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Abstract: The advent of scanner data was greeted with great fanfare in the price index fra-

ternity given the wealth of information it can potentially provide for use in index construction.

Unfortunately, the integration of the scanner data into the construction of official indexes since this

time has been somewhat underwhelming. One of the major factors behind the hesitancy of statis-

tical agencies to use scanner data is the volatility in both prices and quantities of individual items.

Much of this is to do with the semi-regular rotation of products on and off sale, and the very strong

changes in purchase volumes that this induces. Inventory effects—which sees consumers restock

during sales—can lead to asymmetric changes in quantities when compared with price movements.

Standard index number methods can produce questionable answers in such circumstances. As a

resolution to this problem we outline a stochastic mixture model of prices which we use in con-

structing price indexes. This model takes account of the step-like nature of prices, as products go

on and off sale, and produces an index which we argue is both bias free and likely to have lower

variance than alternative approaches.
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1 Introduction

There was considerable excitement, and a flurry of research activity, following the ‘dis-

covery’ of scanner (or barcode) data with regard to its uses in constructing price indexes

(Silver, 1995, 1999; Silver and Webb, 2002; Silver and Heravi, 2001; Reinsdorf, 1999;

Feenstra and Shapiro (eds.), 2003; Melser, 2006). In modern retailing almost all pur-

chases of goods are scanned at the checkout and the barcode, the price and sales volumes

are recorded. This information is then used by the firm in supply chain management

and often passed on to a third party, such as a market research company, for analysis.

Perhaps as much as one quarter or a third of all consumers’ expenditures are recorded

in this way.1 On the face of it the potential of scanner data is enormous. Traditional

statistical agency sampling methods involve visiting shops at specific times and obtaining

isolated price quotes with no expenditure information. By contrast scanner data offers

effectively a census of transaction prices along with associated quantity data. Given this

it was hoped that scanner data would not only lead to more accurate measures of prices

change but also more stable estimates given the wealth of data relative to the traditional

sample.

However, now more than a decade has passed and unfortunately the extent of the inte-

gration of scanner data into the construction of official statistics has been disappointing.

In the US the BLS makes no mention of its use of scanner data though has undertaken

indepth research on the topic (see Richardson (2003) and the references included). The

situation is similar in Canada, Australia, the UK and elsewhere. The only statistical

agencies to make substantial use of scanner data in any meaningful way are Statistics

Netherlands, Statistics Norway and the Swiss Federal Statistical Office—though Statistics

New Zealand uses scanner data for weighting purposes. The Dutch have led the globe in

their use of scanner data but it has not been trouble-free (Statistics Netherlands, 2003).

Few have followed. This is despite exhortations by the Boskin Commission in the late-

1For example examining the breakdown of weights in BLS (2009) we can get a rough guide as to the

proportion of expenditure which scanner data exists. For urban workers it is likely that the 7.746% of

expenditure on Food at Home will be for scanned products; much of the 4.612% of spending on Household

Furnishings and Operation, for items such as furniture, appliances, and tools, will be recorded electronically;

as will the 3.663% of expenditure on Apparel ; spending on gasoline of 4.429% is also likely to be collected

electronically. If we include the spending on recreational goods, such as audio visual equipment and

sporting goods as well as spending on cigarettes and tobacco and personal care goods this takes the count

well above 25%. The proportion is likely higher than this and will no doubt expand in coming years.
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1990s, with regard to the United States CPI, to explore the use of scanner data to to reduce

the costs of data collection, help in estimating expenditure weights and to introduce new

products in a more timely fashion (Boskin, Dulberger, Gordon, Griliches and Jorgenson,

1997, p.81). More recently the National Research Council (2002) report emphasized the

potential advantages of the scanner data but sounded a somewhat more cautionary note

about the care that was required in effectively using it in price indexes. The increasing

circumspection with regard to scanner data reflects much of the research over the past

decade which has had trouble constructing price indexes using such data. In an influential

early study of Chicago coffee data Reinsdorf (1999) showed that under various ‘reasonable’

approaches he obtained estimates of price change varying between 71.5% and 371.1% over

just two years.2 Much of the other work on scanner data, such as by Silver and co-authors

(Silver, 1995, 1999; Silver and Webb, 2002; Silver and Heravi, 2001), showed that different

approaches could lead to staggeringly different answers. This is of course the opposite of

what statistical agencies seek as they want to develop robust approaches which depend

little on arbitrary assumptions. This has emphasized a point made by Triplett (2003) and

others, that the standard approach to cost-of-living construction is insufficient when faced

with the reality of scanner data.

In particular, we argue that there are two major issues which crop up in the construc-

tion of price indexes using scanner data. These are sales and stockpiling. At the level of

individual prices there is extreme variability in prices at a daily, weekly, or even monthly

frequency as a result, not of inflation, but of the sales and the discounting cycle. Con-

sumers who take advantage of these sales can save significant amounts. Generally speaking

the existence of two price modes for a good—the regular price and the sale price—poses

problems for classical index methods which focus on the mean. We develop this point

below and suggest alternative ways of modeling price change in this case. The existence

of a sales cycle, and the fact that many goods are storable, leads to significant stockpiling

activity during sales, with purchases skyrocketing, while during regular pricing demand

is considerably weaker. The conjunction of significant fluctuations in price, stockpiling,

and the separation of purchase and consumption poses significant problems for the con-

struction of cost-of-living indexes. While discussion of sales behaviour has been a focus

of attention in some quarters—usually in the marketing literature (see for example Van

2The strong price rise, even at the lower end of the spectrum, reflected the fact that there were significant

increases in the price of coffee at this time as a result of supply-side factors.
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Heerde, Leeflang and Wittink, 2000)—there has been little attempt to model this for the

purposes of constructing a price index. Inventory behaviour by consumers has recently

received significant attention (Hendel and Nevo, 2006a, 2006b) but the implications for

price index construction are yet to be fully explored.

This paper address the broad question of how to construct unbiased and stable price

indexes using scanner data at high frequency given the reality of sales and stockpiling.

We seek to model the sales cycle and integrate this into a framework for constructing

price indexes. While our approach is a little speculative, our objective, driven by the

demands of official statistical agencies, is to seek a methodology which produces a unbiased

estimate of price change with as little volatility as possible. In doing this we analyze a

major US scanner data set made available for research purposes by Information Resources

Incorporated (IRI) (see Bronnenberg, Kruger and Mela, 2008). The data involves weekly

sales prices and quantities at the barcode level by store and metropolitan area from 2001

to 2006. The data is very rich and will be used extensively to illustrate our points.

In the next section we begin by addressing the problem of sales. We outline a model

of price generation which enables the identification of sales and apply this to the IRI data

set. Section 2 also examines the significance of stockpiling for our data. In section 3

we outline ways of thinking about the cost-of-living index in the context of this issue.

Our approach suggests a number of practical ways of constructing price indexes on high

frequency data which are likely to be bias-free and have relatively low variance. Section

4 compares the various approaches to price index construction empirically using the IRI

data. We conclude by providing some summary comments in section 5.

2 Sales and Stockpiling

The use of sales discounts by retailers is ubiquitous. Either in large mega-retailing estab-

lishments or in smaller corner stores. While the classic reason for sales is to get rid of

unwanted store inventory there are likely to be many other reasons too. Varian (1980)

argued that sales enabled retailers to discriminate across informed and uninformed con-

sumers, Sobel (1984) saw it as a way to occasionally sell to low reservation price consumers.

There are a range of other reasons as well, such as the loss-leader strategy (Hess and Ger-

stner, 1987).

Despite the prevalence of sales, their modeling and identification has received relatively
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little attention. The standard approach being to define some level of price cut below which

the good is identified as being on sale (Hendel and Nevo, 2006a; Feenstra and Shapiro,

2003). While likely to give a reasonable approximation the choice of cutoff appears some-

what contestable, and is likely to vary by product category and item. Feenstra and Shapiro

(2003) chose a 5% cutoff while Hendel and Nevo (2006a) undertook their analysis for a

range of cutoff values; 5%, 10%, 25% and 50%.

