

Unit Value Bias (Indices) Reconsidered Price- and Unit-Value-Indices in Germany

Peter von der Lippe, Universität Duisburg-Essen Jens Mehrhoff*, Deutsche Bundesbank

11th Ottawa Group Meeting (Neuchâtel May 28th 2009)

*This paper represents the author's personal opinion and does not necessarily reflect the view of the Deutsche Bundesbank or its staff.

1. Introduction and Motivation

- 2. Unit value index (UVI) and Drobisch's Index (P^{UD})
- **3.** Price and unit value indices in German foreign trade statistics (Tests of hypotheses)
- 4. Properties and axioms (uv, UVI, P^{UD})
- 5. Decomposition of the Unit Value Bias (PU^P/P^L L- and S-effect)
- 6. Interpretation of the S-effect in terms of covariances (using a generalized theorem of Bortkiewicz)

7. Conclusions

Export and Import Price Index Manual (XMPI Man. IMF, 2008)

Unit Value Indices (UVIs) are used in

Prices of *trade* (export/import), *land*, *air freight* and certain *services* (consultancy, lawyers etc)

Literature (UVIs cannot replace price indices)

Balk 1994, 1995 (1998), 2005

Diewert 1995 (NBER paper), 2004 etc.

von der Lippe 2006 GER

http://mpra.ub.uni-muenchen.de/5525/1/MPRA _paper_5525.pdf

Silver (2007), Do Unit Value Export, Import, and Terms of Trade Indices Represent or Misrepresent Price Indices, IMF Working Paper WP/07/121

2000 Jan - 2007 Dec

Examples for CNs

HS (Harmonized System)	Germany (Warenverzeichnis)
19 05 90 Other Bakers' Wares, Communion Wafers, Empty Capsules, Sealing Wafers	19 05 90 45 Cakes and similar small baker's wares (8 digits)
23 09 10 Dog or Cat Food, Put up for Retail Sale	23 09 10 11 to 23 09 10 90 twelve (!!) CNs for dog or cat food

2. German Unit Value Index (UVI) of exports/imports the usual Paasche index (unit values instead of prices)

3. The Unit value index (UVI) should be kept distinct from **Drobisch's index** (1871)

$$P_{0t}^{DR} = \frac{\sum_{k} \sum_{j} p_{jkt} q_{jkt} / \sum_{k} \sum_{j} q_{jkt}}{\sum_{k} \sum_{j} p_{jk0} q_{jk0} / \sum_{k} \sum_{j} q_{jk0}} = \frac{\sum_{k} \sum_{j} p_{jkt} q_{jkt} / \sum_{k} Q_{kt}}{\sum_{j} p_{jk0} q_{jk0} / \sum_{k} Q_{k0}}$$

2. UVI and Drobisch's index

Definitions and Formulas – 3 –

Drobisch's index

$$P_{0t}^{DR} = \frac{\tilde{p}_{t}}{\tilde{p}_{0}} = \frac{V_{0t}}{\tilde{Q}_{0t}}, \quad \tilde{Q}_{0t} = \frac{Q_{t}}{Q_{0}}$$
However, Drobisch is better known for
$$\frac{1}{2} \left(P_{0t}^{L} + P_{0t}^{P} \right)$$

	no information about quantities available	information about quantities
the same commodity in different outlets	"normal" usage of the term "low level"	
different goods grouped by a classification		situation of a UVI (Σq needed for unit value)

It does not make sense to consider **absolute** unit values ("Euro per kilogram")

Austrian Import prices rose from $\approx 20 \text{ }$ eper kilogram in 1995 to 25 ... in 2005

Grafik 5

Österreichische Importpreisindizes in der Sachgütererzeugung

Glatzer et al "Globalisierung..." http://www.oenb.at/de/img/gewi_2006_3_tcm14-46922.pdf

"Because we use weights as units an increasing import price index could be explained by either rising prices or reduced weights due to quality improvement" $2^4 = 16$ indices:

type of index (price vs quantity)

Prices (p) vs unit values (uv)

Laspeyres vs Paasche

$$\mathbf{V} = \boldsymbol{\Sigma} p_t q_t / \boldsymbol{\Sigma} p_0 q_0 = \mathbf{P}^{\mathbf{P}} \mathbf{Q}^{\mathbf{L}} = \mathbf{P} \mathbf{U}^{\mathbf{P}} \ \mathbf{Q} \mathbf{U}^{\mathbf{L}}$$

