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The paper uses data on sales of detached houses in a small Dutch town over 14 quarters 
starting at the first quarter of 2005 in order to compare various methods for constructing a 
house price index over this period. Four classes of methods are considered: (i) 
stratification techniques plus normal index number theory; (ii) time dummy hedonic 
regression models; (iii) hedonic imputation techniques and (iv) additive in land and 
structures hedonic regression models. The last approach is used in order to decompose 
the price of a house into land and structure components and it relies on the imposition of 
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structures. The problems associated with constructing an index for the stock of houses 
using information on the sales of houses are also considered.  
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Alternative Approaches to Measuring House Price Inflation 
 
1. Introduction 
 
This paper has two main purposes: 
 

• Some real estate data for sales of detached houses in the Dutch town of “A” is 
used in order to construct house price indexes using a variety of methods. A main 
purpose of the paper is to determine whether the different methods generate 
different empirical results. The data cover 14 quarters of sales, beginning in 2005 
and ending in the middle of 2008.  

• The second main purpose is to determine whether it is possible to decompose an 
overall house price index into reliable Land and Structures components. This 
decomposition is required for some national income accounting purposes, as well 
as being of general interest.  

 
With respect to the second main purpose, the present paper is a follow up on Diewert, 
Haan and Hendriks (2010). Those authors used a hedonic regression approach to 
decompose an overall house price index into land and structures components. Their 
decomposition method relied on the imposition of monotonicity restrictions on the prices 
of the two components and their approach worked satisfactorily because during the time 
period they studied, house prices in the Dutch town of “A” only rise. However, during the 
time period used in the present paper, house prices in the town of “A” both rise and fall 
and thus the methodology used by Diewert, Haan and Hendriks needs to be modified in 
order to deal with this problem.  
 
With respect to the comparison of methods purpose, four main classes of methods for 
constructing house price indexes for sales of properties will be considered: 
 

• Stratification methods; i.e., sales of houses during a period are segmented into 
relatively homogeneous classes and normal index number theory is applied to the 
cell data; 

• Time dummy hedonic regression methods; 
• Hedonic regression imputation methods; 
• Additive hedonic regression methods with the imposition of period to period 

monotonicity restrictions to smooth the estimates for the land and structure 
components of the overall index. 

 
The last three classes of methods are all variants of hedonic regressions.2 The additive 
method is a variant of the method that was used by Diewert, Haan and Hendriks (2010). 

                                                 
2 The difference between time dummy and imputation hedonic regressions has been theoretically analysed 
by Diewert, Heravi and Silver (2009) and Haan (2009) (2010). 

Paper presented to the Ottawa Group, 2011



 3

All four classes of methods can be given theoretical justifications so it is of some interest 
to see how different or similar they are when implemented on the same data set.  
 
A brief outline of the contents of each section follows.  
 
In section 2, stratification methods are explained along with our data on real estate 
transactions for the small Dutch town of “A” over a 14 quarter period. This same data set 
will be used to illustrate how all of the various methods for constructing house price 
indexes work in practice. 
 
The results from section 2 indicate that prices may follow a seasonal pattern of decline in 
the fourth quarter of each year. Solutions to this seasonality problem are explained in 
section 3. 
 
In sections 4 and 5, standard hedonic regressions are implemented on the data set. There 
are three main characteristics of a detached house that sold in a quarter that are used in 
the hedonic regression: the age A of the house, its structure floor space area S and the 
land area of the plot L. The use of just these three characteristics leads to a hedonic 
regression that explain 84 to 89% of the variation in selling prices. In section 4, the 
dependent variable is the logarithm of the selling price while in section 5, we study 
hedonic regressions that use just the selling price as the dependent variable. The 
regressions in these two sections use the time dummy methodology. 
 
In section 6, the time dummy methodology is not used. Instead, a separate hedonic 
regression for the data of each quarter is estimated and then these regressions are used to 
create imputed prices for the various “models” of houses that transacted so that a matched 
model methodology can be applied. This class of methods for constructing a house price 
index is based on what is called the hedonic imputation methodology. This method turns 
out to be our preferred method for constructing an overall house price index. 
 
In section 7, we turn our attention to the problem of constructing separate price indexes 
for land and for structures. There is a multicollinearity problem between structure size 
and land plot size: large structures tend to be associated with large plots. This 
multicollinearity problem shows up in this section, where none of the straightforward 
methods suggested work. Thus in the next two sections, extra structure is imposed upon 
the hedonic regressions. In section 8, the price of constant quality structures is forced to 
be nondecreasing while in section 9, the price movements in constant quality structure 
prices are forced to follow the movements in an exogenous index of new dwelling 
construction costs. Both methods seem to work reasonably well but the results they 
generate are somewhat inconsistent. 
 
A problem with many hedonic regression models is that historical results will generally 
change as new data become available. This problem is addressed by applying a rolling 
window hedonic regression methodology that is a generalization of the usual adjacent 
period time dummy hedonic regression methodology. This methodology is explained and 
illustrated in section 10.  
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Finally, in section 11, we show how the hedonic regression models for the sales of 
properties developed in sections 6 and 9 can be adapted to generate indexes for the stock 
of housing properties. 
 
Section 12 offers some tentative conclusions.    
 
2. Stratification Methods 
 
A dwelling unit has a number of important price determining characteristics: 
 

• The land area L of the property;  
• The floor space area S of the structure; i.e., the size of the structure that sits on 

the land underneath and surrounding the structure; 
• The age A of the structure, since this determines (on average) how much 

physical deterioration or depreciation the structure has experienced; 
• The amount of renovations that have been undertaken for the structure; 
• The location of the structure; i.e., its distance from amenities such as shopping 

centers, schools, restaurants and work place locations; 
• The type of structure; i.e., single detached dwelling unit, row housing, low rise 

apartment or high rise apartment or condominium; 
• The type of construction used to build the structure; 
• Any other special price determining characteristics that are different from 

“average” dwelling units in the same general location such as swimming pools, 
air conditioning, elaborate landscaping, the height of the structure or views of 
oceans or rivers. 

 
The data used in this study consist of observations on quarterly sales of detached houses 
for a small town (the population is around 60,000) in the Netherlands, town “A”, for 14 
quarters, starting in the first quarter of 2005 and ending in the second quarter of 2008. 
The data used in this study can be described as follows:3 
 

• pn
t is the selling price of property n in quarter t in Euros where t = 1,...,14; 

• Ln
t is the area of the plot for the sale of property n in quarter t in meters squared; 

• Sn
t is the living space area of the structure for the sale of property n in quarter t in 

meters squared;  
• An

t is the (approximate) age (in decades) of the structure on property n in quarter t.  
 
The values of the fourth variable listed above are determined as follows. The original 
data were coded as follows: if the structure was built in 1960-1970, the observation was 
assigned the decade indicator variable BP = 5; 1971-1980, BP=6; 1981-1990, BP=7; 
1991-2000, BP=8; 2001-2008, BP=9. The age variable A in this study was set equal to 9 

                                                 
3  Houses which were older than 50 years at the time of sale were deleted from the data set. Two 
observations which had unusually low selling prices (36,000 and 40,000 Euros) were deleted as were 28 
observations which had land areas greater than 1200 m2. No other outliers were deleted from the sample. 

Paper presented to the Ottawa Group, 2011



 5

− BP. For a recently built structure n in quarter t, An
t = 0. Thus the age variable gives the 

(approximate) age of the structure in decades. 
 
It can be seen that not all of the price determining characteristics of the dwelling unit 
were used in the present study. In particular, the last five sets of price determining 
characteristics of the property listed above were neglected. Thus there is an implicit 
assumption that quarter to quarter changes in the amount of renovations that have been 
undertaken for the structures sold, the location of the structures, the type of structure, the 
type of construction used to build the structures and any other special price determining 
characteristics of the properties sold in the quarter did not change enough to be a 
significant determinant of the average price for the properties sold once changes in land 
size, structure size and the age of the structures were taken into account. To support this 
assumption, it should be noted that the hedonic regression models to be discussed later in 
the paper consistently explained 80-90% of the variation in the price data using just the 
three main explanatory variables: L, S and A.4  
 
As mentioned above, there were 2289 observations on detached house sales for city “A” 
over the 14 quarters in the sample. Thus there was an average of 163.5 sales of detached 
dwelling units in each quarter. The overall sample mean selling price was 190,130 Euros, 
while the corresponding median price was 167,500 Euros. The average lot or plot size 
was 257.6 m2 and the average size of structure was 127.2 m2. The average age of the 
properties sold was approximately 18.5 years old. 
 
The stratification approach to the construction of a house price index is conceptually 
very simple: for each important price explaining characteristic, divide up the sales into 
relatively homogeneous groups. Thus in the present case, sales were classified into 45 
groups or cells consisting of 3 groupings for the land area L, 3 groupings for the structure 
area S and 5 groups for the age A (in decades) of the structure that was sold (3×3×5 = 45 
separate cells). Once quarterly sales were classified into the 45 groupings of sales, the 
sales within each cell in each quarter were be summed and then divided by the number of 
units sold in that cell in order to obtain unit value prices. These unit value prices were 
then be combined with the number of units sold in each cell to form the usual p’s and q’s 
that can be inserted into a bilateral index number formula, like the Laspeyres (1871), 
Paasche (1874) and Fisher (1922) ideal formulae,5 yielding a stratified index of house 
prices of each of these types.6  

                                                 
4 The R2 between the actual and predicted selling prices ranged from .83 to .89. The fact that it was not 
necessary to introduce more price determining characteristics for this particular data set can perhaps be 
explained by the nature of the location of the town of “A” on a flat, featureless plain and the relatively 
small size of the town; i.e., location was not a big price determining factor since all locations have basically 
the same access to amenities.  
5 The various international manuals on price measurement recommend this unit value approach to the 
construction of price indexes at the first stage of aggregation; see ILO, IMF, OECD, UNECE, Eurostat and 
World Bank (2004) and IMF, ILO, OECD, Eurostat, UNECE and the World Bank (2004) (2009). However, 
the unit value aggregation is supposed to take place over homogeneous items and this assumption may not 
be fulfilled in the present context, since there is a fair amount of variability in L, S and A within each cell. 
But since there are only a small number of observations in each cell for the data set under consideration, it 
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How should the size limits for the L and S groupings be chosen? One approach would be 
to divide the range of L and S by three and then create three equal size cells. However, 
this approach leads to a very large number of observations in the middle cells. Thus in the 
present study, size limits were chosen so that roughly 50% of the observations would fall 
into the middle sized categories and roughly 25% would fall into the small and large 
categories. For the land size variable L, the cutoff points chosen were 160 m2 and 300 m2, 
while for the structure size variable S, the cutoff points chosen were 110 m2 and 140 m2. 
Thus if L < 160 m2, then the observation fell into the small land size cell; if 160 m2 ≤ L < 
300 m2, then the observation fell into the medium land size cell and if 300 m2 ≤ L, then 
the observation fell into the large land size cell. The resulting sample probabilities for 
falling into these three L cells over the 14 quarters were .24, .51 and .25 respectively. 
Similarly, if S < 110 m2, then the observation fell into the small structure size cell; if 110 
m2 ≤ S < 140 m2, then the observation fell into the medium structure size cell and if 140 
m2 ≤ S, then the observation fell into the large structure size cell. The resulting sample 
probabilities for falling into these three S cells over the 14 quarters were .21, .52 and .27 
respectively.  
 
The data that were used did not have an exact age for the structure; only the decade when 
the structure was built was recorded. Thus there was no possibility of choosing exact 
cutoff points for the age of the structure. For the first age group, A = 0 corresponds to a 
house that was built during the years 2001-2008; A = 1 for houses built during the years 
1991-2000; A = 2 for houses build in 1981-1990, A = 3 for houses built in 1971-1980; 
and A = 4 for houses built in 1961-1970. The resulting sample probabilities for falling 
into these five cells over the 14 quarters were .15, .32, .21, .20 and .13 respectively. See 
Table 1 below for the sample joint probabilities of a house sale belonging to each of the 
45 cells. 
 
