analysis of the time series of UVIs and PIs on various levels of disaggregation, cointegration and Granger-Causality
- Microeconomic interpretation of S-effect (in terms of utility maximizing behaviour)

No structural change between CNs (that is $\mathrm{Q}_{\mathrm{k} 0}=\mathrm{Q}_{\mathrm{kt}}$) yields

$$
\mathrm{V}_{0 \mathrm{t}}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{P}}=\mathrm{PU}_{0 \mathrm{t}}^{\mathrm{L}} \text { and } \mathrm{QU}_{0 \mathrm{t}}^{\mathrm{L}}=\mathrm{QU}_{0 \mathrm{t}}^{\mathrm{P}}=1
$$

This is, however, not sufficient for

$$
\mathrm{S}=\mathrm{Q}_{0 \mathrm{t}}^{\mathrm{L}} \neq 1
$$ the S-effect to vanish

No mean value property of PUP

$$
\begin{aligned}
& P U^{\mathrm{P}}=\sum_{k} \sum_{j} \frac{\mathrm{P}_{\mathrm{kjit}}}{\mathrm{p}_{\mathrm{kjo}}}\left(\frac{\mathrm{P}_{\mathrm{kj},} \mathrm{q}_{\mathrm{kjit}}}{\sum \sum \mathrm{P}_{\mathrm{kj0}} \mathrm{q}_{\mathrm{kji}}}\right) \\
& \mathrm{P}^{\mathrm{p}}=\sum_{\mathrm{k}} \sum_{j} \frac{\mathrm{p}_{\mathrm{kji}}}{\mathrm{p}_{\mathrm{kjo}}}\left(\frac{\mathrm{P}_{\mathrm{kj} 0} \mathrm{q}_{\mathrm{kji}}}{\sum \sum \mathrm{p}_{\mathrm{kj}} \mathrm{q}_{\mathrm{kit}}}\right)
\end{aligned}
$$

The relation $\mathrm{S}=\mathrm{PU}^{\mathrm{P}} / \mathrm{P}^{\mathrm{P}}$ instead of $\mathrm{S}=\mathrm{Q}^{\mathrm{L}} / \mathrm{QU}^{\mathrm{L}}$ is not interesting

$$
\begin{aligned}
& \text { Sum of weights! }
\end{aligned}
$$

UVI in XMPI Manual

§ 2.14
Drobisch's formula