In Figure 1 we depict a price path for various types of laundry detergent. The out-

standing feature of the behaviour of price is its oscillation between two different levels.

That is, it is inherently bimodal in nature. Hence, we argue that in order to understand

and measure price change it is likely to be necessary to have a model which incorporates

the bimodal nature of prices. A natural way of modeling such a variable is through the

use of a mixture distribution.

Figure 1: The Sales Cycle — Laundry Detergent Prices

(a) Product 9, Store 68
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(c) Product 18, Store 21
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(d) Product 17, Store 59
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We consider a model of prices which explicitly accounts for the sales cycle. Let ln pist

denote the log of price from store s ∈ St, where St is the set of stores open in time

t = 1, 2, . . . , T , for some good i ∈ Ist, where Ist denotes the set of products available in

store s in time t. Now the price will will either be a draw from the ‘regular’ (higher mean)

price distribution or it will come from the (lower mean) sales distribution. More formally

we suggest the following stochastic mixture model for log prices,

ln pist ∼ zistN
(

αist − βi, σ
2
i

)

+ (1− zist)N
(

αist, σ
2
i

)

, βi ≫ 0 (1)

zist ∼ B(ωit) (2)

Here αist can be thought of as the ‘regular’ price for good i in store s at time t. This is

item, store and time specific. Potentially a number of different techniques could be used

to estimate this, such as a polynomial functional form in time or a spline. Our approach

was to model it using a nonparametric local regression method with a predetermined span.

This performed relatively well in practice. However, note that a particular price, ln pist,

may also be a sale price. In this case the mean falls by the sale effect βi where βi ≫ 0.

This is incorporated into the sales price distribution. The variance of prices under these

two regimes is assumed to be the same σ2
i . The essential idea of this model is shown in

Figure 2 below.

Figure 2: The Distribution of Prices

Log Price

Frequency

α− β α

α=Normal Price

β=Sales Discount

The key part of the model is that we also have the variables zist. These may be

regarded in some sense as missing data and indicate whether a good is on sale zist = 1

or not on sale zist = 0. These are Bernoulli random variables distributed with probability
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ωit—the probability that a good is on sale. Note that this can change over time and

reflects the propensity that stores have to discount. The parameters to estimate in this

model are, excluding the subscripts, the various α, β, σ, ω and z variables. This model can

be estimated iteratively using the EM (expectations maximization) algorithm (Dempster,

Laird and Rubin, 1977). Here we effectively treat the sales indicators as missing data. A

more detailed discussion of estimation is contained in the Appendix 7.1.

It should be noted that the model above is not a standard hedonic model. It is much

more flexible than that. Indeed the output of the model is essentially a price index for

each product in each store, αist. Clearly some additional approach is required to construct

a price index across products. Our approach here is not (necessarily) to use a regression

method but to focus in on identifying sales behaviour and use this in informing our price

index methodology. In order to accurately identify sales we have intentionally kept the

model very general.

In principle, our point is that in the presence of such a bimodal distribution the mean

of the distribution is not going to necessarily be the best measure of it. In fact, it is

straightforward to show—as we do in Appendix 7.2—that the variance of the mean is

equal to,

Var(ln pist) = σ2
i + ωit(1− ωit)β

2
i (3)

Clearly, this is greater than σ2
i , the variance of each of the individual mean parameters.

The wedge between these two variances depends upon the frequency of sales and the size of

the discount. Given this there is the possibility of reducing the variance of some estimator

of the mean price change by explicitly taking account of the bimodal nature of prices.

In order to explore the feasibility of the mixture model we apply it to the IRI data set

for a range of products; beer, carbonated beverages, coffee, deodorant, laundry detergent,

milk, mustard and ketchup, paper towels, peanut butter, salty snacks, shampoo, soup,

spaghetti sauce, sugar substitute, toilet tissue, toothpaste, yoghurt. The IRI data set is

very large indeed and we focus on just a small component of it. We utilize data for just one

of the available markets, Boston, over the whole 6 year period. In order to keep the size of

the data to manageable proportions we have trimmed the selection of items to those that

were available for at least a year and removed some at random stores. Some summary

statistics on the data used are contained in Table 1 below along with estimates of the key
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parameters. In particular there is strong evidence of very significant sales behaviour. The

average probability of a sale for the product categories varies significantly. If we calculate

the mean percentage of sales across the data set this varies from just 8.46% for beer to

23.67% for spaghetti sauce. There is even more variability in the discount rate across

products, i.e the β. For each item within a product category we calculate a separate

discount. If for each product category we take the mean of these across all items then this

yields an average discount which is lowest at 12.87% for beer and highest at 34.43% for

soap.

Table 1: Summary Statistics for IRI Data — Boston

Product Number of: Expenditure ($) Probability Average Sales

Items Stores Observations Total On Sale (%) of Sale (%) Discount (%)

Beer 558 33 175,658 10,773,410 2,831,948 (26.29) 8.46 12.87

Carbonated Beverages 863 9 355,071 14,401,327 5,606,342 (38.93) 21.79 25.51

Coffee 460 14 304,416 9,782,830 3,383,628 (34.59) 21.99 27.65

Deodorant 551 14 313,495 1,873,691 329,900 (17.61) 15.70 36.55

Diapers 260 37 248,830 8,624,339 2,130,034 (24.70) 20.04 24.32

Laundry Detergent 325 16 210,504 8,748,413 3,221,216 (36.82) 17.24 31.80

Milk 282 17 321,594 48,326,059 8,291,286 (17.16) 19.52 19.56

Mustard and Ketchup 225 23 245,953 6,051,455 1,288,858 (21.29) 17.71 25.97

Paper Towels 219 38 234,434 21,202,529 6,074,663 (28.65) 12.25 28.98

Peanut Butter 116 35 270,964 9,242,605 2,451,277 (26.52) 17.45 25.23

Salty Snacks 963 9 307,746 8,788,534 2,373,876 (27.01) 18.35 27.55

Shampoo 551 14 299,967 2,326,703 4,59,215 (19.74) 15.70 30.27

Soup 552 9 264,729 4,612,889 1,688,499 (36.60) 22.41 34.43

Spaghetti Sauce 422 12 288,320 5,465,383 1,998,879 (36.57) 23.67 28.22

Sugar Substitute 52 51 191,022 4,435,557 656,878 (14.81) 13.31 22.85

Toilet Tissue 163 32 241,574 22,487,510 6,322,188 (28.11) 13.42 27.97

Toothpaste 403 14 246,966 2,952,563 589,022 (19.95) 15.70 31.27

Yoghurt 550 6 272,707 10,179,578 2,333,484 (22.92) 17.28 28.59

NOTE: Results are for IRI data discussed previously and in detail in Bronnenberg, Kruger and Mela (2008). The data covers

313 weeks (6 years) and records weekly average prices at the store-level by product barcode.

It is perhaps more useful to examine the results at a less disaggregated. We return

to the price paths for the various types of laundry detergent that we illustrated in Figure

1. We reproduce those charts but with the values indicator z included. It is clear from

the figures that the model does a reasonable job of picking up the sales. Though in some

cases it is not entirely clear, even from a conceptual point of view, exactly what should

be categorized as a sale.

The existence of significant sales activity, as prices bounce, opens up the opportunity

for shrewd consumers to “lie in wait” for sales and build inventory for later consumption.

Even for relatively passive consumers the fact that the vector of prices they face may

change significantly from week-to-week is likely to strongly influence purchase decisions.
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Figure 3: The Sales Cycle — Laundry Detergent Prices and the Sales Indicator
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In the latter case even without stocking effects the data is likely to exhibit significant

substitution effects leading to large differences between index number formulae. We re-

turn to this later. However, when some consumers do engage in stocking behaviour the

substitution effects are even stronger and classic index number techniques for constructing

cost-of-living indexes, which assume that purchase and consumption occur simultaneously,

are somewhat undermined. In the classic case both purchase and consumption take place

within a period of time. But if the time is relatively short, and goods are storable such as

some of those we are examining, then this may not be the case.