Table 1: Sample Probability of a Sale in Each Stratified Cell 

  
    A = 0   A = 1   A = 2   A = 3   A = 4 

L=small S=small 0.00437   0.02665   0.01660   0.02053  0.02097  

L=medium S=small 0.00349   0.02840   0.01966   0.01092  0.03888   

L=large S=small 0.00087   0.00175   0.00044   0.00218  0.00612   

L=small S=medium 0.01223   0.05242   0.04281   0.02053  0.00699  

L=medium S=medium 0.03277   0.09262   0.08869   0.07907  0.02141  

L=large S=medium 0.00786   0.02315   0.01005   0.01442  0.01398  

L=small S=large 0.00306   0.00218   0.00175   0.00568  0.00000   

L=medium S=large 0.03145   0.03495   0.00786   0.02097  0.00306  

L=large S=large 0.04893   0.05461   0.02315   0.02490  0.01660 

                                                                                                                                                 
would be difficult to introduce more cells to improve homogeneity since this would lead to an increased 
number of empty cells and a lack of matching for the cells. 
6 However, since there are only 163 or so observations for each quarter and 45 cells to fill, it can be seen 
that each cell will have only an average of 3 or so observations in each quarter, and some cells were empty 
for some quarters. This problem will be addressed subsequently. 
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There are several points of interest to note about the above Table: 
 

• There were no observations for houses built during the 1960s (the A = 4 class) 
which had a small lot (L = small) and a large structure (S = large), so this cell is 
entirely empty; 

• There are many cells which are almost empty; in particular the probability of a 
sale of a large plot with a small house is very low as is the probability of a sale of 
a small plot with a large house;7 

• The most representative model that is sold over the sample period corresponds to 
a medium sized lot, a medium sized structure and a house that was built in the 
1990s (the A = 1 category). The sample probability of a house sale falling into 
this cell is 0.09262, which is the highest probability cell. 

 
The average selling price of a house that falls into the medium L, medium S and A = 1 
category is graphed in Figure 1 below along with the mean and median price of a sale in 
each quarter. These average prices have been converted into indexes which start at 1 for 
quarter 1, which is the first quarter of 2005. It should be noted that these three house 
price indexes are rather variable. 
 
Two additional indexes are plotted in Figure 1: a fixed base matched model Fisher ideal 
index and a chained matched model Fisher ideal price index. It is necessary to explain 
what a matched model index is. If at least one house sold in each quarter for each of the 
45 classes of transaction, then the ordinary Laspeyres, Paasche and Fisher price indexes, 
PL(s,t), PP(s,t) and PF(s,t), that compared the data in quarter s (in the denominator) to the 
data in quarter t (in the numerator) would be defined as follows: 
 
(1) PL(s,t) ≡ ∑n=1

45 pn
tqn

s/∑n=1
45 pn

sqn
s ; 

(2) PP(s,t) ≡ ∑n=1
45 pn

tqn
t/∑n=1

45 pn
sqn

t ; 
(3) PF(s,t) ≡ [PL(s,t)PP(s,t)]

1/2 
 
where qn

t is the number of properties transacted in quarter t in cell n and pn
t is defined as 

the sum of the values for all properties transacted in quarter t in cell n divided by qn
t and 

thus pn
t is the unit value price for all properties transacted in cell n during quarter t for t = 

1,...,14 and n = 1,...,45. 
 
The above algebra is applicable to the case where there are transactions in all cells for the 
two quarters being compared. But for the present data set, on average only about 30 out 
of the 45 cell categories can be matched across any two quarters, s and t. The above 
formulae (1)-(3) need to be modified to deal with this lack of matching problem. Thus 
when considering how to form an index number comparison between quarters s and t, 
define the set of cells n that have at least one transaction in each of quarters s and t as 

                                                 
7 Thus lot size and structure size are positively correlated with a correlation coefficient of .6459. Both L 
and S are fairly highly correlated with the selling price variable P: the correlation between P and L is .8234 
and between P and S is .8100. These high correlations lead to some multicollinearity problems in the 
hedonic regression models to be considered later.  
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the set S(s,t). Then the matched model counterparts, PML(s,t), PMP(s,t) and PMF(s,t), to the 
indexes defined by (1), (2) and (3) are defined as follows:8 
 
(4) PML(s,t) ≡ ∑n∈S(s,t) pn

tqn
s/∑n∈S(s,t) pn

sqn
s ; 

(5) PMP(s,t) ≡ ∑n∈S(s,t) pn
tqn

t/∑n∈S(s,t) pn
sqn

t ; 
(6) PMF(s,t) ≡ [PML(s,t)PMP(s,t)]

1/2. 
 
In Figure 1, the Fixed Base Fisher index is the matched model Fisher index defined by 
(6), where the base quarter s is kept fixed at quarter 1; i.e., the indexes PMF(1,1), 
PMF(1,2), ...,PMF(1,14) are calculated and labelled as the Fixed Base Fisher Index, PFFB. 
The index that is labelled the Chained Fisher Index, PFCH, is the index PMF(1,1), 
PMF(1,1)PMF(1,2), PMF(1,1)PMF(1,2)PMF(2,3), ..., PMF(1,1)PMF(1,2)PMF(2,3)PMF(3,4) ... 
PMF(13,14). Note that the Fixed Base and Chained Fisher (matched model) indexes are 
quite close to each other and are much smoother than the corresponding Mean, Median 
and Representative Model indexes.9 The data for the 5 series plotted in Figure 1 are listed 
in Table 2 below. 
 
Table 2: Matched Model Fisher Chained and Fixed Base Indexes, Mean, Median 
and Representative Model House Price Indexes  
 
Quarter PFCH PFFB PMean PMedian PRepresent 

1 1.00000 1.00000 1.00000 1.00000 1.00000 
2   1.02396 1.02396 1.02003 1.05806 1.04556 
3 1.07840 1.06815 1.04693 1.02258 1.03119 
4 1.04081 1.04899 1.05067 1.03242 1.04083 
5 1.04083 1.04444 1.04878 1.04839 1.04564 
6 1.05754 1.06676 1.13679 1.17581 1.09792 
7 1.07340 1.07310 1.06490 1.06935 1.01259 
8 1.06706 1.07684 1.07056 1.10000 1.10481 
9 1.08950 1.06828 1.07685 1.05806 1.03887 
10 1.11476 1.11891 1.16612 1.16048 1.07922 
11 1.12471 1.12196 1.08952 1.06290 1.07217 
12 1.10483 1.11321 1.09792 1.10323 1.03870 
13 1.10450 1.11074 1.10824 1.12903 1.12684 
14 1.11189 1.10577 1.12160 1.10323 1.08587 

 

                                                 
8 A justification for this approach to dealing with a lack of matching in the context of bilateral index 
number theory can be found in the discussion by Diewert (1980; 498-501) on the related problem of 
dealing with new and disappearing goods. Other approaches are also possible. For approaches based on 
imputation methods, see Alterman, Diewert and Feenstra (1999). and for approaches that are based on 
maximum matching over all pairs of periods, see Ivancic, Diewert and Fox (2011) and Haan and van der 
Grient (2011).  
9 The means (and standard deviations) of the 5 series are as follows: PFCH = 1.0737 (0.0375), PFFB = 1.0737 
(0.0370), PMean = 1.0785 (0.0454), PMedian = 1.0785 (0.0510), and PRepresentative = 1.0586 (0.0366). Thus the 
representative model price index is smoother than the two matched model Fisher indexes but it has a 
substantial bias relative to the two Fisher indexes: the representative model price index is well below the 
Fisher indexes for most of the sample period.   
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Figure 1: Fisher Matched Model Stratification and Various Summary Statistic 

Indexes 
 

 
 
The two matched model Fisher indexes must be regarded as being more accurate than the 
other indexes, which use only a limited amount of the available price and quantity 
information. Either Fisher index could be used as a headline index of house price 
inflation.10  
 
Since there is a considerable amount of heterogeneity in each cell of the stratification 
scheme, there is the possibility of some unit value bias11 in the matched model Fisher 
indexes. However, if a finer cell classification were used, the amount of matching would 
drop dramatically. Already, with the present classification, only about 2/3 of the cells 
could be matched across any two quarters. Thus there is a tradeoff between having too 
few cells with the possibility of unit value bias and having a finer cell classification 
scheme but with a much smaller degree of matching of the data within cells across the 
two time periods being compared. 12  In any case, the results of the various hedonic 
regression methods to be considered below indicate that the matched model chained 

                                                 
10 Since both Fisher indexes trend fairly smoothly, the chained Fisher should be preferred over the fixed 
base Fisher index, following the advice in Hill (1988) (1993) and in the CPI Manual; see the ILO, IMF, 
OECD, UNECE, Eurostat and World Bank (2004). Note also that there is no need to use Laspeyres or 
Paasche indexes in this situation since real estate data on sales of houses contains both value and quantity 
information. Under these conditions, Fisher indexes are preferred by the above sources over the Laspeyres 
and Paasche indexes (which do not use all of the available information for the two periods being compared). 
11 See Balk (1998) (2008; 72-74), Silver (2009a) (2009b) (2010) and Diewert and von der Lippe (2010) for 
discussions of unit value bias. 
12 Diewert and von der Lippe (2010) show that with finer and finer stratification schemes, eventually there 
is a complete lack of matching and index numbers based on highly stratified unit values become 
meaningless. 
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Fisher price index approach considered in this section gives results that are comparable to 
the “best” hedonic regression methods.  
 
Looking at Table 2 and Figure 1, it can be seen that the chained Fisher index considered 
above shows drops in house prices in the fourth quarter of 2005, 2006 and 2007. Thus 
there is the possibility that house prices drop for seasonal reasons in the fourth quarter of 
each year. In order to deal with this possibility, a rolling year matched model Fisher 
index is constructed in the following section.  
   
3. Rolling Year Indexes and Seasonality 

 
Assuming that each commodity in each season of the year is a separate “annual” 
commodity is the simplest and theoretically most satisfactory method for dealing with 
seasonal commodities when the goal is to construct annual price and quantity indexes.  
This idea can be traced back to Mudgett in the consumer price context and to Stone in the 
producer price context: 
 
“The basic index is a yearly index and as a price or quantity index is of the same sort as those about which 
books and pamphlets have been written in quantity over the years.”  Bruce D. Mudgett (1955; 97). 

 
“The existence of a regular seasonal pattern in prices which more or less repeats itself year after year 
suggests very strongly that the varieties of a commodity available at different seasons cannot be 
transformed into one another without cost and that, accordingly, in all cases where seasonal variations in 
price are significant, the varieties available at different times of the year should be treated, in principle, as 
separate commodities.”  Richard Stone (1956; 74-75). 

 
Diewert (1983) generalized the Mudgett-Stone annual framework to allow for rolling 
year comparisons for 12 consecutive months of data with a base year of 12 months of 
data or for comparisons of 4 consecutive quarters of data with a base year of 4 
consecutive quarters of data; i.e., the basic idea is to compare the current rolling year of 
price and quantity data to the corresponding data of a base year where the data pertaining 
to each season is compared.13 Thus in the present context, we have in principle,14 price 
and quantity data for 45 classes of housing commodities in each quarter. If the sale of a 
house in each season is treated as a separate good, then there are 180 annual commodities.  
 
For the first index number value, the four quarters of price and quantity data on sales of 
detached dwellings in the town of “A” (180 series) are compared with the same data 
using the Fisher ideal formula. Naturally, the resulting index is equal to 1. For the next 
index number value, the data for the first quarter of 2005 are dropped and the data 

                                                 
13 For additional examples of this rolling year approach, see the chapters on seasonality in ILO, IMF, 
OECD, UNECE, Eurostat and World Bank (2004), the IMF, ILO, OECD, Eurostat, UNECE and the World 
Bank (2004) and Diewert (1998). In order to theoretically justify the rolling year indexes from the 
viewpoint of the economic approach to index number theory, some restrictions on preferences are required.  
The details of these assumptions can be found in Diewert (1999; 56-61). It should be noted that weather 
and the lack of fixity of Easter can cause “seasons” to vary and a breakdown in the approach; see Diewert, 
Finkel and Artsev (2009). However, with quarterly data, these limitations of the rolling year index are less 
important.  
14 In practice, as we have seen in the previous section, many of the cells are empty in each period. 
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pertaining to the first quarter of 2006 are appended to the data for quarters 2-4 of 2005. 
The resulting Fisher index is the second entry in the RY Matched Model series that is 
illustrated in Figure 2 below. However, as was the case with the chained and fixed base 
Fisher indexes that appeared in Figure 1 above, not all cells could be matched using the 
rolling year methodology; i.e., some cells were empty in the first quarter of 2006 which 
corresponded to cells in the first quarter of 2005 which were not empty and vice versa. 
Thus when constructing the rolling year index PRY plotted in Figure 2, the comparison 
between the rolling year and the data pertaining to 2005 was restricted to the set of cells 
which were non empty in both years; i.e., the Fisher rolling year indexes plotted in Figure 
2 are matched model indexes. Unmatched models are omitted from the index number 
comparison.15  The results can be observed in Figure 2. Note that there is a definite 
downturn at the end of the sample period but that the downturns which showed up in 
Figure 1 for quarters 4 and 8 can be interpreted as seasonal downturns; i.e., the rolling 
year indexes in Figure 2 did not turn down until the end of the sample period. Note also 
that the index value for observation 5 compares the data for calendar year 2006 to the 
corresponding data for calendar year 2005 and the index value for observation 9 
compares the data for calendar year 2007 to the corresponding data for calendar year 
2005; i.e., these index values correspond to Mudgett-Stone annual indexes.      
 