	Price index	Unit value index
Data	Survey based (monthly), sample; more demanding (weights!)	Customs based (by-product), census, Intrastat: survey
Formula	Laspeyres	Paasche
Quality ad- justment	Yes	No (feasible?)
Prices, aggregates	Prices of specific goods at time of contracting	Average value of CNs; time of crossing border
New / dis- appearing goods	Included only when a new base period is defined; vanishing goods replaced by <i>similar</i> ones constant selection of goods *	Immediately included; price quotation of disappearing goods is simply discontinued variable universe of goods
Merits	Reflect pure price movement (ideally the same products over time)	" Representativity " inclusion of <i>all</i> products; data readily available
Published in	Fachserie 17, Reihe 11	Fachserie 7, Reihe 1

CN = commodity numbers

* All price determining characteristics kept constant

3. Indices in Germany

Price index (P) Unit value index (U)

Hypothesis	Argument
 U < P, growing discrepancy 	Laspeyres (P) > Paasche (U) Formula of L. v. Bortkiewicz
 Volatility U > P 	U no pure price comparison (U is reflecting changes in product mix [structural changes])
3. Seasonality U > P	U no adjustment for seasonally non-availability
 U suffers from heterogeneity 	Variable vs. constant selection of goods, CN less homogeneous than specific goods
5. Lead of P	Prices refer to the earlier moment of contracting (contract-delivery lag; exchange rates)
6. Smoothing (due to quality adjustment)	Quality adjustment in P results in smoother series

4. Properties and axioms: 4.1. unit values: one CN, two commodities

p ₂₀ μ =	$p_{10} = p_{1t} = p$ $p_{20} = p_{2t} = \lambda p$ $\mu = m_{2t}/0.5$ $m_{10} = m_{20} = 0.5$ $\Delta = \tilde{p}_{kt} - \tilde{p}_{k0} = \frac{p}{2} (1 - \lambda)(1 - \mu)$			
$\lambda > 1$	$\lambda > 1$ and $\mu < 1 \rightarrow \Delta < 0$ less of the more expensive good 2 unit value <i>declining</i>	$\lambda > 1$ and $\mu > 1 \rightarrow \Delta > 0$ more of the more expensive good 2 unit value <i>rising</i>		
$\lambda < 1$	$\lambda < 1$ and $\mu < 1 \rightarrow \Delta > 0$ less of the cheaper good 2 unit value <i>rising</i>	$\lambda < 1 \text{ and } \mu > 1 \rightarrow \Delta < 0$ more of the cheaper good 2 unit value <i>declining</i>		
	μ < 1	μ >1		

"... 'unit value' indices ... may therefore be affected by changes in the mix of items as well as by changes in their prices. Unit value indices cannot therefore be expected to provide good measures of average price change over time" (SNA 93, § 16.13)

4. Properties and axioms: 4.2. ratios of unit values

1) UVI mean of uv-ratios $PU_{0t}^{P} = \sum_{k} \frac{\tilde{p}_{kt}}{\tilde{p}_{k0}} \frac{\tilde{p}_{k0}Q_{kt}}{\sum_{k}\tilde{p}_{k0}Q_{kt}}$

2) Ratio of unit values \neq mean of price relatives

$$\frac{\tilde{p}_{kt}}{\tilde{p}_{k0}} = \sum_{j} \frac{p_{kjt}}{p_{kj0}} \left(\frac{p_{kj0}q_{kjt}}{\tilde{p}_{k0}Q_{kt}} \right)$$

the weights do not add up to unity, but to $\frac{Q_{k0}}{Q_{kt}} \cdot Q_{0t}^{L(k)} = \frac{Q_{0t}^{L(k)}}{\tilde{Q}_{0t}^{k}}$
) Proportionality (identity)

3

Axioms Drobisch's (price) index and the German UVI (= PU^P)