It is possible to identify the existence of inventory shopping by examining the “state

dependence” of purchases. If consumers are shopping only to fulfil current needs then

current prices will be the driver of purchases. However, as can be shown in consumer

inventory models (Hendel and Nevo, 2006a, 2006b), purchases will respond not only to
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prices but also to time between sales and more generally, previous prices, as this provides

a proxy of the state of consumers’ inventories. We propose a simple test of whether a

household’s unobserved inventory is influencing purchase decisions. Suppose that there is

no state dependence in purchases, that is prior sales and prices do not influence current

spending. Then consumers choices can be understood and explained within some classic

structural economic model of decision-making, such as the CES cost function. However,

if stockpiling does occur then some indicator of inventory levels will provide additional

explanatory power and the classic consumption-purchase model will be undermined. This

is the approach we take.

First, consider the CES cost function and the demand equations derived from it. When

we take this to the data below we will just consider a CES cost function defined across items

with a particular store. While there is certainly likely to be substitution between stores

it is difficult to determine the extent of this given that we do not know the geographical

proximity of the retailers in our data set. They may be very far away from each other, or at

least some of them might be, limiting the propensity for substitution. Hence, we consider

the CES cost function for a given store. The parameters of the CES cost function are η,

the elasticity of substitution, and the various ais, which reflect the quality or importance

of the good in the cost function. Given this we have,

C(pst, U) =

(

∑

i∈Ist

aisp
1−η
ist

)
1

1−η

U (4)

Then using Shepard’s Lemma we have,

vist =
aisp

1−σ
ist

∑

i∈Ist
aisp

1−σ
ist

, vist ≡
pistqist

∑

i∈Ist
pistqist

(5)

Given Shepard’s Lemma, we show in Appendix 7.3 that we have an estimable equation

where everything is observable except the η,

log

(

visr/λr

visu/λu

)

= (1− σ) log

(

pisr
pisu

/Pur

)

(6)

This gives an expression for relative demand as a function of relative prices. If this

adequately represents demand, and stockpiling does not influence demand, then if we

include additional variables related to inventories then these should have no explanatory
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power. Our approach is as follows. We want to identify the extent to which the consumer’s

inventory influences purchases but we do not observe inventory directly. But if consumers

restock their inventory during a sale then we can be fairly certain that their inventory

will be higher after the sale than before. Hence we focus on comparing two periods r and

u in equation (6) where period r is the period immediately after a sale and period u is

the period immediately prior to a sale. What we would expect, if inventory plays a role

in determining spending, is that shares in period r will be lower than in period u after

controlling for any price differences. In addition to including an intercept in equation (6)

we also include effects for whether a display or feature existed in periods r or u. This

gives the model below, where we have appended an additive error term,

log

(

visr/λr

visu/λu

)

= γ0 + (1− σ) log

(

pisr
pisu

/Pur

)

+ γ1displayisru + γ2featureisru + eisru (7)

In implementing this approach we use the sales indicator obtained following estimation

of the mixture model above. The results are shown in Table 2. As hypothesized, the

intercept in equation (7) is mostly negative and statistically significant. The exceptions are

the milk and mustard and ketchup product categories, which have a positive sign, though

it is statistically insignificant. The estimates for the display and feature dummy variables

are mainly of positive sign, though this varies and they are generally not statistically

significant. The estimates for the elasticity of substitution are quite variable and somewhat

troubling. In order for equation (6) to be valid the elasticity of substitution must be greater

than one (Balk, 1999). This occurs in some cases but not all. Further work will focus

on generating an expression where we can ensure that the elasticity of substitution is

greater than one. However, overall we can take the results are strongly supportive of the

hypothesis of stocking and inventory effects on consumer spending patterns.

The existence of stocking effects creates major problems for price index construction.

As noted by Erdem, Imai and Keane (2003) and Hendel and Nevo (2006b) the existence of

consumer stocking makes it appear—if the data were treated naively and the possibility of

stocking ignored—that the short-run substitution effects are much larger than they really

are. In terms of price index construction this leads to very significant differences between

price index formulae. To see this let us define the Geometric Laspeyres price index (PGL
bc ),

Geometric Paasche (PGP
bc ) and Törnqvist (P T

bc) index between two periods b and c
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Table 2: Results of Stockpiling Regression

Product Observations R
2 Coefficients:

Intercept Elasticity (σ) Display Feature

Beer 250 0.0167 –0.1362∗∗ 1.2652∗∗∗ 0.4737 –0.8335

Carbonated Beverages 10,019 0.0067 –0.0732∗∗∗ 1.4242∗∗∗ –0.0398 –0.0044

Coffee 7,587 0.0056 –0.0502∗∗∗ 0.5494∗∗∗ 0.0458 –0.0201

Deodorant 8,718 0.0339 –0.0350∗∗∗ 0.4911∗∗∗ –0.0055 0.0541

Diapers 9,471 0.0475 –0.0196∗∗ 0.6477∗∗∗ 0.3432∗∗ 0.0039

Laundry Detergent 4,770 0.0005 –0.1061∗∗∗ 0.9916∗∗∗ 0.1792 –0.0534

Milk 8,005 0.0016 0.0016 1.4885∗∗∗ 0.1837 0.0015

Mustard and Ketchup 2,257 0.0116 0.0086 0.1245 0.2216 0.0469

Paper Towels 3,789 0.0617 –0.0356∗∗∗ 1.4993∗∗∗ –0.2069 0.2553∗∗

Peanut Butter 5,644 0.0155 –0.0910∗∗∗ 0.3122∗∗∗ –0.0528 0.0708

Salty Snacks 5,765 0.0128 –0.0485∗∗∗ 1.7570∗∗∗ –0.0508 –0.0014

Shampoo 9,377 0.0261 –0.0536∗∗∗ 0.6271∗∗∗ –0.0744 0.0126

Soup 6,416 0.0087 –0.0837∗∗∗ 0.5901∗∗∗ –0.0942 0.0061

Spaghetti Sauce 11,493 0.0019 –0.0599∗∗∗ 1.1128∗∗∗ 0.1101 0.1117

Sugar Substitute 935 0.0793 –0.0532 1.5789∗∗∗ 0.9133 0.23466

Toilet Tissue 5,559 0.0625 –0.0943∗∗∗ 1.4801∗∗∗ 0.0423 0.0655

Toothpaste 9,864 0.0072 –0.0400∗∗∗ 0.5713∗∗∗ 0.2121 0.0163

Yoghurt 14,983 0.0092 –0.0653∗∗∗ 1.6283∗∗∗ 0.0994 –0.0289

Note: ∗ denotes significance at the 10% confidence level, ∗∗=5%, and ∗∗∗=1%.

lnPGL
b,c =

∑

s∈S,i∈Is

visb ln

(

pisc
pisb

)

, visb =
pisbqisb

∑

s∈S,i∈Is
pisbqisb

(8)

lnPGP
b,c =

∑

s∈S,i∈Is

visc ln

(

pisc
pisb

)

, visc =
piscqisc

∑

s∈S,i∈Is
piscqisc

(9)

lnP T
b,c =

∑

s∈S,i∈Is

(visb + visc)

2
ln

(

pisc
pisb

)

(10)