It is a fairly labour intensive job to construct the rolling year matched model Fisher 
indexes since the cells that are matched over any two periods vary with the periods. A 
short cut method for seasonally adjusting a series such as the matched model chained 
Fisher index PFCH and the fixed base Fisher index PFFB listed in Table 2 in the previous 
section is to simply take a 4 quarter moving average of these series. The resulting rolling 
year series, PFCHMA and PFFBMA, can be compared with the rolling year Mudgett-Stone-
Diewert series PRY; see Figure 2 below. The data that corresponds to Figure 2 are listed in 
Table 3 below. 
 
Figure 2: Rolling Year Fixed Base Fisher PFFBRY, Fisher Chained Moving Average 

PFCHMA and Fisher Fixed Base Moving Average PFFBMA House Price Indexes 
 

                                                 
15 There are 11 rolling year comparisons that can be made with the data for 14 quarters that are available. 
The number of unmatched or empty cells for rolling years 2, 3, ..., 11 are as follows: 50, 52, 55, 59, 60, 61, 
65, 65, 66, 67. The relatively low number of unmatched or empty cells for rolling years 2, 3 and 4 is due to 
the fact that for rolling year 2, ¾ of the data are matched, for rolling year 3, ½ of the data are matched and 
for rolling year 4, ¼ of the data are matched.   
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Table 3: Rolling Year Fixed Base Fisher PFFBRY, Fisher Chained Moving Average 

PFCHMA and Fisher Fixed Base Moving Average PFFBMA House Price Indexes 
 
Rolling 

Year PFFBRY PFCHMA PFFBMA 
1 1.00000 1.00000 1.00000 
2 1.01078 1.01021 1.01111 
3 1.02111 1.01841 1.02156 
4 1.02185 1.01725 1.02272 
5 1.03453 1.02355 1.02936 
6 1.04008 1.03572 1.03532 
7 1.05287 1.04969 1.04805 
8 1.06245 1.06159 1.05948 
9 1.07135 1.07066 1.06815 
10 1.08092 1.07441 1.07877 
11 1.07774 1.07371 1.07556 

 

It can be seen that a simple moving average of the chained Fisher and fixed base quarter 
to quarter indexes, PFCH and PFFB, listed in Table 2 of the previous section approximates 
the theoretically preferred rolling year fixed base Fisher index PFFBRY fairly well. 
However, there are differences of up to 1% between the preferred rolling year index and 
the moving average index. Recall that the fixed base Fisher index constructed in the 
previous section compared the data of quarters 1 to 14 with the corresponding data of 
quarter 1. Thus the observations for, say, quarters 2 and 1, 3 and 1, and 4 and 1 are not as 
likely to be as comparable as the rolling year indexes where data in any one quarter is 
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always lined up with the data in the corresponding quarter of the base year. A similar 
argument applies to the moving average index PFCHMA; the comparisons that go into the 
links in this index are from quarter to quarter and they are unlikely to be as accurate as 
comparisons across the years for the same quarter.16  
 
We turn now to methods for constructing house price indexes that are based on hedonic 
regression techniques. 
 
4. Time Dummy Hedonic Regression Models using the Logarithm of Price as the 

Dependent Variable 

 
The most popular hedonic regression models regress the log of the price of the good on 
either a linear function of the characteristics or on the logs of the characteristics along 
with time dummy variables.17 We will consider each of these models in turn. 
 
The Log Linear Time Dummy Hedonic Regression Model: 
 
In quarter t, there were N(t) sales of detached houses in the town of “A” where pn

t is the 
selling price of house n sold during quarter t. We have information on three 
characteristics of house n sold in period t: Ln

t is the area of the plot in square meters (m2); 
Sn
t is the floor space area of the structure in m2 and An

t is age in decades of house n in 
period t. The Log Linear time dummy hedonic regression model is defined by the 
following system of regression equations:18 
 
(7) ln pn

t = α + βLn
t + γSn

t + δAn
t + τt + εn

t ;                       t = 1,...,14; n = 1,...,N(t); τ1 ≡ 0 
 
where τt is a time dummy variable for period t which shifts the hedonic surface upwards 
or downwards.19 
 
Note that if we exponentiated both sides of (7) and neglected the error term, then the 
house price pn

t would equal eα [expLn
t]β [expSn

t]γ [expAn
t]δ [expτt]. Thus if we could 

observe a house with the same characteristics in two consecutive periods t and t+1, the 
corresponding price relative (neglecting error terms) would equal [expτt+1]/[expτt] and 
this can serve as the chain link in a price index. Thus it is particularly easy to construct a 

                                                 
16 The stronger is the seasonality, the stronger will be this argument in favour of the accuracy of the rolling 
year index. The strength of this argument can be seen if all house price sales in a given cell turn out to be 
strongly seasonal; i.e., the sales for that cell occur in say only one quarter in each year. Quarter to quarter 
comparisons are obviously impossible in this situation but rolling year indexes will be perfectly well 
defined.   
17 This methodology was developed by Court (1939; 109-111) as his hedonic suggestion number two but 
there were earlier contributions which were not noticed by the profession until recently.  
18 For all the models estimated in this paper, it is assumed that the error terms εn

t are independently 
distributed normal variables with mean 0 and constant variance and maximum likelihood estimation is used 
in order to estimate the unknown parameters in each regression model. The nonlinear option in Shazam was 
used for the actual estimation. 
19 The 15 parameters α, τ1,...,τ14 correspond to variables that are exactly collinear in the regression (7) and 
thus the restriction τ1 = 0 is imposed in order to identify the remaining parameters.   
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house price index using this model; see Figure 3 and Table 4 below for the resulting 
index which is labelled as PH1 (hedonic house price index 1). The R

2 for this model 
is .8420 which is quite satisfactory for a hedonic regression model with only three 
characteristics. For later comparison purposes, we note that the log likelihood is 1407.6. 
 
A problem with this model is that the underlying price formation model seems 
implausible: S and L interact multiplicatively in order to determine the overall house 
price whereas it seems likely that lot size L and house size S interact in an approximately 
additive fashion to determine the overall house price. 
 
Another problem with this model is that age is entered in an additive fashion in the 
regression model (7). The problem with this is that we would expect age to interact 
directly with the structures variable S as a depreciation variable. In the following model, 
we make this direct interaction adjustment to (7).  
 
The Log Linear Time Dummy Hedonic Regression Model with Quality Adjustment of 

Structures for Age 

 
In this model, we argue that age A interacts with the quantity of structures S in a 
multiplicative manner; i.e., an appropriate explanatory variable for the selling price of a 
house is γ(1−δ)AS (geometric depreciation where δ is the decade geometric depreciation 
rate) or γ(1−δA)S (straight line depreciation where δ is the decade straight line 
depreciation rate) instead of the additive specification γS + δA. In what follows, the 
straight line variant of this class of models is estimated20; i.e., the Log Linear time dummy 
hedonic regression model with quality adjusted structures is the following regression 
model: 
 
(8) ln pn

t = α + βLn
t + γ(1 − δAn

t)Sn
t + τt + εn

t ;                  t = 1,...,14; n = 1,...,N(t); τ1 ≡ 0. 
 
The above regression model was run using the 14 quarters of sales data for the town of 
“A”. Note that only one common straight line depreciation rate δ is estimated. The 
estimated decade (net) depreciation rate21 was δ* = 11.94% (or around 1.2% per year), 
which is very reasonable. As was the case with the previous model, if we could observe a 
house with the same characteristics in two consecutive periods t and t+1, the 
corresponding price relative (neglecting error terms) would equal [expτt+1]/[expτt] and 
this can serve as the chain link in a price index; see Figure 3 and Table 4 below (see PH2) 
for the resulting index. The R2 for this model is .8345, a bit lower than the previous 
model and the log likelihood is 1354.9, which is quite a drop from the previous log 
likelihood of 1407.6. Thus it appears that the imposition of more theory (with respect to 
the treatment of the age of the house) has led to a drop in the empirical fit of the model. 

                                                 
20 This regression is essentially linear in the unknown parameters and hence it is very easy to estimate. 
21 It is a net depreciation rate because we have no information on renovation expenditures so δ serves as a 
net depreciation rate; i.e., it is equal to gross wear and tear depreciation of the house less average 
expenditures on renovations and repairs.  
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However, it is likely that this model and the previous one is misspecified22: they both 
multiply together land area times structure area in order to determine the price of the 
house and it is likely that an additive interaction between L and S is more appropriate 
than a multiplicative one.  
 
Note that once the depreciation rate has been estimated (denote the estimated rate by δ*), 
then quality adjusted structures (adjusted for the aging of the structure) for each house n 
in each quarter t can be defined as follows: 
 
(9) Sn

t* ≡ (1 − δ*An
t)Sn

t ;                                                                  t = 1,...,14; n = 1,...,N(t). 
 
The Log Log Time Dummy Hedonic Regression Model with Quality Adjustment of 

Structures for Age 

 
From now on, we will work with quality adjusted (for age) structures, (1−δA)S, rather 
than the unadjusted structures area, S. The Log Log model is similar to the previous Log 
Linear model, except that now, instead of using L and (1−δA)S as explanatory variables 
in the regression model, we use the logarithms of the land and quality adjusted structures 
areas as independent variables. Thus the Log Log time dummy hedonic regression model 
with quality adjusted structures is the following regression model: 
 
(10) ln pn

t = α + βlnLn
t + γln[(1 − δAn

t)Sn
t] + τt + εn

t;         t = 1,...,14; n = 1,...,N(t); τ1 ≡ 0. 
 
Using the data for “A”, the estimated decade (net) depreciation rate23 is δ* = 0.1050 
(standard error 0.00374), which is a reasonable decade net depreciation rate. Note that if 
we exponentiated both sides of (10) and neglected the error term, the house price pn

t 
would equal eα [Ln

t]β [Sn
t*]γ [expτt] where Sn

t* is defined as quality adjusted structures, 
(1−δAn

t)Sn
t. Thus if we could observe a house with the same characteristics in two 

consecutive periods t and t+1, the corresponding price relative (neglecting error terms) 
would equal [expτt+1]/[expτt] and this again can serve as the chain link in a price index; 
see Figure 3 and Table 4 below (see PH3) for the resulting index. The R

2 for this model 
is .8599, which is a big increase over the previous two models and the log likelihood is 
1545.4, a huge increase over the log likelihoods for the previous two models (1407.6 and 
1354.9). 
 

                                                 
22 If the variation in the independent variables is relatively small, the difference in indexes generated by the 
various hedonic regression models considered in this section and the following sections is likely to be small 
since virtually all of the models considered can offer roughly a linear approximation to the “truth”. But 
when the variation in the independent variables is large (as it is in the present housing context), then the 
choice of functional form can have a very substantial effect. Thus a priori reasoning should be applied to 
both the choice of independent variables in the regression as well as to the choice of functional form. For 
additional discussion on functional form issues, see Diewert (2003a).  
23 It is a net depreciation rate because we have no information on renovation expenditures so δ is equal to 
average gross wear and tear depreciation of the house less average real expenditures on renovations and 
repairs.  
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It turns out that this hedonic regression model is a variant of McMillen’s (2003) 
consumer oriented approach to hedonic housing models. It is worthwhile outlining his 
theoretical framework.24 
 
A very simple way to justify a hedonic regression model from a consumer perspective is 
to postulate that households have the same (cardinal) utility function, f(z1,z2), that 
aggregates the amounts of two relevant characteristics, z1 > 0 and z2 > 0, into the overall 
utility of the “model” with characteristics z1, z2 yielding the scalar welfare measure, 
f(z1,z2). Thus households will prefer model 1 with characteristics z1

1,z2
1 to model 2 with 

characteristics z1
2,z2

2 if and only if f(z1
1,z2

1) > f(z1
2,z2

2).25 Thus having more of every 
characteristic is always preferred by households. The next assumption that we make is 
that in period t, there is a positive generic price for all models, ρt, such that the 
household’s willingness to pay, Wt(z1,z2), for a model with characteristics z1 and z2 is 
equal to the generic model price ρt times the utility generated by the model, f(z1,z2); i.e., 
we have for each model n with characteristics z1n

t, z2n
t that is purchased in period t, the 

following willingness to pay for model n:26 
 
(11) Wt(z1n

t,z2n
t) = ρt f(z1n

t,z2n
t) = pn

t. 
 