Axiom		Drobisch*	German PU ^P
Proportionality	$U(\mathbf{p}_0, \lambda \mathbf{p}_0, \mathbf{q}_0, \mathbf{q}_1) = \lambda$ (identity = 1)	no	no
Commensurability	$U(\Lambda \mathbf{p}_0, \Lambda \mathbf{p}_t, \Lambda^{-1} \mathbf{q}_0, \Lambda^{-1} \mathbf{q}_t) = U(\mathbf{p}_0, \mathbf{p}_t, \mathbf{q}_0, \mathbf{q}_t)$	no	no
Linear homogen.	$U(\mathbf{p}_0, \lambda \mathbf{p}_t, \mathbf{q}_0, \mathbf{q}_t) = \lambda U(\mathbf{p}_0, \mathbf{p}_t, \mathbf{q}_0, \mathbf{q}_t)$	yes	yes
Additivity** (in current period prices)	$U(\mathbf{p}_{0}, \mathbf{p}_{t}^{*}, \mathbf{q}_{0}, \mathbf{q}_{t}) = U(\mathbf{p}_{0}, \mathbf{p}_{t}, \mathbf{q}_{0}, \mathbf{q}_{t}) + U(\mathbf{p}_{0}, \mathbf{p}_{t}^{*}, \mathbf{q}_{0}, \mathbf{q}_{t}) \text{ for } \mathbf{p}_{t}^{*} = \mathbf{p}_{t} + \mathbf{p}_{t}^{*},$	yes	yes
Additivity** (in base period prices)	$[U(\mathbf{p}_{0}^{*}, \mathbf{p}_{t}, \mathbf{q}_{0}, \mathbf{q}_{t})]^{-1} = [U(\mathbf{p}_{0}, \mathbf{p}_{t}, \mathbf{q}_{0}, \mathbf{q}_{t})]^{-1} + [U(\mathbf{p}_{0}^{+}, \mathbf{p}_{t}^{+}, \mathbf{q}_{0}, \mathbf{q}_{t})]^{-1} \text{ for } \mathbf{p}_{0}^{*} = \mathbf{p}_{0}^{-1} + \mathbf{p}_{0}^{+}$	yes	yes
Product test	test Implicit quantity index of P ^{UD} or PU ^P		QUL
Time re- versibility	$U(\mathbf{p}_{t}, \mathbf{p}_{0}, \mathbf{q}_{t}, \mathbf{q}_{0}) = \mathbf{U} \leftarrow$ = $[U(\mathbf{p}_{0}, \mathbf{p}_{t}, \mathbf{q}_{0}, \mathbf{q}_{t})]^{-1} = [\mathbf{U} \rightarrow]^{-1}$	yes	(PU ^P ←) = 1/(PU ^L →)
Transitivity $U(\mathbf{p}_0, \mathbf{p}_2, \mathbf{q}_0, \mathbf{q}_2) = U(\mathbf{p}_0, \mathbf{p}_1, \mathbf{q}_0, \mathbf{q}_1) \cdot U(\mathbf{p}_1, \mathbf{p}_2, \mathbf{q}_1, \mathbf{q}_2)$ yes		no	

* Balk1995, Silver 2007, IMF Manual; applies also to subindex $\tilde{p}_{kt}/\tilde{p}_{k0}$

** Inclusive of (strict) monotonicity

Value index
$$V_{0t} = PU_{0t}^{L}QU_{0t}^{P} = PU_{0t}^{P}QU_{0t}^{L}$$

Bortkiewicz Formula

$$C = \sum_{i} \left(\frac{p_{it}}{p_{i0}} - P_{0t}^{L} \right) \left(\frac{q_{it}}{q_{i0}} - Q_{0t}^{L} \right) \frac{p_{i0}q_{i0}}{\sum p_{i0}q_{i0}}$$
$$= V_{0t} - Q_{0t}^{L}P_{0t}^{L} = Q_{0t}^{L} \left(P_{0t}^{P} - P_{0t}^{L} \right)$$

Discrepancy (uv-bias)

$$D = \frac{PU_{0t}^{P}}{P_{0t}^{L}} = \left(\frac{C}{Q_{0t}^{L}P_{0t}^{L}} + 1\right)\left(\frac{Q_{0t}^{L}}{QU_{0t}^{L}}\right) = \frac{P_{0t}^{P}}{P_{0t}^{L}} \cdot \frac{PU_{0t}^{P}}{P_{0t}^{P}} = L \cdot S$$

$$L = \frac{Q_{0t}^{P}}{Q_{0t}^{L}} = \frac{Q_{0t}^{P}}{S \cdot QU_{0t}^{L}} = \frac{PU_{0t}^{P}}{S \cdot P_{0t}^{L}}$$

Ladislaus von Bortkiewicz (1923)

$$= \frac{\mathbf{Q}_{0t}^{\mathrm{L}}}{\mathbf{Q}\mathbf{U}_{0t}^{\mathrm{L}}} = \frac{\mathbf{Q}_{0t}^{\mathrm{P}}}{\mathbf{L} \cdot \mathbf{Q}\mathbf{U}_{0t}^{\mathrm{L}}} = \frac{\mathbf{P}\mathbf{U}_{0t}^{\mathrm{P}}}{\mathbf{L} \cdot \mathbf{P}_{0t}^{\mathrm{L}}}$$

S

S > 1		P ^L	L L	P ^P	
	I opposite direction) indeterminate	Quadrant I same Direction D > 1			S
L<1	III same direction D < 1	L > 1 IV opposite direction D indeterminate	PU ^L	,]	PU ^P

In I and III we can combine two inequalities

	S < 1	S = 1	S > 1
L < 1	$PU^P < P^P < P^L$	$PU^P < P^L$	indefinite
L = 1	$PU^P < P^L = P^P$	$PU^P = P^P = P^L$	$PU^P > P^L = P^P$
L > 1	indefinite	$PU^P > P^L$	$PU^P > P^P > P^L$

5. The two effects L and S - 2 -

Deflator X and M respectively taken for P^P

S and L independent ?