If we go ahead and calculate the chained versions of these indexes, that is calculating

the movement between periods 1 and 3 by multiplying the index between 1 and 2 with

that between 2 and 3, then the results are extraordinary. They reveal an enormous

divergence between the chained based-weighted Laspeyres index and the chained current-

weighted Paasche indexes. In Figure 4 we show the weekly chained Paasche, Laspeyres

and Törnqvist indexes for laundry detergent from 2001 to 2006.
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Figure 4: Weekly Chained Indexes for Laundry Detergent from 2001 to 2006
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Here, in Figure 4, we have plotted the indexes on a log scale because of there extreme

value. Note that a log value for the index of around 10 corresponds to an index value of

around 22,000! Thus the Geometric Laspeyres and Paasche indexes are exhibiting very

extreme movements. As we have argued, this reflects the sales cycle and coupled with

the large change in expenditure patterns brought on by stockpiling activity. We may gain

some insight into the form of the bias of these indexes by examining them in detail in light

of our stochastic model of prices. Consider the decomposition of the Geometric Laspeyres

index below,

log PGL
b,c =

∑

s∈S,i∈Is

visb log

(

pisc
pisb

)

(11)

=
∑

s∈S,i∈Is

visb

[

(αisc − αisb)− βi(zisc − zisb) + (eisc − eisb)

]

(12)

=
∑

s∈S,i∈Is

visb(αisc − αisb)−
∑

s∈S,i∈Is

visbβi(zisc − zisb) +
∑

s∈S,i∈Is

visb(eisc − eisb)

(13)

This expression is revealing. The Laspeyres index is hugely upward biased primarily

because of the second term involving the sales indicator. Here the sales discount βi is

weighted by base expenditures visb. So consider the case when zisc = 1 and zisb = 0
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so (zisc − zisb) = 1. Then the base expenditure is likely to be relatively small as it

corresponds to a non-sale price. This will lead to a small negative for the whole second

term, −βi(zisc−zisb). But in the opposite case where zisc = 0 and zisb = 1, so (zisc−zisb) =

−1, then the base expenditure weight is likely to be much larger and hence the whole

second term, −βi(zisc − zisb), can be expected to be a much larger positive number. It is

this which gives the Laspeyres index its pronounced upwards bias. A similar argument

holds for the Paasche index with the bias in the opposite direction.

While it is not entirely evident from the chart, because of the very large scale, even

the chained Törnqvist index exhibits a high degree of drift. We provide a decomposition

of the Törnqvist index below in terms of our model of prices,

logP T
b,c =

∑

s∈S,i∈Is

(visc + visb)

2
log

(

pisc
pisb

)

(14)

=
∑

s∈S,i∈Is

(visc + visb)

2

[

(αisc − αisb)− βi(zisc − zisb) + (eisc − eisb)

]

(15)

=
∑

s∈S,i∈Is

(visc + visb)

2
(αisc − αisb)−

∑

s∈S,i∈Is

βi
(visc + visb)

2
(zisc − zisb)

+
∑

s∈S,i∈Is

(visc + visb)

2
(eisc − eisb) (16)

What we can see is that the Törnqvist index can be decomposed into three components.

The first reflects the underlying price trends in the good. The second reflects the rela-

tionship between expenditure shares and sales and the final term is a weighted average

of random errors. While we would expect the last component to be essentially zero and

the first to be relatively stable it is the middle term with which drift will be associated.

If there is a sale in the current period but not the base period, so that (zisc − zisb) = 1,

then visc is likely to be large and visb will be smaller or ‘normal’. Conversely if there is a

sale in the base period but not in the current period then (zisc− zisb) = −1 and we would

expect visc to be large and visb to be smaller. On the face of it the fact we are using both

base and current expenditure shares leads to the elimination of bias. But the problem

is likely to arise because, as we argued earlier, just because prices return to normal after

a sale does not mean purchases do. Inventory levels can influence purchases. Indeed, in

light of the evidence presented above, in Table 2, that expenditure after a sale is smaller

than expenditure before we would expect visc + visb to be larger when there was a sale in

period c than visc + visb when there was a sale in period b. This implies that the chained
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Törnqvist index will be downwardly biased as a result of this stockpiling effect. Indeed,

this is mostly what we find. Consider the decomposition of the chained Törnqvist index

for laundry detergents in Figure 5. Here the second component, what we call the Beta

Component, is clearly the driver of the index and infuses it with a significant downward

drift.

Figure 5: A Decomposition of the Chained Törnqvist Index for Laundry Detergent
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In light of these results the question arises, how do we construct a price index in the

presence of such prevalent sales and stockpiling behaviour? We outline various approaches

in the next section.

3 Constructing Price Indexes with Sales and Stockpiling

The economic objective in constructing a price index is often, though not always, to

estimate the cost-of-living index (see National Research Council (2002) for a discussion

of various approaches). This compares the ratio of cost functions with two different price

vectors. At higher frequency, or in the case of semi-durable goods where the period of

purchase and consumption may be quite separate, this approach can be problematic. If

goods and services are not being consumed within the same period in which they are

being purchased the link is broken between the observed transactions and the impact
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on utility. Hendel and Nevo (2006a) have previously examined the issue of consumer

optimization with storable goods while Feenstra and Shapiro (2003) outlined an approach

to constructing a cost-of-living index with storability. We build upon the perspective

found in both these papers.

Let us define a cost minimization problem for some representative consumer which

explicitly takes account of the stocking-inventory problem. Here we let xist denote the

quantity of good i in store s at time t that is consumed and qist is the quantity pur-

chased. This distinction takes account of the fact that the period of consumption may

not correspond to that in which the good is purchased. Furthermore, we will consider

a set of periods t ∈ A, what we term the planing horizon, over which consumption and

purchase decisions are made. This may be some period like a quarter or potentially a

year, in which goods that are purchased are also consumed. Of course, we acknowledge

the fact that there will always be some indeterminacy at the end points. So that purchase

and consumption decisions in time periods at the beginning of the planning horizon will

be influenced by previous months. But we abstract from this in what follows. In order

to reflect the existence of inventory, the fact that inventories may be costly to hold, and

that there are some constraints on the relationship between inventories, purchases and

consumption, we include an additional constraint on the consumers optimization reflected

in the term F (xt|A,qt|A). With the addition of this term we can define the consumers cost

function as the solution of the following dynamic optimization problem,

C(pt|A, Ū ) =



















Min.q,x
∑

t∈A,s∈St,i∈Ist
pistqist

s.t. U(xt|A) = U,

F (xt|A,qt|A) = 0

(17)

It is clear that the standard approach, where A contains a single time period, is

contained within our ‘budget horizon’ cost function. Given our extended cost function

a natural approach to constructing the cost-of-living index is simply to compare costs of

two budget periods. That is,

Pb,c|A =
C(pt|Ac

, Ū)

C(pt|Ab
, Ū)

(18)

Indeed, this is exactly what is done in many cases globally where indexes are constructed

with some temporal aggregation. Where A may be a quarter or a year reflecting the
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highly storable nature of many goods, which can be held for many periods before being

consumed. However, this creates a problem as we may be interested to estimate the cost-

of-living index at a higher frequency such as monthly, weekly or even daily. It is clear that

the period-to-period indexes (8)—(10) defined in the previous section are likely to bear

little if any relation to (18). Given the nature of the cost function, which incorporates

the potential delays in consumption, how can be estimate the cost-of-living at higher

frequency?

In an interesting contribution Diewert, Fox and Ivancic (2009) have proposed a way

to get around the problem of stocking and comparability by constructing a matrix of

bilateral comparisons between all time periods and then multilateralizing the results by

taking the geometric mean of these indexes. That is, if there are t = 1, 2, . . . , T periods

for which data is available then we can calculate a full matrix of index numbers P T
b,c for

all b, c = 1, 2, . . . , T . Then the multilateralization method of Gini-Elteto-Koves-Schultz

(Gini, 1931; Elteto and Koves, 1964; Szulc, 1964) can be used to transitivize these indexes.

This ensures that a unique measure of price change is constructed between any two time

periods. That is we have teh following GEKS indexes,

PGEKS
b,c =

∏

r∈AT

(

P T
r,c

P T
r,b

)
1

|AT |

(19)

In actual fact the approach of Diewert, Fox and Ivancic (2009) was somewhat more involved

than this. They proposed to use a rolling year approach where a subset of time periods was

used to undertake the multilateral comparisons and then the price levels of the two most

recent periods were compared and this was used in constructing a chained index. This

approach has some potential and we will explore it in the empirical section that follows.