The above willingness to pay for a house is set equal to the selling price of the house, pn

t. 
Now all that is necessary is to specify the z characteristics and pick a functional form for 
the (cardinal) utility function f. In order to relate (11) to (10), let z1n

t ≡ Ln
t and z2n

t ≡ [(1 − 
δAn

t)Sn
t and let f(z1,z2) be the following Cobb-Douglas utility function: 

 
(12) f(z1,z2) ≡ e

αz1
βz2

γ ; β > 0 ; γ > 0. 
 
Now define ρt ≡ expτt for t = 1,...,14 and it can be seen that with these definitions, the 
hedonic regression model defined by (11) is equivalent to the model defined by (10), 
neglecting the error terms.  
 
If β and γ sum to one, then the consumer’s characteristics utility function exhibits 
constant returns to scale. Thus if z1 and z2 are multiplied by the positive scalar λ, then 
the consumer’s initial utility f(z1,z2) is also multiplied by λ; i.e., we have f(λz1,λz2) = 
λf(z1,z2) for all λ > 0. For the data pertaining to the town of “A”, we obtained the 
following estimates for β and γ (standard errors in brackets): β* = 0.4196 (0.00748) and 
γ* = 0.5321 (0.0157). Thus the sum of β* and γ* is 0.9517, which is reasonably close to 
one.    
 
Although this model performs the best of the simple hedonic regression models 
considered thus far, it has the unsatisfactory feature that the quantity of land and quality 
                                                 
24 This exposition follows that of Diewert, Haan and Hendriks (2010). 
25  It is natural to impose some regularity conditions on the characteristics aggregator function f like 
continuity, monotonicity (if each component of the vector z1 is strictly greater than the corresponding 
component of z2, then f(z1) > f(z2) and f(0,0) = 0.  
26 For more elaborate justifications for household based hedonic regression models, see Muellbauer (1974) 
and Diewert (2003a). 
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adjusted structures determine the price of a house in a multiplicative manner when it is 
more likely that house prices are determined by a weighted sum of their land and quality 
adjusted structures amounts. Thus in the following section, an additive time dummy 
hedonic regression model will be estimated and the expectation is that this model will fit 
the data better.  
 
The three house price series generated by the three time dummy hedonic regressions 
described in this section where the logarithm of the selling price is used as the dependent 
variable, PH1, PH2 and PH3, are plotted in Figure 3 below along with the stratified sample 
matched model chained Fisher house price index described in section 2 above, PFCH. 
These four house price series are listed in Table 4 below.  
 
Figure 3: Three Time Dummy Hedonic Regression Based House Price Indexes PH1, 

PH2 and PH3 and the Stratified Sample Matched Model Chained Fisher House Price 

Index PFCH 
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Table 4: Time Dummy House Price Indexes Using Hedonic Regressions with the 

Logarithm of Price as the Dependent Variable PH1, PH2 and PH3 and the Stratified 

Sample Matched Model Chained Fisher Index PFCH  
 
Quarter PH1 PH2 PH3 PFCH 

1 1.00000 1.00000 1.00000 1.00000 
2 1.04609 1.04059 1.03314 1.02396 
3 1.06168 1.05888 1.05482 1.07840 
4 1.04007 1.03287 1.03876 1.04081 
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5 1.05484 1.05032 1.03848 1.04083 
6 1.08290 1.07532 1.06369 1.05754 
7 1.09142 1.08502 1.07957 1.07340 
8 1.06237 1.05655 1.05181 1.06706 
9 1.10572 1.09799 1.09736 1.08950 
10 1.10590 1.10071 1.09786 1.11476 
11 1.10722 1.10244 1.09167 1.12471 
12 1.10177 1.09747 1.09859 1.10483 
13 1.09605 1.08568 1.09482 1.10450 
14 1.10166 1.09694 1.10057 1.11189 

 
It can be seen that all four indexes capture the same trend but there can be differences of 
over 2 percent between the various indexes for some quarters. Note that all of the indexes 
move in the same direction from quarter to quarter with decreases in quarters 4, 8, 12 and 
13 except that PH3 (the index that corresponds to the Log Log model) increases in quarter 
12.    
 
5. Time Dummy Hedonic Regression Models using Price as the Dependent Variable 
 
The Linear Time Dummy Hedonic Regression Model  

 
There are reasons to believe that the selling price of a property is linearly related to the 
plot area of the property plus the area of the structure due to the competitive nature of the 
house building industry.27 If the age of the structure is treated as another characteristic 
that has an importance in determining the price of the property, then the following linear 
time dummy hedonic regression model might be an appropriate one: 
 
(13) pn

t = α + βLn
t + γSn

t + δAn
t + τt + εn

t ;                        t = 1,...,14; n = 1,...,N(t); τ1 ≡ 0. 
 
The above linear regression model was run using the data for the town of “A”. The R2 for 
this model is .8687, much higher than those obtained in our previous regressions and the 
log likelihood is −10790.4 (which cannot be compared to the previous log likelihoods 
since the dependent variable has changed from the logarithm of price to just price. Using 
model (13) to form an overall house price index is a bit more difficult than using the time 
dummy regression models in the previous section. In the previous section, holding 
characteristics constant and neglecting error terms, the relative price for the same model 
over any two time periods turned out to be constant, leading to an unambiguous overall 
index. In the present section, holding characteristics constant and neglecting error terms, 
the difference in price for the same model turns out to be constant, but the relative prices 
for different models will not in general be constant. Thus an overall index will be 
constructed which uses the prices generated by the estimated parameters in (13) and 
evaluated at the sample average amounts of L, S and the average age of a house A.28 The 

                                                 
27 Diewert (2007) and Diewert, Haan and Hendriks (2010) develop this line of thought in more detail. 
28 The sample average amounts of L and S were 257.6 m2 and 127.2 m2 respectively and the average age of 
the detached dwellings sold over the sample period was 1.85 decades.  
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resulting quarterly house prices for this “average” model were converted into an index, 
PH4, which is listed in Table 5 below and charted in Figure 4. 
 
The hedonic regression model defined by (13) is perhaps the simplest possible one but it 
is a bit too simple since it neglects the fact that the interaction of age with the selling 
price of the property takes place via a multiplicative interaction with the structures 
variable and not via a general additive factor. Thus in the following section, we will rerun 
the present model but using quality adjusted structures as an explanatory variable rather 
than just entering age A as a separate stand alone characteristic.   
 
The Linear Time Dummy Hedonic Regression Model with Quality Adjusted Structures  

 
The linear time dummy hedonic regression model with quality adjusted structures is the 
following regression model: 
 

(14) pn
t = α + βLn

t + γ(1 − δ An
t)Sn

t + τt + εn
t ;                    t = 1,...,14; n = 1,...,N(t); τ1 ≡ 0. 

 
This is the most plausible hedonic regression model so far. It works with quality adjusted 
(for age) structures S* equal to (1−δA)S instead of having A and S as completely 
independent variables that enter into the regression in a linear fashion.  
 
The results for this hedonic regression model were a clear improvement over the results 
of the previous model, (13). The log likelihood increased by 92 to −10697.8 and the R2 
increased to .8789 from the previous .8687. The estimated decade depreciation rate is δ* 
= 0.1119 (0.00418), which is reasonable as usual. This linear regression model has the 
same property as the previous model: house price differences are constant over time for 
all constant characteristic models but house price ratios are not constant. Thus as in the 
previous model, an overall index will be constructed which uses the prices generated by 
the estimated parameters in (14) and evaluated at the sample average amounts of L, S and 
the average age of a house A. The resulting quarterly house prices for this “average” 
model were converted into an index, PH5, which is listed in Table 5 below and charted in 
Figure 4. For comparison purposes, PH3 (the time dummy Log Log model index) and 
PFCH (the stratified sample chained matched model Fisher index) will be charted along 
with PH4 and PH5. Our preferred indexes are PFCH and PH5. 
 
Figure 4: Two Time Dummy House Price Indexes Using Hedonic Regressions with 

Price as the Dependent Variable, PH4 and PH5, the Log Log Time Dummy index PH3 

and the Stratified Sample Matched Model  Chained Fisher Index PFCH  
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Table 5: Two Time Dummy House Price Indexes Using Hedonic Regressions with 

Price as the Dependent Variable, PH4 and PH2, the Log Log Time Dummy index PH3 

and the Stratified Sample Matched Model  Chained Fisher Index PFCH 
 
Quarter PH4 PH5 PH3 PFCH 

1 1.00000 1.00000 1.00000 1.00000 
2 1.04864 1.04313 1.03314 1.02396 
3 1.06929 1.06667 1.05482 1.07840 
4 1.04664 1.03855 1.03876 1.04081 
5 1.05077 1.04706 1.03848 1.04083 
6 1.08360 1.07661 1.06369 1.05754 
7 1.09593 1.09068 1.07957 1.07340 
8 1.06379 1.05864 1.05181 1.06706 
9 1.10496 1.09861 1.09736 1.08950 
10 1.10450 1.10107 1.09786 1.11476 
11 1.10788 1.10588 1.09167 1.12471 
12 1.10403 1.10044 1.09859 1.10483 
13 1.09805 1.08864 1.09482 1.10450 
14 1.11150 1.10572 1.10057 1.11189 

  

It can be seen that again, all four indexes capture the same trend but there can be 
differences of over 2 percent between the various indexes for some quarters. Note that all 
of the indexes move in the same direction from quarter to quarter with decreases in 
quarters 4, 8, 12 and 13, except that PH3 increases in quarter 12.  
 
A major problem with the hedonic time dummy regression models considered thus far is 
that the prices of land and quality adjusted structures are not allowed to change in an 
unrestricted manner from period to period. The class of hedonic regression models to be 
studied in the following section does not suffer from this problem.   
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6. Hedonic Imputation Regression Models 

 
The theory of hedonic imputation indexes works as follows29: for each period, run a 
linear regression of the following form: 
 
(15) pn

t = αt + βtLn
t + γt(1 − δtAn

t)Sn
t + εn

t ;                                   t = 1,...,14; n = 1,...,N(t). 
 
Note that there are only 4 parameters to be estimated for each quarter: αt, βt, γt and δt for t 
= 1,...,14.30 Note also that (15) is similar in form to the model defined by equations (14), 
but with some significant differences: 
 

• Only one depreciation parameter is estimated in the model defined by (14) 
whereas in the present model, there are 14 depreciation parameters; one for each 
quarter.  

• In model (14), there was only one α, β, γ and δ parameter whereas in (15), there 
are 14 αt, 14 βt, 14 γt and 14 δt parameters to be estimated. On the other hand, 
model (14) had an additional 13 time shifting parameters (the τt) that required 
estimation. 

 
Thus the hedonic imputation model involves the estimation of 56 parameters whereas the 
time dummy model required the estimation of only 17 parameters. Hence it is likely that 
the hedonic imputation model will fit the data much better. 
 
As usual, in the housing context, we almost never have matched models across periods 
(there are always depreciation and renovation activities that make a house in the exact 
same location not quite comparable over time). This lack of matching, say between 
quarters t and t+1, is overcome in the following way: take the parameters estimated using 
the quarter t+1 hedonic regression and price out all of the housing models (i.e., sales) that 
appeared in quarter t. This generates predicted quarter t+1 prices for the quarter t 
models , pn

t+1(t), as follows: 
 
(16) pn

t+1(t) ≡ αt+1 + βt+1Ln
t + γt+1(1 − δt+1An

t)Sn
t ;                        t = 1,...,13; n = 1,...,N(t).  

 
Now we have a set of “matched” quarter t+1 prices for the models that appeared in period 
t and we can form the following Laspeyres type matched model index, going from quarter 
t to t+1: 
 
                                                 
29 This theory dates back to Court (1939; 108) as his hedonic suggestion number one. His suggestion was 
followed up by Griliches (1971a; 59-60) (1971b; 6) and Triplett and McDonald (1977; 144). More recent 
contributions to the literature include Diewert (2003b), Haan (2003) (2009) (2010), Triplett (2004) and 
Diewert, Heravi and Silver (2009).  
30 Due to the fact that the regressions defined by (15) have a constant term and are essentially linear in the 
explanatory variables, the sample residuals in each of the regressions will sum to zero. Hence the sum of 
the predicted prices will equal the sum of the actual prices for each period. Thus the sum of the actual 
prices in the denominator of (17) will equal the sum of the corresponding predicted prices and similarly, the 
sum of the actual prices in the numerator of (19) will equal the corresponding sum of the predicted prices.  