5. The two effects L and S - 3 - Time path of S-L- pairs (left \rightarrow right)

Interpretation L-Effect: contributions to the covariance (Szulc)

$$R = \frac{P_{P} - P_{L}}{P_{L}} = \sum_{i} \left[\left(\frac{p_{i}^{1}/p_{i}^{0} - P_{L}}{P_{L}} \right) \cdot \left(\frac{q_{i}^{1}/q_{i}^{0} - Q_{L}}{Q_{L}} \right) \cdot \left(\frac{p_{i}^{0}q_{i}^{0}}{\sum p_{i}^{0}q_{i}^{0}} \right) \right]$$

R a "centred" covariance $\frac{s_{XY}}{\overline{X} \cdot \overline{Y}}$ L = R + 1

A. **Chaffe**, M. **Lequain**, G. **O'Donnell**, Assessing the Reliability of the CPI Basket Update in Canada Using the Bortkiewicz Decomposition, Statistics Canada, September 2007

No L-effect
$$(L = 1)$$
 ifNo S-effect $(S = Q^L/QU^L = 1)$ if1. all p^1/p^0 equal (P_L)
or = 11. no CNs, only individual goods
(or: each $n_k = 1$, perfectly homogeneous CNs)2. all $q^1/q^0 = Q_L$ or = 1
3. covariance = 02. all q^1/q^0 equal (or = 1)3. covariance = 04. all prices in 0 equal $p_{kj0} = \tilde{p}_{k0}$
prices in t are irrelevant

6. Contribution of a CN (k) to S as ratio of two linear indices

1.
$$\mathbf{S} = \frac{\mathbf{Q}_{0t}^{\mathrm{L}}}{\mathbf{Q}\mathbf{U}_{0t}^{\mathrm{L}}} = \sum_{k} \frac{\mathbf{Q}_{0t}^{\mathrm{L}(k)}}{\widetilde{\mathbf{Q}}_{0t}^{k}} \cdot \frac{\widetilde{\mathbf{p}}_{k0}\mathbf{Q}_{kt}}{\sum_{k}\widetilde{\mathbf{p}}_{k0}\mathbf{Q}_{kt}}$$

2. Generalized theorem of Bortkiewicz for two linear indices X_t and X_0 $X_t = \frac{\sum x_t y_t}{\sum x_t}$

$$\begin{bmatrix} \mathbf{X}_{t} \mathbf{y}_{t} \\ \mathbf{X}_{0} \mathbf{y}_{t} \end{bmatrix} \qquad \mathbf{X}_{0} = \frac{\sum \mathbf{X}_{t} \mathbf{y}_{0}}{\sum \mathbf{X}_{0} \mathbf{y}_{0}}$$

$$\left|\frac{\mathbf{X}_{t}}{\mathbf{X}_{0}} = 1 + \frac{\mathbf{S}_{xy}}{\overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}}\right|$$

$$w_0 = x_0 y_0 / \sum x_0 y_0$$

$$\sum \frac{\mathbf{X}_{t}}{\mathbf{X}_{0}} \mathbf{W}_{0} = \overline{\mathbf{X}} = \mathbf{X}_{0}$$

$$\mathbf{s}_{xy} = \sum \left(\frac{\mathbf{X}_{t}}{\mathbf{X}_{0}} - \overline{\mathbf{X}} \right) \left(\frac{\mathbf{y}_{t}}{\mathbf{y}_{0}} - \overline{\mathbf{Y}} \right) \mathbf{w}_{0} = \frac{\sum \mathbf{X}_{t} \mathbf{y}_{t}}{\sum \mathbf{X}_{0} \mathbf{y}_{0}} - \overline{\mathbf{X}} \cdot \overline{\mathbf{Y}}$$