It is simple and straightforward computationally and it does not require the estimation

of an econometric model of prices. However, it could be criticized as being based upon a

questionable model of purchase and consumption decisions which is stretching credulity

at higher frequency such as weekly or even monthly.

We suggest an alternative approach which weds the need for high frequency index

numbers with the fact that the budgeting period is often inconveniently long. Consider

the cost of obtaining a given level of utility, over a budget horizon A, given the particular

distribution for prices that prevailed in some period t. In particular suppose that we know

this distribution, or can estimate it, then we could do the following. We could generate a
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realization from that distribution which reflected the price level and the frequency and size

of sales. Then we could use this artificially generated set of prices over a budgeting period

of size |A| and compare this with the base set of prices. Let p̃c
t|Ab

denote a realization

from the distribution of prices in period c then we could consider the following index with

regard to some reference planning horizon Ab,

P̃r,c|Ar
=

C(p̃c
t|Ar

, U)

C(pt|Ar
, U)

(20)

While this approach is artificial, in that we construct a hypothetical scenario for the

comparison period by trying to approximate the data generating process for prices in

period c, it does have some appeal over alternative approaches. It respects the fact that

consumption and purchase decisions are made over a set of periods—a budget horizon—

rather than in a single period. In this regard the data for the the period of interest c is used

to estimate the distribution then we create a hypothetical comparison period stretching

the data over a set of periods of size |Ar|. While this approach has some appeal we do not

have an implementable index number approach as the precise form of the cost function is

unknown. There are potentially a number of ways to proceed. We could derive bounds

upon the cost-of-living index outlined above or we potentially hypothesize a functional

form for the cost function.

First to the second approach. Since Diewert (1976) it has been known that we may

derive certain index numbers given a particular specification for the cost function. Un-

fortunately, this approach is unlikely to yield simple and intuitive answers. The problem

is that we don’t observe the decisions made by consumers with the artificial price vector

p̃c
t|Ar

. Hence, unlike in the usual case where we do observe the choices made by con-

sumers under two price regimes, proceeding further is difficult. Feenstra and Shapiro

(2003) ostensibly address the same issue as we have set out and they adopt an exact in-

dex number approach, using the Translog cost function and Törnqvist price index. But

they do not really resolve the issue, merely compare one budgeting horizon with another.

There methodology does not provide a means to obtain a high frequency measure of price

change.

Second, consider equation (20). We can construct a Laspeyres upper bound on this

cost-of-living index. If consumers undertake exactly the same purchasing plan facing

the price draw p̃c
Ar

as they did when facing the prices over the budgeting horizon Ar
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then their consumption possibilities and utility will be the same. In addition, as the

previous purchase and consumption plan was feasible then it will also be feasible under

the particular realization of prices that we have generated. This gives the inequality,

P̃r,c|Ar
=

C(p̃c
t|Ar

, U)

C(pt|Ar
, U)

≤

∑

t∈Ar ,s∈St,i∈Ist
p̃cistqist

∑

t∈Ar ,s∈St,i∈Ist
pistqist

≡ P̃L
r,c|Ar

(21)

It is clear that the Laspeyres index P̃L
r,c|Ar

provides a transitive comparison between

any two periods as we can think of them being compared relative to reference period Ar.

However, this index is stochastic, in the sense that it depends upon the particular draw

of prices from the distribution of period c prices. In this regard a natural approach is to

focus on the expected value of the index. Clearly this abstracts from the noise introduced

by the particular realization of prices. Hence we can construct,

P̃EL
r,c|Ar

=
E
[

∑

t∈Ar ,s∈St,i∈Ist
p̃cistqist

]

∑

t∈Ar ,s∈St,i∈Ist
pistqist

(22)

We may estimate such an expectation by analytical methods or alternatively by simulation.

Finally, it is natural in the present context, given our statistical model of prices,

to consider a stochastic approach to constructing index numbers. This sits outside the

cost-of-living framework to index construction but is an approach which has a long and

established pedigree—according to Diewert (1995) dating back to Jevons, Edgeworth and

Bowley. Another important reference is Theil (1967). It is possible to derive an index

number approach, within this framework, to the problem at hand. Let us use the argument

of Theil (1967) and suppose that we want to measure the difference in the cost of a unit of

expenditure in one period compared with our artificial period. Then it is natural to focus

on log prices, as these reflect differences, and it also natural to use expenditure shares

as weights as we may think of these as the probability that a price will be selected if

probabilities are drawn proportional to expenditure. If we again consider a hypothetical

realization of prices from the distribution of prices in period c, i.e. p̃c
t|Ar

, then this gives,

log P̃G
r,c|Ar

=
∑

t∈Ar ,s∈St,i∈Ist

vist log

(

p̃cist
pist

)

(23)

As will be seen, this index is particularly convenient given that we have a model for

the log of prices. It is clear that if we wish to compare some time period c with another
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time period, say b, then the reference period r plays only a limited role. It provides the

weights only. Indeed the expectation of the price index between the two periods, linked

through the reference period, can be written as,

log P̃EG
b,c|Ar

= E

[

log P̃EG
r,c|Ar

− log P̃EG
r,b|Ar

]

(24)

=
∑

t∈Ar ,s∈St,i∈Ist

vist|Ar
E

[

log

(

p̃cist
p̃bist

)]

(25)

=
∑

t∈Ar ,s∈St,i∈Ist

vist|Ar

[

(αisc − αisb)− βi(ωic − ωib)

]

(26)

=
∑

t∈Ar ,s∈St,i∈Ist

vist|Ar
(αisc − αisb)−

∑

t∈Ar ,s∈St,i∈Ist

vist|Ar
βi(ωic − ωib) (27)

This index is made up of two components. The first is what might be described as a pure

price index. The second represents an adjustment for the expected sales frequency. This

means that the index reflects sales. But rather than the actual realization of sales it is

the mean change in sales is recorded. This is likely to mean that the index is significantly

smoother than indexes which include the sales effect directly.

3.1 A Comparison of the Various Approaches

There are some key differences between the approach embodied in the Expected Laspeyres,

P̃EL
r,c|Ar

, and Expected Geometric, P̃EG
r,c|Ar

, indexes in comparison with that of Diewert, Fox

and Ivancic (2009). Both provide transitive multilateral comparisons of prices yet both

take quite a different perspective on this. The former approach is to create a reference

period Ar, which spans a number of time periods. All other periods are compared with

this reference budgeting horizon. This can be thought of as very much analogous to the

average basket method in international comparisons (Hill, 1997). In contrast the Ivancic,

Fox, Diewert (2009) approach suggests an alternative multilateral method which compares

all individual time periods with all other periods and averages across these. This can be

illustrated using Figure 6. If a node—a bold circle—represents a high frequency time

period, such as a week, then we may consider two quite different approaches. The average

basket approach uses what Hill (1997) refers to as a star comparison method. Here each

node is compared with some reference point, the large circle. In comparison the GEKS

method makes all possible bilateral comparisons, as illustrated in the second panel of

Figure 6, and averages the results.
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Figure 6: Multilateral Methods Compared

(a) Average Basket Method: (b) GEKS Method:

Another feature which distinguishes the two general approaches is the extent to which

they satisfy the multiperiod identity test. If we denote P (.) by the price index formula

then this requires that,

P (p1,p2,q1,q2)P (p2,p3,q2,q3)P (p3,p1,q3,q1) = 1 (28)

That is, suppose we have four time periods; 1, 2, 3 and 4. Furthermore, period 4 has exactly

the same prices and quantities as period 1 then the chain of indexes should be equal to

1. For many indexes this will not be the case. In general the GEKS method satisfies this

axiom (at least it does abstracting from the fact that the available set of items changes

somewhat over time). However, satisfying this axiom may not be enough. The problem

that we face in constructing price indexes at high frequency and with stockpiling is that

often we may have the same prices for an item in two periods but different quantities.