Paper presented to the Ottawa Group, 2011



 22

(17) PHIL(t,t+1) ≡ ∑n=1
N(t) 1 pn

t+1(t)/ ∑n=1
N(t) 1 pn

t ;                                                t = 1,...,13. 
 
Note that the quantity that is associated with each price is 1; basically, each housing unit 
is unique and cannot be matched except through the use of a model. 
 
The same method can be used going backwards from the housing sales that took place in 
quarter t+1; take the parameters for the quarter t hedonic regression and price out all of 
the housing models that appeared in quarter t+1 and generate predicted prices, pn

t(t+1) for 
these t+1 models: 
 
(18) pn

t(t+1) ≡ αt + βtLn
t+1 + γt(1 − δtAn

t+1)Sn
t+1 ;                       t = 1,...,13; n = 1,...,N(t+1).  

 
Now we have a set of “matched” quarter t prices for the models that appeared in period 
t+1 and we can form the following Paasche type matched model index, going from 
quarter t to t+1: 
 
(19) PHIP(t,t+1) ≡ ∑n=1

N(t+1) 1 pn
t+1/ ∑n=1

N(t+1) 1 pn
t(t+1) ;                                      t = 1,...,13. 

 
Once the above Laspeyres and Paasche imputation indexes have been calculated, we can 
readily form the corresponding Fisher type matched model index going from period t to 
t+1 by taking the geometric average of the two indexes defined by (17) and (19): 
 
(20) PHIF(t,t+1) ≡ [PHIL(t,t+1)PHIP(t,t+1)]

1/2 ;                                                        t = 1,...,13. 
 
The resulting chained Laspeyres, Paasche and Fisher imputation indexes, PHIL, PHIP and 
PHIF, are plotted below in Figure 5 and are listed in Table 6.  
 
Figure 5: Chained Laspeyres, Paasche and Fisher Imputation Indexes 
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Table 6: Chained Laspeyres, Paasche and Fisher Imputation Indexes 
 
Quarter PHIL PHIP PHIF 

1 1.00000 1.00000 1.00000 
2 1.04234 1.04479 1.04356 
3 1.06639 1.06853 1.06746 
4 1.03912 1.03755 1.03834 
5 1.04942 1.04647 1.04794 
6 1.07267 1.07840 1.07553 
7 1.08923 1.10001 1.09460 
8 1.05689 1.06628 1.06158 
9 1.09635 1.10716 1.10174 
10 1.09945 1.10879 1.10411 
11 1.11062 1.11801 1.11430 
12 1.10665 1.11112 1.10888 
13 1.09830 1.09819 1.09824 
14 1.11981 1.11280 1.11630 

 
The 3 imputation indexes are amazingly close.  
 
The Fisher imputation index is our preferred hedonic index thus far; it is better than the 
time dummy indexes in the previous two sections because the imputation indexes allow 
the price of land and quality adjusted structures to change independently over time, 
whereas the time dummy indexes shift the hedonic surface in a parallel fashion. However, 
the above empirical results show that the Laspeyres type hedonic imputation index PHIL 
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can provide a very close approximation to the theoretically preferred Fisher type hedonic 
imputation index PHIF. This is important in the context of producing real time indexes 
since a reasonably accurate index that covers period t+1 can be constructed using only the 
period t hedonic regression.  
 
Our two “best” indexes thus far are the Fisher imputation index and the Stratified 
Chained Fisher index. These two “best” indexes are plotted in Figure 6 along with the 
Log Log time dummy indexes PH3 and the Linear time dummy index with quality 
adjusted structures PH5. Note that all of the indexes except PH3 indicate downward 
movements in quarters, 4, 8, 12 and 13 and upward movements in the other quarters (PH3 
moves up in quarter 12 instead of falling like the other indexes). 
 
Figure 6: The Fisher Hedonic Imputation Price Index PHIF, the Chained Matched 

Model Stratified Fisher Index PFCH, the Linear Time Dummy Hedonic Regression 

Index PH5 and the Log Log Time Dummy Hedonic Regression Index PH3.  
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This completes our discussion of basic hedonic regression methods that could be used in 
order to construct an overall index of house prices. In the following sections, we will 
study various hedonic regression methods that could be used in order to construct 
separate indexes for the price of housing land and for housing structures.  
 
7. The Construction of Land and Structures Price Indexes: Preliminary Approaches 
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It is reasonable to develop a cost of production approach to the pricing of a newly built 
house.31 Thus for a newly built house during quarter t, the total cost of the property after 
the structure is completed will be approximately equal to the floor space area of the 
structure, say S square meters, times the building cost per square meter, γt say, plus the 
cost of the land, which will be equal to the cost per square meter, βt say, times the area of 
the land site, L.  Now think of a sample of newly built properties of the same general type, 
which have prices pn

t in quarter t and structure areas Sn
t and land areas Ln

t. The prices of 
these newly built properties, pn

t, should be approximately equal to costs of the above type, 
βtLn

t + γtSn
t plus error terms, which we assume have zero means. This model for pricing 

the sales of new structures is generalized to include the pricing of used structures by 
introducing quality adjusted structures in the usual way. This leads to the following 
hedonic regression model for the entire data set where βt (the price of land), γt (the price 
of constant quality structures) and δ (the decade depreciation rate) are the parameters to 
be estimated in the following regression model:32 33 
  
(21) pn

t = βtLn
t + γt(1 − δAn

t)Sn
t + εn

t ;                                            t = 1,...,14; n = 1,...,N(t). 
 
Note that a common depreciation rate for all quarters was estimated. Thus the model 
defined by (21) has 14 unknown βt parameters, 14 unknown γt parameters and one 
unknown δ or 29 unknown parameters in all. The R2 for this model is equal to .8847, 
which is the highest yet for regressions using the entire data set.34 The log likelihood is 
−10642.0, which is considerably higher than the log likelihoods obtained for the two time 
dummy hedonic regressions that use prices as the dependent variable (recall the 
regressions associated with the construction of PH4 and PH5, where the log likelihoods are 

                                                 
31 This approach was suggested by Diewert (2007) and implemented by Diewert, Haan and Hendriks 
(2010). Thus the model in this section is a supply side model as opposed to the demand side Cobb Douglas 
model of McMillen (2003) studied earlier. See Rosen (1974) for a discussion of identification issues in 
hedonic regression models.  
32  In order to obtain homoskedastic errors, it would be preferable to assume multiplicative errors in 
equation (1) since it is more likely that expensive properties have relatively large absolute errors compared 
to very inexpensive properties. However, following Koev and Santos Silva (2008), we think that it is 
preferable to work with the additive specification (1) since we are attempting to decompose the aggregate 
value of housing (in the sample of properties that sold during the period) into additive structures and land 
components and the additive error specification will facilitate this decomposition.    
33 Thorsnes (1997; 101) has a related cost of production model. He assumed that instead of equation (21), 
the value of the property under consideration in period t, pt, is equal to the price of housing output in period 
t, ρt, times the quantity of housing output H(L,K) where the production function H is a CES function. Thus 
Thorsnes assumed that pt = ρt H(L,K) = ρt [αLσ + βKσ]1/σ where ρt, σ, α and β are parameters , L is the lot 
size of the property and K is the amount of structures capital in constant quality units (the counterpart to 
our S*). Our problem with this model is that there is only one independent time parameter ρt whereas our 
model has two, βt and γt for each t, which allow the price of land and structures to vary freely between 
periods. 
34 The present model is similar in structure to the hedonic imputation model described in the previous 
section except that this model is more parsimonious; i.e., there is only one depreciation rate in the present 
model (as opposed to 14 depreciation rates in the imputation model) and there are no constant terms in the 
present model. The important factor in both models is that the prices of land and quality adjusted structures 
are allowed to vary independently across time periods. 
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−10790.4 and −10697.8). The decade straight line estimated depreciation rate is 0.1068 
(0.00284). 
 
The model yields an estimated land price for quarter t equal to βt* and the corresponding 
quantity of land transacted is equal to Lt ≡ ∑n=1

N(t) Ln
t. The estimated period t price for a 

square meter of quality adjusted structures is γt* and the corresponding quantity of 
constant quality structures is St* ≡ ∑n=1

N(t) (1 − δ*An
t)Sn

t. The land price series β1*,...,β14* 
(rescaled to equal 1 in quarter 1) is the price series PL1 which is plotted in Figure 7 and 
listed in Table 7 below. The constant quality price series for structures γ1*,...,γ14* 
(rescaled to equal 1 in quarter 1) is the price series PS1 which is plotted in Figure 7 and 
listed in Table 7. Finally, using the price and quantity data on land and constant quality 
structures for each quarter t, (βt*, Lt, γt*, St*) for t = 1,...,14, an overall house price index 
can be constructed using the Fisher formula. The resulting price series is P1 which is also 
plotted in Figure 7 and listed in Table 7 below. For comparison purposes with P1, the 
Fisher hedonic imputation index PHIF is also plotted in Figure 7 and listed in Table 7.   
 
Figure 7: The Price of Land PL1, the Price of Quality Adjusted Structures PS1, the 

Overall Cost of Production House Price Index P1 and the Fisher Hedonic 

Imputation House Price Index PHIF  
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Table 7: The Price of Land PL1, the Price of Quality Adjusted Structures PS1, the 

Overall Cost of Production House Price Index P1 and the Fisher Hedonic 

Imputation House Price Index PHIF 
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Quarter PL1 PS1 P1 PHIF 
1 1.00000 1.00000 1.00000 1.00000 
2 1.29547 0.91603 1.04571 1.04356 
3 1.42030 0.89444 1.07482 1.06746 
4 1.12290 0.99342 1.03483 1.03834 
5 1.25820 0.94461 1.05147 1.04794 
6 1.09346 1.08879 1.08670 1.07553 
7 1.26514 1.01597 1.09941 1.09460 
8 1.13276 1.03966 1.06787 1.06158 
9 1.31816 0.98347 1.09713 1.10174 
10 1.08366 1.13591 1.11006 1.10411 
11 1.32624 1.00699 1.11782 1.11430 
12 1.30994 1.00502 1.11077 1.10888 
13 0.94311 1.17530 1.09373 1.09824 
14 1.50445 0.9032 1.11147 1.11630 

 

It can be seen that the new overall hedonic price index based on a cost of production 
approach to the hedonic functional form, P1, is very close to the Fisher hedonic 
imputation index PHIF constructed in the previous section. However, it can also be seen 
that the price series for land, PL1, and the price series for quality adjusted structures, PS1, 
are not at all credible: there are large random fluctuation in both series. Note that when 
the price of land spikes upwards, there is a corresponding dip in the price of structures. 
This is a sign of multicollinearity between the land and quality adjusted structures 
variables, which leads to unstable estimates for the prices of land and structures.   
    
There is a tendency for the price of land per meter squared to decrease for large lots. Thus 
in an attempt to improve upon the results of the hedonic regression model defined by (21), 
a linear spline model for the price of land is implemented.35 Thus for lots that are less 
that 160 m2, we assume that the price of land per meter squared is βS

t during quarter t. 
For sales of properties that have lot sizes between 160 m2 and 300 m2, we assume that the 
cost per m2 of units of land above 160 m2 changes to a price of βM

t per additional square 
meter during quarter t. Finally, for large plots of land that are above 300 m2, we allow the 
marginal price of an additional unit of land above 300 m2 to change to the price of βL

t per 
additional square meter during quarter t. For quarter t, let the set of sales n of small, 
medium and large plots be denoted by NS(t), NM(t) and NL(t) respectively for t = 1,...,14.  
For sales n of properties that fall into the small land size group during period t, the 
hedonic regression model is described by (22); for the medium group, by (23) and for the 
large land size group, by (24): 
 
(22) pn

t = βS
tLn

t + γt(1 − δAn
t)Sn

t + εn
t ;                                                t = 1,...,14; n∈NS(t); 

(23) pn
t = βS

t[160] + βM
t[Ln

t − 160] + γt(1 − δAn
t)Sn

t + εn
t ;                 t = 1,...,14; n∈NM(t); 

(24) pn
t = βS

t[160] + βM
t[140] + βL

t[Ln
t − 300] + γt(1 − δAn

t)Sn
t + εn

t ; 
                                                                                                               t = 1,...,14; n∈NL(t). 