The "usual" theorem (page 15) is a special case \rightarrow

6. Generalized Theorem of Bortkiewicz

$$\begin{array}{c|c} \hline \textbf{Theorem for the L-effect} & \frac{X_t}{X_0} = 1 + \frac{s_{xy}}{\overline{X} \cdot \overline{Y}} \\ \hline x_0 = p_0 & y_0 = q_0 & X_t = P^P \\ \hline x_t = p_t & y_t = q_t & X_0 = P^L \end{array} \quad C = \sum_i \left(\frac{p_{it}}{p_{i0}} - P_{0t}^L \right) \left(\frac{q_{it}}{q_{i0}} - Q_{0t}^L \right) \frac{p_{i0}q_{i0}}{\sum p_{i0}q_{i0}} \end{array}$$

1. for S
$$S = Q_{0t}^{L} / QU_{0t}^{L}$$

$$\frac{x_{0} = q_{0}}{x_{t} = q_{t}} \quad \frac{y_{0} = 1}{y_{t} = p_{0}} \quad \frac{X_{t} = Q_{0t}^{L(k)}}{X_{0} = \tilde{Q}_{0t}^{k}} \quad \sum \left(\frac{q_{kjt}}{q_{kj0}} - \tilde{Q}_{0t}^{k}\right) \left(p_{kj0} - \tilde{p}_{k0}\right) \frac{q_{kj0}}{\sum q_{kj0}}$$

2. for 1/S

6. Two commodities example with both, S and L effect (example of page 12)

$$\begin{array}{ll} p_{10} = p_{1t} = p & \\ p_{20} = p_{2t} = \lambda p & \\ \mu = m_{2t}/0.5 & \\ m_{10} = m_{20} = 0.5 & \\ \end{array} \begin{array}{ll} \pi = p_{1t}/p_{10} & \\ p_{2t}/p_{20} = \eta \pi & \\ \lambda > 1 & \Delta < 0 \rightarrow S < 1 & \\ \lambda < 1 & \Delta > 0 \rightarrow S > 1 & \\ \Delta < 0 \rightarrow S < 1 & \\ \mu > 1 & \\ \end{array} \right.$$

7. Conclusions

$$\begin{split} & \begin{array}{l} & \text{if } \pi = \eta = 1 \\ \Delta^* = \widetilde{p}_t - \widetilde{p}_0 = \frac{p}{2} \Big[\pi \Big(2 - \mu \big(1 - \eta \lambda \big) \Big) - (1 + \lambda) \big) \Big] & \Delta^* = \Delta \\ & \\ C = s_{xy}^{(L)} = \frac{2 \widetilde{Q}_{0t} \lambda (1 - \eta) (1 - \mu)}{(1 + \lambda)^2} & C = 0 \\ & \\ \Delta^* = \widetilde{p}_t - \widetilde{p}_0 = \pi \frac{s_{xy}^1}{\widetilde{Q}_{0t}} + \frac{s_{xy}^L (1 + \lambda)^2}{2 \widetilde{Q}_{0t}} + \pi \big(1 - \lambda \eta \big) - \big(1 - \lambda \big) \end{split}$$

7. What remains to be done

- Analysis of the time series of UVIs and PIs on various levels of disaggregation, cointegration and Granger-Causality
- Microeconomic interpretation of S-effect (in terms of utility maximizing behaviour)

No structural change **between** CNs (that is $Q_{k0} = Q_{kt}$) yields $V_{0t} = PU_{0t}^{P} = PU_{0t}^{L}$ and $QU_{0t}^{L} = QU_{0t}^{P} = 1$ This is, however, not sufficient for the S-effect to vanish $S = Q_{0t}^{L} \neq 1$

No mean value property of PUP

$$PU^{P} = \sum_{k} \sum_{j} \frac{p_{kjt}}{p_{kj0}} \left(\frac{p_{kj0}q_{kjt}}{\sum \sum p_{kj0}q_{kjt}^{*}} \right) P^{P} = \sum_{k} \sum_{j} \frac{p_{kjt}}{p_{kj0}} \left(\frac{p_{kj0}q_{kjt}}{\sum \sum p_{kj0}q_{kjt}} \right)$$

$$q_{kjt}^{*} = q_{k_{j0}} \frac{Q_{kt}}{Q_{k0}}$$
The same applies to Laspeyres
$$PU^{L} = \sum_{k} \sum_{j} \frac{p_{kjt}}{p_{kj0}} \frac{p_{kj0}\left(q_{kjt} \frac{Q_{k0}}{Q_{kt}}\right)}{\sum \sum p_{kj0}q_{kj0}}$$
a fictitious quantity in t

The relation S = PU^{P}/P^{P} instead of S = Q^{L}/QU^{L} is not interesting

Manual

§ 2.14Drobisch's formula