This may arise, as we have seen, because spending decisions at high frequency depend not

just upon current prices but also previous prices and whether a good was on sale or not.

A stronger requirement then might be the following,

P (p1,p2,q1,q2)P (p2,p3,q2,q3)P (p3,p1,q3,q4) = 1 (29)

This requirement says that, even if quantities are different in period 4 from period 1, with

prices the same, then the indexes should multiply to one. While there is no guarantee that

the GEKS method satisfy this requirement the average basket method does by construc-

tion. Because in constructing the price index only the quantities or expenditure weights
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of the reference period are used. The quantities in the periods being compared play no

role. This is potentially quite important.

We have already discussed the form of the chained Geometric Laspeyres, Paasche

and Törnqvist indexes and argued that they may be biased in the presence of stocking

behaviour. Let us now examine the multilateral Törnqvist index, which adopts the tran-

sitivisation approach of Elteto and Koves (1964) and Szulc (1964), and has been recently

suggested in the scanner data context by Ivancic, Fox and Diewert (2009). That is, again

assuming a constant set of products and stores across time, the temporal price parities

are constructed as,

log PGEKS
b,c =

1

|AT |

∑

a∈AT

(

logP T
ac − log P T

ab

)

(30)

=
1

|AT |

∑

a∈AT





∑

s∈S,i∈Is

(visa + visc)

2
log

(

pisc
pisa

)

−
∑

s∈S,i∈Is

(visa + visb)

2
log

(

pisb
pisa

)





(31)

=
1

|AT |

∑

a∈AT





∑

s∈S,i∈Is

(visc + visa)

2
[(αisc − αisa)− βi(zisc − zisa) + (eisc − eisa)]

−
∑

s∈S,i∈Is

(visb + visa)

2
[(αib − αia)− βi(zisb − zisa) + (eisb − eisa)]



 (32)

=
1

|AT |

∑

a∈AT

∑

s∈S,i∈Is

[

(visc + visa)

2
(αisc − αisa)−

(visb + visa)

2
(αisb − αisa)

]

−
1

|AT |

∑

a∈AT

∑

s∈S,i∈Is

βi

[

(visc + visa)

2
(zisc − zisa)−

(visb + visa)

2
(zisb − zisa)

]

+
1

|AT |

∑

a∈AT

∑

s∈S,i∈Is

[

(visc + visa)

2
(eisc − eisa)−

(visb + visa)

2
(eisb − eisa)

]

(33)

We can write each of these components in such a way that we have,

log PGEKS
b,c =

∑

s∈S,i∈Is

[

(visc + v̄is)

2
(αisc − ᾱis)−

(visb + v̄is)

2
(αisb − ᾱis)

]

−
∑

s∈S,i∈Is

βi

[

(visc + v̄is)

2
(zisc − z̄is)−

(visb + v̄is)

2
(zisb − z̄is)

]
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+
∑

s∈S,i∈Is

[

(visc + v̄is)

2
(eisc − ēis)−

(visb + v̄is)

2
(eisb − ēis)

]

, x̄is =
1

|AT |

∑

a∈AT

xisa

(34)

This shows that the multilateral Törnqvist index is equal to a pure price index, a sales

index and some random errors. The sales index is constructed as the weighted average

of the difference between the sales indicators. There are certain similarities between this

index and that which we suggested earlier. However, there is one major difference. This

is that in the multilateral Törnqvist index price change could be recorded even when

no prices have changed. To see this note that if zisc = zisb and αisc = αisb for all i

and s in (34) then unless visc = visb price change will be recorded. This is the major

disadvantage of this index in comparison with our suggested indexes and is related to the

fact that the GEKS method uses the relevant period’s expenditure weights in constructing

comparisons rather than fixing them. It maximises characteristicity (Drechsler, 1973)

at the expense of allowing weighting to change and reflecting spurious price changes.

In contrast the Expected Laspeyres and Expected Geometric indexes, because they use

constant expenditure or quantity weights, will only record price change when prices do

actually differ.

With an understanding of how the various price indexes differ conceptually we now

turn to the empirical magnitudes by constructing these price indexes using the IRI scanner

data. This enables us to get a clearer handle on the empirical magnitudes of bias and

volatility and provides some guidance in practical implementation of the approach.

4 An Empirical Examination of the Price Indexes

In the preceding sections we have outlined an index number methodology which is likely

to be useful in constructing high frequency price indexes using scanner data. Let us now

apply this approach to the IRI data.

We make use of a very large scanner data set made publicly available by IRI (see

Bronnenberg, Kruger and Mela, 2008). The data includes weekly sales data for a number

of products over a number of markets (regions) for the years 2001 to 2006. The data

comes from a variety of supermarket and drug stores across a range of chains which were

supplying data to IRI over the period. The breadth and depth of the data provide a

ideal basis on which to test methods for constructing high frequency price indexes. In

our application we use just a small portion of the data and consider just a few of the
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product categories in detail. These are; carbonated beverages, coffee, laundry detergent,

milk, mustard and ketchup, peanut butter, shampoo and toothpaste. We make use of all 6

years of the data. But in constructing our data we remove items which are sold relatively

infrequently—with fewer than 52 observations over 6 years—and then randomly sample

across stores and items. This subsampling of the data is necessary at this preliminary

stage of the investigation because the IRI data is very large, containing many millions of

observations. Use of all of it would impose considerable computational burdens.

In summarizing the results we focus primarily on the multilateral methods outlined

previously. In almost all cases the chained Laspeyres, Paasche and Törnqvist indexes

exhibit very significant bias. We illustrate by including the chained Törnqvist index in

the first column of Figures 7 and 8. In most cases, barring that of milk and salty snacks, the

chained Törnqvist index is significantly downwardly biased. This reflects the arguments

made in section 2, equation (16), regarding the correlation between the sales indicator and

expenditure shares. Given this, it is somewhat surprising that not all product categories

exhibit a chained Törnqvist index which is downwardly biased. The fact that milk and

salty snacks do not exhibit such a trend may be the result of the particularities of the

products. Neither are highly storable, milk in particular, which is likely to reduce the size

of the correlation between sales and expenditure shares discussed earlier. Nevertheless, it

is clear that in general the chained Törnqvist index exhibits significant drift and its use

cannot be recommended.

In comparison the other indexes—the GEKS Törnqvist, Expected Laspeyres and Ex-

pected Geometric—perform relatively better. Here, given that the emphasis is on devel-

oping methods which can be implemented in real time, we have constructed each of these

indexes using the rolling-year approach of Diewert, Fox and Ivancic (2009).

Let us consider the rolling year GEKS Törnqvist index shown in the first column of

Figures 9 and 10. Let us focus primarily on the case of laundry detergents, Figures 9e and

9f, as it provides insights which are broadly consistent with other product categories. First,

there is clearly very little inflation or deflation in prices over this period. Given this, what

is most noticeable about the GEKS Törnqvist index is its volatility. The mean absolute

price change per week is 2.64%. This is very significant when the trend in the index is

essentially zero. This volatility is primarily driven by the sales cycle as was discussed with

regard to equation (34). The GEKS Törnqvist index, while it averages price change over

many periods, includes the effect of sales directly in the index. This is not the case for
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either the Expected Laspeyres or Expected Geometric indexes which focus on changes in

the rate of sales over time. The different in volatility between the indexes is evident in

Figure 9e.

Given that the GEKS Törnqvist index includes the effects of sales directly into the

index there is a strong relationship between it and the probability-of-sale indicator. If we

continue to focus on laundry detergents then it can be seen in the second period, in Figure

7f, there is a marked fall in the incidence of sales. This leads to a corresponding jump in

the GEKS Törnqvist index. This is much less apparent in either of the other indexes in

Figure 9e. The result of this is that the GEKS Törnqvist index has a variance which is

many orders of magnitude higher than that of either the Expected Laspeyres or Expected

Geometric indexes.