                                                 
35 This approach follows that of Diewert, Haan and Hendriks (2010). 
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Using the data for the town of “A”, the estimated decade depreciation rate is δ* = 0.1041 
(0.00419). The R2 for this model is .8875, an increase over the previous no splines model 
where the R2 is .8847. The log likelihood is −10614.2 (an increase of 28 from the 
previous model defined by (21) log likelihood.) The first period parameter values for the 
3 marginal prices for land are βS

1* = 281.4 (55.9), βM
1* = 380.4 (48.5) and βL

1* = 188.9 
(27.5). Thus in quarter 1, the marginal cost per m2 of small lots is estimated to be 281.4 
Euros per m2. For medium sized lots, the estimated marginal cost is 380.4 Euros/m.2 And, 
for large lots, the estimated marginal cost is 188.9 Euros/m2. The first period parameter 
value for quality adjusted structures is γ1* = 978.1 Euros/m2 with a standard error of 82.3. 
The lowest t statistic for all of the 57 parameters is 3.3, so all of the coefficients in this 
model are significantly different from zero.  
 
Once the parameters for the model have been estimated, then in each quarter t, we can 
calculate the predicted value of land for small, medium and large lot sales, VLS

t, VLM
t and 

VLL
t respectively along with the associated quantities of land, LLS

t, LLM
t and LLL

t as 
follows: 
 

(25) VLS
t ≡ ∑ ∈ )(tNn S

βS
t*Ln

t  ;                                                                             t = 1,...,14; 

(26) VLM
t ≡ ∑ ∈ )(tNn M

βS
t*[160] + βM

t*[Ln
t − 160] ;                                            t = 1,...,14; 

(27) VLL
t ≡ ∑ ∈ )(tNn L

βS
t*[160] + βM

t*[140] + βL
t*[Ln

t − 300] ;                          t = 1,...,14; 

(28) LLS
t ≡ ∑ ∈ )(tNn S

Ln
t  ;                                                                                   t = 1,...,14; 

(29) LLM
t ≡ ∑ ∈ )(tNn M

Ln
t ;                                                                                  t = 1,...,14; 

(30) LLL
t ≡ ∑ ∈ )(tNn L

Ln
t                                                                                      t = 1,...,14. 

 
The corresponding average quarterly prices, PLS

t, PLM
t and PLL

t, for the three types of lot 
are defined as the above values divided by the above quantities: 
 
(31)  PLS

t ≡ VLS
t/LLS

t ; PLM
t ≡ VLM

t/LLM
t ; PLL

t ≡ VLL
t/LLL

t ;                                t = 1,...,14. 
 
The average land prices for small, medium and large lots defined by (31) and the 
corresponding quantities of land defined by (28)-(30) can be used to form a chained 
Fisher land price index, which we denote by PL2. This index is plotted in Figure 8 and 
listed in Table 8 below. As in the previous model, the estimated period t price for a 
square meter of quality adjusted structures is γt* and the corresponding quantity of 
constant quality structures is St* ≡ ∑n=1

N(t) (1 − δ*An
t)Sn

t. The structures price and quantity 
series γt* and St* were combined with the three land price and quantity series to form a 
chained overall Fisher house price index P2 which is graphed in Figure 8 and listed in 
Table 8. The constant quality structures price index PS2 (a normalization of the series 
γ1*,...,γ14*) is also found in Figure 8 and Table 8.    
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Figure 8: The Price of Land PL2, the Price of Quality Adjusted Structures PS2, the 

Overall House Price Index P2 Using Splines on Land and the Chained Stratified 

Sample Fisher House Price Index PFCH 
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Table 8: The Price of Land PL2, the Price of Quality Adjusted Structures PS2, the 

Overall House Price Index P2 Using Splines on Land and the Chained Stratified 

Sample Fisher House Price Index PFCH 
 

Quarter PL2 PS2 P2 PFCH 
1 1.00000 1.00000 1.00000 1.00000 
2 1.10534 0.99589 1.04137 1.02396 
3 1.02008 1.09803 1.06465 1.07840 
4 1.05082 1.02542 1.03608 1.04081 
5 0.99379 1.08078 1.04294 1.04083 
6 0.74826 1.31122 1.06982 1.05754 
7 0.93484 1.20719 1.08912 1.07340 
8 0.77202 1.26718 1.05345 1.06706 
9 1.19966 1.01724 1.09425 1.08950 
10 0.77139 1.34813 1.09472 1.11476 
11 0.92119 1.24884 1.10596 1.12471 
12 0.97695 1.19188 1.09731 1.10483 
13 0.84055 1.27531 1.08811 1.10450 
14 1.29261 0.97875 1.10613 1.11189 

 

It can be seen that the overall house price index that results from the spline model, P2, is 
very close to the chained Fisher index PFCH that was calculated using the stratification 
approach. However, the spline model does not generate sensible estimates for the price of 
land, PL2 and the price of structures, PS2: both price indexes are volatile but in opposite 
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directions. As was the case with the previous cost of production model, the present model 
is subject to a multicollinearity problem.36 
 
In the following section, an attempt to cure this volatility problem will be made by 
imposing monotonicity restrictions on the price movements for land and quality adjusted 
structures.  
 
8. The Construction of Land and Structures Price Indexes: Approaches Based on 

Monotonicity Restrictions 

 
It is likely that Dutch construction costs did not fall during the sample period.37 If this is 
the case, then these monotonicity restrictions on the quarterly prices of quality adjusted 
structures, γ1, γ2, γ3,..., γ14, can be imposed on the hedonic regression model (22)-(24) in 
the previous section by replacing the constant quality quarter t structures price parameters 
γt by the following sequence of parameters for the 14 quarters: γ1, γ1 + (φ2)2, γ1 + (φ2)2 + 
(φ3)2,..., γ1 + (φ2)2 + (φ3)2 + ... + (φ14)2 where φ2, φ3,..., φ14 are scalar parameters.38 Thus 
for each quarter t starting at quarter 2, the price of a square meter of constant quality 
structures γt is equal to the previous period’s price γt−1 plus the square of a parameter φt−1, 
[φt−1]2, for t = 2, 3,..., 14. Now replace this reparameterization of the structures price 
parameters γt in equations (22)-(24) in order to obtain a linear spline model for the price 
of land with monotonicity restrictions on the price of constant quality structures.  
 
Using the data for the town of “A”, the estimated decade depreciation rate is δ* = 0.1031 
(0.00386). The R2 for this model is .8859, a drop from the previous unrestricted spline 
model where the R2 is .8875. The log likelihood is −10630.5, a decrease of 16.3 over the 
previous unrestricted model. Eight of the 13 new parameters φt are zero in this 
monotonicity restricted hedonic regression. The first period parameter values for the 3 
marginal prices for land are βS

1* = 278.6 (37.2), βM
1* = 380.3 (41.0) and βL

1* = 188.0 
(21.4) and these estimated parameters are virtually identical to the corresponding 
parameters in the previous unrestricted model. The first period parameter value for 
quality adjusted structures is γ1* = 980.5 (49.9) Euros/m2 which is little changed from the 
corresponding unrestricted estimate of 978.1 Euros/m2.   
 
Once the parameters for the model have been estimated, then convert the estimated φt 
parameters into γt parameters using the following recursive equations: 
 
(32) γt+1* ≡ γt* + [φt*]2 ;                                                                                        t = 2,...,14. 
 

                                                 
36 Comparing Figures 7 and 8, it can be seen that in Figure 7, the price index for land is above the overall 
price index for the most part while the price index for structures is below the overall index but in Figure 8, 
this pattern reverses. This instability is again an indication of a multicollinearity problem. 
37 Some direct evidence on this assertion will be presented in the following section. 
38 This method for imposing monotonicity restrictions was used by Diewert, Haan and Hendriks (2010) 
with the difference that they imposed monotonicity on both structures and land prices, whereas here, we 
impose monotonicity restrictions on structures prices only. 
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Now use equations (25)-(31) in the previous section in order to construct a chained Fisher 
index of land prices, which we denote by PL3. This index is plotted in Figure 9 and listed 
in Table 9 below. As in the previous two models, the estimated period t price for a square 
meter of quality adjusted structures is γt* and the corresponding quantity of constant 
quality structures is St* ≡ ∑n=1

N(t) (1 − δ*An
t)Sn

t. The structures price and quantity series 
γt* and St* were combined with the three land price and quantity series to form a chained 
overall Fisher house price index P3 which is graphed in Figure 9 and listed in Table 9. 
The constant quality structures price index PS3 (a normalization of the series γ

1*,...,γ14*) is 
also found in Figure 9 and Table 9.    
 
Figure 9: The Price of Land PL3, the Price of Quality Adjusted Structures PS3, the 

Overall House Price Index with Monotonicity Restrictions on Structures P3 and the 

Unrestricted Overall House Price Index Using Splines on Land P2 
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Table 9: The Price of Land PL3, the Price of Quality Adjusted Structures PS3, the 

Overall House Price Index with Monotonicity Restrictions on Structures P3 and the 

Unrestricted Overall House Price Index Using Splines on Land P2 

 

Quarter PL3 PS3 P3 P2 

1 1.00000 1.00000 1.00000 1.00000 
2 1.10047 1.00000 1.04148 1.04137 
3 1.07431 1.05849 1.06457 1.06465 
4 1.00752 1.05849 1.03627 1.03608 
5 0.99388 1.08078 1.04316 1.04294 
6 0.89560 1.20300 1.07168 1.06982 
7 0.93814 1.20300 1.08961 1.08912 
8 0.85490 1.20300 1.05408 1.05345 
9 0.95097 1.20300 1.09503 1.09425 
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10 0.94424 1.21031 1.09625 1.09472 
11 0.96514 1.21031 1.10552 1.10596 
12 0.94596 1.21031 1.09734 1.09731 
13 0.92252 1.21031 1.08752 1.08811 
14 0.96262 1.21031 1.10427 1.10613 

  

From Figure 9, it can be seen that the new overall house price index P3 that imposed 
monotonicity on the quality adjusted price of structures cannot be distinguished from the 
previous overall house price index P2, which was based on a similar hedonic regression 
model except that the movements in the price of structures were not restricted. It can also 
be seen that the new land and structures price indexes look “reasonable”; the fluctuations 
in the price of land and quality adjusted structures are no longer violent. Finally, we note 
that the overall index P3 is quite close to our previously recommended indexes, the 
matched model stratified chained Fisher index PFCH, and the Fisher hedonic imputation 
index, PHIF.  
 
Although the above results look “reasonable”, the early rapid increase in the price of 
structures and the slow growth in the index from quarter 6 to 14 looks a bit odd. Thus in 
the following section, we will try one more method for extracting separate structures and 
land components out of real estate sales data.  
 
9. The Construction of Land and Structures Price Indexes: An Approach Based on 

the Use of Exogenous Information on the Price of Structures 

  
Many countries have new construction price indexes available on a quarterly basis. This 
is the case for the Netherlands.39 Thus if we are willing to make the assumption that new 
construction costs for houses have the same rate of growth over the sample period across 
all cities in the Netherlands, the statistical agency information on construction costs can 
be used to eliminate the multicollinearity problems that we encountered in section 6 
above.  
 
Recall equations (22)-(24) in section 7 above. These equations are the estimating 
equations for the unrestricted hedonic regression model based on costs of production. In 
the present section, the constant quality house price parameters, the γt for t =2,...,14 in 
(22)-(24), are replaced by the following numbers, which involve only the single unknown 
parameter γ1: 
 
(33) γt = γ1µt ;                                                                                                     t = 2,3,...,14 
 
where µt is the statistical agency estimated construction cost price index for the location 
under consideration and for the type of dwelling, where this series has been normalized to 

                                                 
39  From the Central Bureau of Statistics (2010) online source, Statline, the following series was 
downloaded for the New Dwelling Output Price Index for the 14 quarters in our sample of house sales in 
“A”: 98.8, 98.1, 100.3, 102.7, 99.5, 100.5, 100.0, 100.3, 102.2, 103.2, 105.6, 107.9, 110.0, 110.0. This 
series was normalized to 1 in the first quarter by dividing each entry by 98.8. The resulting series is denoted 
by µ1 (=1), µ2,...,µ14.  
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equal unity in quarter 1. The new hedonic regression model is again defined by equations 
(22)-(24) except that the 14 unknown γt parameters are now assumed to be defined by 
(33), so that only γ1 needs to be estimated for this new model. Thus the number of 
parameters to be estimated in this new restricted model is 44 as compared to the old 
number, which was 57.  
 