However, comparing the variance of the Expected Laspeyres or Expected Geometric

indexes with that of the GEKS Törnqvist index is somewhat misleading. In the latter we

include ‘raw’ unmodeled prices while in the former we have implicitly smoothed them out

through the modeling process. A less loaded comparison between the index methods is to

compare their variance when we use actual prices in constructing the Expected Laspeyres

and Expected Geometric indexes. Here we sample from the actual distribution of prices

rather than using the parameters of the model in equations (22) and (23) to calculate

the expectation. The resulting indexes are shown in the second column of Figures 9 and

10. While the Expected Laspeyres and Expected Geometric indexes are more volatile, as

would be expected, there is still significantly less variability in them than for the GEKS

Törnqvist index. For laundry detergent the Expected Laspeyres variance is 37.62% of

that of the GEKS Törnqvist index while the Expected Geometric has just 7.28% of the

variance of the GEKS Törnqvist index. This represents a significant improvement in

efficiency. Put another way, the average absolute weekly change in the GEKS Törnqvist

index is 2.64% while the equivalent value for the Expected Laspeyres is 1.54% and for

the Expected Geometric is just 0.65%. The variance of the two average basket indexes,

relative to the GEKS Törnqvist index, is shown in Table 3 for laundry detergent and the

various other product categories.

With regard to bias, while all three of our preferred indexes differ, it would be a stretch

to regard any of them as necessarily significantly biased. Though as we saw above, the

Expected Laspeyres index can be thought of as an upper bound on the ‘budget horizon’

cost of living index. As the geometric mean lies below the arithmetic mean the Expected
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Geometric index may give a closer approximation to the actual cost of living index. With

regard to the GEKS Törnqvist index, as we have argued this may record price change

even when all prices are the same. This is inherent to the methodology and reflects the

fact that it uses different weighting patterns when comparing two periods. However, while

this arguably results in an erroneous measure of price change it is unlikely to result in any

systematic bias in either direction.

Table 3: Variance Relative to GEKS Törnqvist

Product Expected Laspeyres Expected Geometric

Coffee 22.12 8.60

Carbonated Beverages 27.29 10.38

Laundry Detergent 37.62 7.28

Milk 39.68 20.74

Mustard and Ketchup 5.46 2.25

Peanut Butter 14.08 7.24

Shampoo 15.33 6.19

Toothpaste 20.06 8.81

5 Conclusion

This paper has been primarily exploratory, and somewhat speculative, in nature. Its

purpose has been to try to understand some of the problems with statistical agencies’ use

of scanner data and propose some novel solutions. Currently a very good method, the

rolling year GEKS approach, is available for calculating price indexes at high frequency.

This article proposed a few more approaches, which are conceptually somewhat different,

which may in time be regarded as alternatives to what is the current ‘industry standard’.

One contribution of the paper was to outline a method for endogenously identifying

sales. This potentially has widespread use, not only in price index construction but also in

marketing and elsewhere. The mixture model approach represents a very natural frame-

work for thinking about sales and sales behaviour. There are numerous possible extensions

to the model outlined above including making the sales indicator spatially and temporally

dependent.

The indexes proposed in this paper are conceptually related to the average basket
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approach in multilateral comparisons. This kind of approach seems both conceptually

sound and provides indexes which are readily calculable. The problem is that consumers

do not purchase for consumption at a weekly or even a monthly frequency. They often

purchase, store and consume at a later date. The purchase and consumption decisions

can be very displaced in time if there are significant discounts available for some products.

Our approach to this challenging problem is the following. We suppose that purchase and

consumption decisions being made over some ‘budget horizon’. This is a period which

is as short as possible but long enough that we can regard purchase and consumption

decisions as being reasonably self-contained within it. Something of the order of a year

seems reasonable and this is what is used in our empirical application. We then said that

we would estimate the parameters of the distribution of prices for a given period t, a short

period of time much less than a budgeting horizon, and essentially create an artificial

comparison period by taking simulating prices from this distribution. What we are doing

is comparing an artificially created budgeting period, with prices from the distribution

in period t, with an actual budgeting period. The weights from the actual budgeting

period are used to make the comparison. This yields what are essentially Laspeyres-type

fixed based index. This has the advantages that is conceptually reasonable, is broadly

consistent with current statistical agency practice and will also ensure that the index does

not change when prices themselves do not change.

This approach may provide a basis for further research on different methods for con-

structing prices indexes using scanner data. Up until now the ‘take up’ of scanner data by

statistical agencies has been very disappointing. It is hoped that this paper has provided

some additional tools and alternative methods which will help statistical agencies see their

way through the current fog and eventually assist in them integrating scanner data into

their CPIs.
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7 Appendix

7.1 Estimation of the Mixture Model

Let us define the set of unknown parameters as Ω = {α,β,σ2,ω} and some estimate of

the parameters at iteration r as Ω(r) = {α(r),β(r),σ
2
(r),ω(r)}. The EM algorithm has two

steps (Ripley, 2004):
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E− step : Find Q(Ω,Ω(r)) = Ezist|Ω(r)





∑

t∈AT ,s∈S,i∈Ist

wist log p(yist, zist|Ω)



 (35)

M− step : Choose Ω(r+1) so as to maximise Q(Ω,Ω(r)). (36)

Here p(yist, zist|Ω) is the probability density of the observed data yist and the unobserved

‘data’ zist given the parameters Ω. Note that in addition to the standard approach we

have introduced some weights wist to the likelihood which could be used to reflect the

economic importance of the observation.

To demonstrate the convergence of the EM algorithm following Ripley (2004, p.335) we

use the identity, p(yist|Ω) =
p(yist,zist|Ω)
p(zist|yist,Ω) , take logs, and then take the expectation treating

zist as a random variable conditional on some estimate of the parameters Ω(r), which

is what we mean by Ezist|Ω(r)
[.]. Furthermore, noting that the (weighted) log likelihood

logL(Ω|y) =
∑

t∈AT ,s∈S,i∈Ist
wist log p(yist|Ω), yields,

logL(Ω|y) = Q(Ω,Ω(r))− Ezist|Ω(r)





∑

t∈AT ,s∈S,i∈Ist

wist log p(zist|yist,Ω)



 (37)

Considering the second term note that as, log x ≤ x− 1, we have,

Ezist|Ω(r)

[

log

(

p(zist|yist,Ω)

p(zist|yist,Ω(r))

)]

≤ Ezist|Ω(r)

[

p(zist|yist,Ω)

p(zist|yist,Ω(r))

]

− 1 = 0 (38)

Therefore,

Ezist|Ω(r)
[log p(zist|yist,Ω)] ≤ Ezist|Ω(r)

[

log p(zist|yist,Ω(r))
]

(39)

Hence the second term in (37) is maximized at Ω(r). Any other value, say Ω(r+1) will

lead to a lower value for this term by (39) and, because of the negative sign in front of it

in (37), a higher value for the log likelihood function. Hence choosing Ω(r+1), such that

Q(Ω(r+1),Ω(r)) > Q(Ω(r),Ω(r)), must raise the value of the log likelihood.