Using the data for the town of “A”, the estimated decade depreciation rate is δ* = 0.1028 
(0.00433). The R2 for this model is .8849, a small drop from the previous restricted spline 
model where the R2 is .8859 and a larger drop from the unrestricted spline model R2 in 
section 7, which is .8875. The log likelihood is −10640.1, a decrease of 10 over the 
previous monotonicity restricted model. The first period parameter values for the 3 
marginal prices for land ae βS

1* = 215.4 (30.0), βM
1* = 362.6 (46.7) and βL

1* = 176.4 
(28.4). These new estimates differ somewhat from our previous estimates for these 
parameters. The first period parameter value for quality adjusted structures is γ1* = 1085.9 
(22.9) Euros/m2 which is substantially changed from the corresponding unrestricted 
estimate which is 980.5 Euros/m2. Thus the imposition of a nationwide growth rate on the 
change in the price of quality adjusted structures has had some effect on our previous 
estimates for the levels of land and structures prices.   
 
As usual, we used equations (25)-(31) in order to construct a chained Fisher index of land 
prices, which we denote by PL4. This index is plotted in Figure 10 and listed in Table 10 
below. As for the previous three models, the estimated period t price for a square meter of 
quality adjusted structures is γt* (which in turn is now equal to γ1*µt) and the 
corresponding quantity of constant quality structures is St* ≡ ∑n=1

N(t) (1 − δ*An
t)Sn

t. The 
structures price and quantity series γt* and St* were combined with the three land price 
and quantity series to form a chained overall Fisher house price index P4 which is 
graphed in Figure 10 and listed in Table 10. The constant quality structures price index 
PS4 (a normalization of the series γ

1*,...,γ14*) is also found in Figure 10 and Table 10. 
 
Figure 10: The Price of Land PL4, the Price of Quality Adjusted Structures PS4, and 

the Overall House Price Index using Exogenous Information on the Price of 

Structures P4 
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Table 10: The Price of Land PL4, the Price of Quality Adjusted Structures PS4, and 

the Overall House Price Index using Exogenous Information on the Price of 

Structures P4 
 
Quarter PL4 PS4 P4 

1 1.00000 1.00000 1.00000 
2 1.13864 0.99291 1.04373 
3 1.16526 1.01518 1.06752 
4 1.04214 1.03947 1.03889 
5 1.11893 1.00709 1.04628 
6 1.18183 1.01721 1.07541 
7 1.23501 1.01215 1.09121 
8 1.13257 1.01518 1.05601 
9 1.21204 1.03441 1.09701 
10 1.19545 1.04453 1.09727 
11 1.17747 1.06883 1.10564 
12 1.11588 1.09211 1.09815 
13 1.05070 1.11336 1.08863 
14 1.09648 1.11336 1.10486 

 
Comparing Figures 9 and 10, it can be seen that the imposition of the national growth 
rates for new dwelling construction costs has totally changed the nature of our land and 
structures price indexes: in Figure 9, the price series for land lies below the overall house 
price series for most of the sample period while in Figure 10, the pattern is reversed: the 
price series for land lies above the overall house price series for most of the sample 
period (and vice versa for the price of structures). Again, this is a reflection of the large 
amount of variability in the data and the multicollinearity between selling price, the 
quantity of land and the quantity of structures.  
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Which model is best? It is difficult to be definitive at this stage: on statistical grounds, the 
log likelihood is somewhat higher for the previous model that generated the P3 overall 
index (and thus it should be preferred from this point of view) but the pattern of price 
changes for land and structures seems more believable for the present model using 
exogenous information on structures prices (and thus the exogenous information model 
should be preferred). 
 
We conclude this section by listing and charting our four preferred overall indexes. These 
four indexes are the matched model chained Fisher stratified sample index PFCH studied 
in section 2, the chained Fisher hedonic imputation index PHIF studied in section 6, the 
index P3 that resulted from the cost based hedonic regression model with monotonicity 
restrictions studied in section 8 and the index P4 that was generated by the cost based 
hedonic regression model which used exogenous information on the price of structures 
studied in the present section. As can be seen from Figure 11 below, all four of these 
indexes paint much the same picture. Note that P3 and P4 are virtually identical.       
 
Table 11: House Price Indexes Using Exogenous Information P4 and Using 

Monotonicity Restrictions P3, the Fisher Chained Imputation Index PHIF and the 

Chained Fisher Stratified Sample Index PFCH  

  
Quarter P4 P3 PHIF PFCH 

1 1.00000 1.00000 1.00000 1.00000 
2 1.04373 1.04148 1.04356 1.02396 
3 1.06752 1.06457 1.06746 1.07840 
4 1.03889 1.03627 1.03834 1.04081 
5 1.04628 1.04316 1.04794 1.04083 
6 1.07541 1.07168 1.07553 1.05754 
7 1.09121 1.08961 1.09460 1.07340 
8 1.05601 1.05408 1.06158 1.06706 
9 1.09701 1.09503 1.10174 1.08950 
10 1.09727 1.09625 1.10411 1.11476 
11 1.10564 1.10552 1.11400 1.12471 
12 1.09815 1.09734 1.10888 1.10483 
13 1.08863 1.08752 1.09824 1.10450 
14 1.10486 1.10427 1.11630 1.11189 

 
Figure 11: House Price Indexes Using Exogenous Information P4 and Using 

Monotonicity Restrictions P3, the Fisher Chained Imputation Index PHIF and the 

Chained Fisher Stratified Sample Index PFCH 
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All things considered, the hedonic imputation index PHIF is our preferred index (since it 
has fewer restrictions than the other indexes and seems closest to a matched model index 
in spirit) followed by the two cost of production hedonic indexes P4 and P3 followed by 
the stratified sample index PFCH (which is likely to have some unit value bias).

40  If 
separate land and structures indexes are required, then the cost based hedonic regression 
model that used exogenous information on the price of structures is our preferred model. 
 
A problem with the hedonic regression models discussed in sections 4, 5 and in 7-9 is 
that as the data for a new quarter are added, the old index values presumably will change 
as well when a new hedonic regression is run with the additional data. This problem is 
addressed in the next section. 
 
10. Rolling Window Hedonic Regressions 
 
Recall the last hedonic regression model that was discussed in the previous section. This 
model was defined by equations (22)-(24) and (33), where equations (33) imposed 
exogenous information on the price of structures over the sample period. A problem with 
this hedonic regression model (and all the other hedonic regression models discussed in 
this paper with the exception of the hedonic imputation models) is that when more data 
                                                 
40 However, the hedonic regression based indexes can be biased as well if important explanatory variables 
are omitted and if an “incorrect” functional form for the hedonic regression is chosen. But in general, 
hedonic regression methods are probably preferred over stratification methods.  
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are added, the indexes generated by the model change. This feature of these regression 
based methods makes these models unsatisfactory for statistical agency use, where users 
expect the official numbers to remain unchanged as time passes.41 A simple solution to 
this difficulty is available. First, one chooses a “suitable” number of periods (equal to or 
greater than two) where it is thought that the hedonic regression model will yield 
“reasonable” results; this will be the window length (say M periods) for the sequence of 
regression models which will be estimated. Secondly, an initial regression model is 
estimated and the appropriate indexes are calculated using data pertaining to the first M 
periods in the data set. Next, a second regression model is estimated where the data 
consist of the initial data less the data for period 1 but adding the data for period M+1. 
Appropriate price indexes are calculated for this new regression model but only the rate 
of increase of the index going from period M to M+1 is used to update the previous 
sequence of M index values. This procedure is continued with each successive regression 
dropping the data of the previous earliest period and adding the data for the next period, 
with one new update factor being added with each regression. If the window length is a 
year, then this procedure is called a rolling year hedonic regression model and for a 
general window length, it is called a rolling window hedonic regression model. This is 
exactly the procedure used recently by Shimizu, Nishimura and Watanabe (2011) in their 
hedonic regression model for Tokyo house prices.42  
 
We implement the rolling window procedure for the last model in the previous section 
with a window length of 9 quarters. Thus the initial hedonic regression model defined by 
(22)-(24) and (33) is implemented for the first 9 quarters. The resulting indexes for the 
price of land, constant quality structures and the overall index are denoted by PRWL4, 
PRWS4 and PRW4 respectively and are listed in the first 9 rows of Table 12 below.

43 Next a 
regression covering the data for quarters 2-10 was run and the land, structures and overall 
price indexes generated by this model were used to update the initial indexes in the first 9 
rows of Table 12; i.e., the price of land in quarter 10 of Table 12 is equal to the price of 
land in quarter 9 times the price relative for land (quarter 10 land index divided by the 
quarter 9 land index) that was obtained from the second regression covering quarters 2-10, 
etc. Similar updating was done for the next 4 quarters using regressions covering quarters 
3-11, 4-12, 5-13 and 6-14. The rolling window indexes can be compared to their one big 
regression counterparts (the model in the previous section) by looking at Table 12 and 
Figure 12. Recall that the estimated depreciation rate and the estimated Quarter 1 price of 
quality adjusted structures for the last model in the previous section are δ* = 0.1028 and 
γ1* = 1085.9 respectively. If by chance, the 6 rolling window hedonic regressions each 
generate the same estimates for δ and γ, then the indexes generated by the rolling window 
regressions would coincide with the indexes PL4. PS4 and P4 that were described in the 
previous section. The 6 estimates for δ generated by the 6 rolling window regressions are 
                                                 
41 Users may tolerate a few revisions to recent data but typically, users would not like all the numbers to be 
revised back into the indefinite past as new data become available. 
42 An analogous procedure has also been recently used by Ivancic, Diewert and Fox (2011) and Haan and 
van der Grient (2011) in their adaptation of the GEKS method for making international comparisons to the 
scanner data context.  
43 We imposed the restrictions (33) on the rolling window regressions and so the rolling window constant 
quality price index for structures, PRWS, is equal to the constant quality price index for structures listed in 
Table 10, PS4. 
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0.10124, 0.10805, 0.11601, 0.11103, 0.10857 and 0.10592. The 6 estimates for γ1 
generated by the 6 rolling window regressions are 1089.6, 1103.9, 1088.1, 1101.0, 1123.5 
and 1100.9. While these estimates are not identical to the corresponding P4 estimates of 
0.1028 and 1085.9, they are fairly close and so we can expect the rolling window indexes 
to be fairly close to their counterparts for the last model in the previous section. The R2 
values for the 6 rolling window regressions are .8803, .8813, .8825, .8852, .8811 
and .8892.  
 
Table 12: The Price of Land PL4, the Price of Quality Adjusted Structures PS4, the 

Overall House Price Index using Exogenous Information on the Price of Structures 

P4 and their Rolling Window Counterparts PRWL and PRW 
 
Quarter PRWL PL4 PRW P4 PS4 

1 1.00000 1.00000 1.00000 1.00000 1.00000 
2 1.14073 1.13864 1.04381 1.04373 0.99291 
3 1.16756 1.16526 1.06766 1.06752 1.01518 
4 1.04280 1.04214 1.03909 1.03889 1.03947 
5 1.12055 1.11893 1.04635 1.04628 1.00709 
6 1.18392 1.18183 1.07542 1.07541 1.01721 
7 1.23783 1.23501 1.09123 1.09121 1.01215 
8 1.13408 1.13257 1.05602 1.05601 1.01518 
9 1.21417 1.21204 1.09698 1.09701 1.03441 
10 1.19772 1.19545 1.09738 1.09727 1.04453 
11 1.18523 1.17747 1.10718 1.10564 1.06882 
12 1.11889 1.11588 1.09779 1.09815 1.09201 
13 1.05191 1.05070 1.08893 1.08863 1.11335 
14 1.09605 1.09648 1.10436 1.10486 1.11335 

 
The rolling window series for the price of quality adjusted structures, PRWS, is not listed 
in Table 12 because it is identical to the series PS4, which was described in the previous 
section.44 It can be seen that the new rolling window price series for land, PRWL, is 
extremely close to its counterpart in the previous section, PL4, and the overall rolling 
window price series for detached dwellings in “A”, PRW, is also close to its counterpart in 
the previous section, P4. These series are so close to each other that a chart shows 
practically no differences, which explains why we have not provided a chart for the series 
in Table 12.  
 
Our conclusion here is that rolling window hedonic regressions can give pretty much the 
same results as a longer hedonic regression that covers the sample period. Thus the use of 
rolling window hedonic regressions can be recommended for statistical agency use.  
 
A final topic of interest is: how can the results of hedonic regression models for sales of 
houses be adapted to give estimates for a price index for the stock of houses? This topic 
is briefly addressed in the following section. 

                                                 
44 By construction, PS4 and PRWS are both equal to the official CBS construction price index for new 
dwellings, µt/µ1 for t = 1,...,14. 
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11. The Construction of Price Indexes for the Stock of Dwelling Units using the 

Results of Hedonic Regressions on the Sales of Houses 
 
In this section, we will show how the hedonic regression models estimated in sections 6 
and 9 can be used in order to form price indexes for the stock of dwelling units.  
 
Recall that the system of hedonic regression equations for the hedonic imputation model 
discussed in section 6 was equations (15), where Ln

t, Sn
t and An

t denote, respectively, the 
land area, structure area, and age (in decades) of the detached house n which was sold in 
period t. In order to form a price index for the stock of dwelling units in the town of “A”, 
it would be necessary to know L, S and A for the entire stock of detached houses in “A” 
for some base period. This information is not available to us but we treat the total number 
of houses sold over the 14 quarters as an approximation to the stock of dwellings of this 
type.45 Thus there are N ≡ N(1) + N(2) + ... + N(14) houses that were transacted during 
the 14 periods in our sample.46  
 
Recall the hedonic regression equations (15) in section 6 and let αt*, βt*, γt* and δt* denote 
the estimates for the unknown parameters in (15) for quarter t for t = 1,...,14. Our 
approximation to the total value of the housing stock for quarter t, Vt, is defined as 
follows: 
 
(34) Vt ≡ ∑s=1

14 ∑n=1
N(s) [αt* + βt*Ln

s + γt(1 − δtAn
s)Sn

s] ;                                     t = 1,...,14.  
 
Thus Vt is simply the imputed value of all of the houses that traded during the 14 quarters 
in our sample using the estimated regression coefficients for the quarter t hedonic 
imputation regression as weights for the characteristics of each house. Dividing the Vt 
series by the value for Quarter 1, V1, is our estimated stock price index, PStock1, for the 
town of “A”. This is a form of a Lowe index; see the CPI Manual (ILO et al. 2004) for 
additional material on the properties of Lowe indexes. This price index for the stock of 
housing units is compared with the corresponding Fisher hedonic imputation price index, 
PHIF, from section 6 in Table 13 and Figure 12 below.  
 
Table 13: An Approximate Stock Price Index PStock1 and the Corresponding Fisher 

Hedonic Imputation Sales Price Index PHIF 

 
Quarter PStock1 PHIF 

1 1.00000 1.00000 
2 1.04791 1.04356 
3 1.07255 1.06746 

                                                 
45 This approximation would probably be an adequate one if the sample period were a decade or so. 
Obviously, our sample period of 14 quarters is too short to be a good approximation but the method we are 
suggesting can be illustrated using this rough approximation. 
46 We did not delete the observations for houses that were transacted multiple times over the 14 quarters 
since the same house transacted during two or more of the quarters is not actually the same house due to 
depreciation and renovations.  
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4 1.04131 1.03834 
5 1.05040 1.04794 
6 1.07549 1.07553 
7 1.09594 1.09460 
8 1.06316 1.06158 
9 1.10137 1.10174 
10 1.10708 1.10411 
11 1.11289 1.11430 
12 1.10462 1.10888 
13 1.09278 1.09824 
14 1.11370 1.11630 

 
Figure 12: An Approximate Stock Price Index PStock1 and the Corresponding Fisher 

Hedonic Imputation Sales Price Index PHIF 

 

 
 
It can be seen that the differences between the two series are generally quite small, less 
than one half of a percentage point for each quarter.  
 
The same kind of construction of a stock index can be done for the other hedonic 
regression models that were implemented for sales of houses in previous sections. We 
will conclude this section by constructing an approximate stock price index using the 
results of the cost based hedonic regression model that used exogenous information on 
the price of structures that was explained in section 9 above. Recall that this model was 
defined by equations (22)-(24) and (33). Recall also that the sets of period t sales of small, 
medium and large lot houses were defined as NS(t), NM(t) and NL(t) respectively and the 
total number of sales in period t was defined as N(t) for t = 1,...,14. Denote the estimated 
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parameter values for the model (22)-(24) and (33) by δ*, γ1*, and βS
t*, βM

t*, βL
t* for t = 

1,...,14. The estimated period t values of all small, medium and large lot houses traded 
over the 14 quarters, VLS

t, VLM
t, VLL

t for t = 1,...,14, are defined by (35)-(37) 
respectively:  
 

(35) VLS
t ≡ r

nr rNn

t

S L
S

∑ ∑= ∈

14

1 )(

*β  ;                                                                         t = 1,...,14; 

(36) VLM
t ≡ ]}160[]160[{ *14

1 )(

* −+∑ ∑= ∈

r

n

t

Mr rNn

t

S L
M

ββ   ;                                       t = 1,...,14; 

(37) VLL
t ≡ ]}300[]140[]160[{ **14

1 )(

* −++∑ ∑= ∈

r

n

t

L

t

Mr rNn

t

S L
L

βββ  ;                         t = 1,...,14; 

(38) VS
t ≡ r

nr

r

n

trN

n
SA )1(

14

1

*)(

1

*1∑ ∑= =
−δµγ  ;                                                            t = 1,...,14. 

 
The estimated period t value of quality adjusted structures, VS

t, is defined by (38) above, 
where all structures traded during the 14 quarters are included in this imputed total value. 
The quantities that correspond to the above period t valuations of the stock of structures 
and the 3 land stocks are defined as follows:47 
 

(39) QLS
t ≡ r

nr rNn
L

S
∑ ∑= ∈

14

1 )(
 ;                                                                              t = 1,...,14; 

(40) QLM
t ≡ r

nr rNn
L

M
∑ ∑= ∈

14

1 )(
  ;                                                                        t = 1,...,14; 

(41) QLL
t ≡ r

nr rNn
L

L
∑ ∑= ∈

14

1 )(
                                                                                t = 1,...,14; 

(42) QS
t ≡ r

nr

r

n

rN

n
SA )1(

14

1

*)(

1∑ ∑= =
−δ  ;                                                                    t = 1,...,14. 

 
The approximate stock prices, PLS

t , PLM
t , PLL

t and PS
t , that correspond to the values and 

quantities defined by (35)-(42) are defined in the usual way: 
 
(43) PLS

t ≡ VLS
t/QLS

t ; PLM
t ≡ VLM

t/QLM
t ; PLL

t ≡ VLL
t/QLL

t ; PS
t ≡ VS

t/QS
t ;          t = 1,...,14. 

 
With prices defined by (43) and quantities defined by (39)-(42), an approximate stock 
index of land prices, PLStock, is formed by aggregating the three types of land and an 
overall approximate stock index of house prices, PStock, is formed by aggregating the three 
types of land with the constant quality structures. Since quantities are constant over all 14 
quarters, the Laspeyres, Paasche and Fisher indexes are all equal.48  An approximate 
constant quality stock price for structures, PSStock, is formed by normalizing the series PS

t. 
The approximate stock price series, PLStock, PSStock and PStock are listed in Table 14 and are 
charted in Figure 13 below. For comparison purposes, the corresponding price indexes 
based on sales of properties for the model presented in section 9, PL4, PS4 and P4, are also 
listed in Table 14. 
 

                                                 
47 The quantities defined by (39)-(42) are constant over the 14 quarters: QLS

t = 77455, QLM
t = 258550, QLL

t 
= 253590 and QS

t = 238476.3 for t = 1,...,14.  
48 Fixed base and chained Laspeyres, Paasche and Fisher indexes are also equal under these circumstances.  
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Table 14: Approximate Price Indexes for the Stock of Houses PStock, the Stock of 

Land PLStock, the Stock of Structures PSStock and the Corresponding Sales Indexes 

PL4, PS4 and P4. 

 
 
Quarter PStock P4 PLStock PL4 PSStock PS4 

1 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 
2 1.04331 1.04373 1.13279 1.13864 0.99291 0.99291 
3 1.06798 1.06752 1.16171 1.16526 1.01518 1.01518 
4 1.04042 1.03889 1.04209 1.04214 1.03947 1.03947 
5 1.04767 1.04628 1.11973 1.11893 1.00709 1.00709 
6 1.07540 1.07541 1.17873 1.18183 1.01721 1.01721 
7 1.09192 1.09121 1.23357 1.23501 1.01215 1.01215 
8 1.05763 1.05601 1.13299 1.13257 1.01518 1.01518 
9 1.09829 1.09701 1.21171 1.21204 1.03441 1.03441 
10 1.10065 1.09727 1.20029 1.19545 1.04453 1.04453 
11 1.10592 1.10564 1.17178 1.17747 1.06883 1.06883 
12 1.10038 1.09815 1.11507 1.11588 1.09211 1.09211 
13 1.08934 1.08863 1.04668 1.05070 1.11336 1.11336 
14 1.10777 1.10486 1.09784 1.09648 1.11336 1.11336 

 
Figure 13: Approximate Price Indexes for the Stock of Houses PStock, the Stock of 

Land PLStock, the Stock of Structures PSStock and the Corresponding Sales Indexes 

PL4 and P4. 
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From Table 14, it can be seen that the new stock price index for structures, PSStock, 
coincides with the sales type price index for constant quality structures, PS4, that was 
described in section 9 above. Thus PS4 is not charted in Figure 13. From Figure 13, it can 
be seen that the overall approximate price index for the stock of houses in “A”, PStock, 
cannot be distinguished from the corresponding overall sales price index P4 which was 
discussed in section 9 and similarly, the overall approximate price index for the stock of 
land in “A”, PLStock, cannot be distinguished from the corresponding overall sales price 
index for land in “A”, PL4. However, Table 14 shows that there are small differences 
between the stock and sales indexes.    
 
Our conclusion here is that the hedonic regression models for the sales of houses can 
readily be adapted to yield Lowe type price indexes for the stocks of houses and 
generally, there do not appear to be major differences between the two index types. 
 
12. Conclusion  
 
Several tentative conclusions can be drawn from this study: 
 

• If information on the sales of houses during a quarter or month is available by 
location and if information on the age of the houses, the type of housing and their 
living space and lot size areas is also available, then stratification methods and 
hedonic regression methods for constructing house price indexes of sales will give 
approximately the same answers, provided the information on age, lot size and 
house size is used for both types of method. 

• Our preferred method for constructing a sales price index is the hedonic 
imputation method explained in section 6 but virtually all forms of hedonic 
regression model using the three main characteristics used in this study give much 
the same answer, at least when the target index is an overall house price index. 

• However, when a linear specification based on a cost of production approach to 
hedonic regressions is used, the fit to the data is usually considerably better than 
the fits that result when alternative hedonic regression models are used. 

• Rolling year indexes can be used to eliminate seasonality or traditional 
econometric methods can be applied to the unadjusted house price series; see 
section 3 above.  

• A problem with many hedonic regression models for house prices is that as new 
data become available, the historical series must constantly be revised. However, 
if the rolling window technique pioneered by Shimizu, Nishimura and Watanabe 
(2011) is used, this problem is solved and the results do not differ materially from 
the one big regression approach that leads to constant revisions; see section 10. 

• If separate land and structures house price indexes are required, then the methods 
based on the cost of production approach with restrictions seem promising; see 
the method based on imposing monotonicity restrictions on the price of structures 
explained in section 8 and the method based on the use of exogenous information 
on the price of structures explained in section 9. 
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• Hedonic regression methods based on the sales of dwelling units can readily be 
adapted to yield price indexes for the stock of dwellings; see section 11. 

 
Of course, this is only one study and the results here need to be confirmed using other 
data sets. However, it seems likely that at least some of the above conclusions will not be 
overturned by future research. 
 
Some problems that require future research are: 
 

• There is a need to introduce sensible imputation procedures for the prices that 
correspond to empty cells when using stratification methods. This is 
particularly important if it is desired to use stratification methods to construct 
price indexes for the stock of houses.  

• The techniques here need to be extended to encompass the use of additional 
characteristics. 

• It would be useful to extend the spline treatment of plot size to the size of the 
structure; i.e., it is likely that the price per meter squared of structure increases 
as the structure size increases and a spline model could capture this variation.  

• The basic method used here that concentrated on holding location constant and 
using information on three main characteristics needs to be adapted to deal with 
sales of apartments and row houses, where other characteristics are likely to be 
important.  
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