Turning now to the steps of the EM algorithm and the identification of the elements

of Q(Ω,Ω(r)). For our model (1) and (2) above we can write Q(Ω,Ω(r)) as,
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Q(Ω,Ω(r)) = Ezist|Ω(r)





∑

t∈AT ,s∈S,i∈Ist

wist log p(yist, zist|Ω)



 (40)

= Ezist|Ω(r)





∑

t∈AT ,s∈S,i∈Ist

wist

{

(1− zist)

2

(

2 log(1− ωi)− log(2πσ2
i )−

(

yist − αist

σi

)2
)

+
zist
2

(

2 log(ωi)− log(2πσ2
i )−

(

yist − (αist − βi)

σi

)2
)}]

(41)

Now to the maximization of Q(Ω,Ω(r)). We can use, E[zist = 1|Ω(r)] = p(zist = 1|Ω(r)),

and Bayes rule, p(zist = 1|Ω(r)) =
p(zist=1,Ω(r))

p(Ω(r))
to estimate the following,

p(zist = 1|Ω(r)) =
ωi(r)π(yist|αi(r) − βi(r), σ

2
i(r))

(1− ωi(r))π(yist|αi(r), σ
2
i(r)) + ωi(r)π(yist|αi(r) − βi(r), σ

2
i(r))

(42)

Where π(x|µ, v2) denotes the probability density function for variable x from the normal

distribution with mean µ and variance v2. To estimate the remaining parameters using

our conditional expectation of zist, that is zist(r+1), we substitute these estimates into

Q(Ω|Ω(r)) and maximize with respect to the unknown parameters. In order to estimate

ωit we take the mean of the zist(r+1),

ωit(r+1) =
∑

s∈S

(

wist
∑

s∈S wist

)

zist(r+1) (43)

For the mean parameters, taking the variance σ2
i(r) as given, we minimize the sum-of-

squares,

S =
∑

t∈AT ,s∈S,i∈Ist

wist

(

(1− zist(r+1))

(

yist − αist

σi(r)

)2

+ zist(r+1)

(

yist − (αist − βi)

σi(r)

)2
)

(44)

Finally, given the other parameter estimates, the product specific variances can be

estimated as,

σ2
i(r+1) =

∑

t∈AT ,s∈S

(

wist
∑

t∈AT ,s∈S wist

)

[

(1− zist)
(

yist − αit(r+1)

)2

+ zist
(

yist − αist(r+1) + βi(r+1)

)2
]

(45)

The two steps of the EM algorithm can be iterated until convergence is achieved.
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7.2 Variance of the Mean for a Mixture Distribution

Here we derive the variance of an observation from the mixture distribution,

Var(ln pist) = E
[

(ln pist)
2
]

− E [ln pist]
2 (46)

=
(

ωit

(

(αist − βi)
2 + σ2

i

)

+ (1− ωit)
(

(αist)
2 + σ2

i

))

− (ωit (αist − βi) + (1− ωit) (αist))
2 (47)

= σ2
i + α2

ist + ωitβ
2
i − 2ωitαistβi −

(

α2
ist + ω2

itβ
2
i − 2ωitαistβi

)

(48)

= σ2
i + ωit(1− ωit)β

2
i (49)

7.3 Derivation of CES Demand Function

If we start with Shepard’s Lemma and minus off the equation for the same product in a

different time period. This gives,

log

(

visr
visu

)

= (1− σ) log

(

pisr
pisu

)

− log

(

∑

s∈S,i∈Isr
aisp

1−σ
isr

∑

s∈S,i∈Isr
aisp

1−σ
isu

)

(50)

Now, using Shepard’s Lemma, the expression on the far right hand side of this equation

can be written as,

(

∑

s∈S,i∈Isr
aisp

1−σ
isr

∑

s∈S,i∈Isu
aisp

1−σ
isu

)

=
p1−σ
isr /visr

p1−σ
isu /visu

, ∀s = 1, 2, . . . , S, i ∈ Isr,su, Isr,su = Isr ∩ Isu (51)

=
visu
visr

p1−σ
isr

p1−σ
isu

, ∀s = 1, 2, . . . , S, i ∈ Isr,su (52)

=

(

visu
visr

)(

pisr
pisu

)1−σ

, ∀s = 1, 2, . . . , S, i ∈ Isr,su (53)

=

(

λu

λr

)





(

visu
λu

)

(

visr
λr

)





(

pir
piu

)1−σ

, ∀s = 1, 2, . . . , S, i ∈ Isr,su,

λr =
∑

s∈S,i∈Isr,su

visr, λu =
∑

s∈S,i∈Isr,su

visu (54)

=

(

λu

λr

)(

v̄iu
v̄ir

)(

pir
piu

)1−σ

, ∀s = 1, 2, . . . , S, i ∈ Isr,su,

v̄isr =
sisr
λr

, v̄isu =
sisu
λu

(55)

=

(

λu

λr

)

∏

s∈S,i∈Isr,su





(

v̄isu
v̄isr

)wi|Isr,su
(

pisr
pisu

)

wi|Isr,su
1−σ



 ,
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wi|Isr,su =

(

v̄isr−v̄isu
ln v̄isr−ln v̄isu

)

∑

s∈S,i∈Isr,su

(

v̄isr−v̄isu
ln v̄isr−ln v̄isu

) (56)

=

(

λu

λr

)





∏

i∈Iru

(

pisr
pisu

)

wi|Isr,su
1−σ



 (57)

=

(

λu

λr

)

P 1−σ
ur (58)

Where we have used the fact that,

ln
∏

s∈S,i∈Isr,su

(

v̄isu
v̄isr

)wi|Isr,su

=
∑

s∈S,i∈Isr,su

wi|Isr,su(ln v̄isu − ln v̄isr) (59)

=
∑

s∈S,i∈Isr,su

(

v̄isr−v̄isu
ln v̄isr−ln v̄isu

)

∑

s∈S,i∈Isr,su

(

v̄isr−v̄isu
ln v̄isr−ln v̄isu

)(ln v̄isu − ln v̄isr)

(60)

= −
∑

s∈S,i∈Isr,su

v̄isu − v̄isr
∑

s∈S,i∈Isr,su

(

v̄isu−v̄isr
ln v̄isu−ln v̄isr

) (61)

= 0 (62)

The usefulness of this result is that Pur can be observed from the data, as can λu and λr.

If we substitute this into the equation above we get,

log

(

visr/λr

visu/λu

)

= (1− σ) log

(

pisr
pisu

/Pur

)

(63)
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Figure 7: Price Indexes and Probability of a Sale

(a) Carb. Beverages — Price Indexes
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(b) Carb. Beverages — Probability of a Sale
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(c) Coffee — Price Indexes
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(d) Coffee — Probability of a Sale
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(e) Laundry Detergent — Price Indexes
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(f) Laundry Detergent — Probability of a Sale
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(g) Milk — Price Indexes
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(h) Milk — Probability of a Sale
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Figure 8: Price Indexes and Probability of a Sale

(a) Mustard and Ketc. — Price Indexes
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(b) Mustard and Ketc. — Probability of a Sale
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(c) Peanut Butter — Price Indexes
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(d) Peanut Butter — Probability of a Sale
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(e) Shampoo — Price Indexes

0 50 100 150 200 250 300 350
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

Week

Lo
g 

In
de

x

 

 
Chained Tornqvist
GEKS Tornqvist
Expected Stochastic
Expected Laspeyres

(f) Shampoo — Probability of a Sale
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(g) Toothpaste — Price Indexes
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(h) Toothpaste — Probability of a Sale
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Figure 9: Multilateral Rolling Year Price Indexes

(a) Carbonated Beverages — Modeled Prices
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(b) Carbonated Beverages — Actual Prices
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(c) Coffee — Modeled Prices
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(d) Coffee — Actual Prices
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(e) Laundry Detergent — Modeled Prices
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(f) Laundry Detergent — Actual Prices
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(g) Milk — Modeled Prices
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(h) Milk — Actual Prices
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Figure 10: Multilateral Rolling Year Price Indexes

(a) Mustard and Ketchup — Modeled Prices

0 50 100 150 200 250 300 350
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Week

Lo
g 

In
de

x

 

 
GEKS Tornqvist
Expected Geometric
Expected Laspeyres

(b) Mustard and Ketchup — Actual Prices
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(c) Peanut Butter — Modeled Prices
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(d) Peanut Butter — Actual Prices
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(e) Shampoo — Modeled Prices
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(f) Shampoo — Actual Prices
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(g) Toothpaste — Modeled Prices
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(h) Toothpaste — Actual Prices
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