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Abstract 

The importance of inflation (deflation) in current economic systems calls for it to be 

measured as accurately as possible. The Consumer Price Index (CPI) has been used to 

measure inflation. Both in the United States and the European Union, the CPI is a 

Laspeyres-type index which suffers, inter alia, from the very well-known drawbacks of 

having a fixed-base weighting system and therefore failing to capture the substitution effect 

or quality modifications. They both however suffer from an original sin that has been 

systematically overlooked. When constructing CPIs, official institutions have ignored the 

spatial dimension of elementary prices. Prices are collected on spatial or geographical 

locations, i.e, they are georeferenced data. Therefore, ignoring this fact implies consider 

prices as spatially independent, when in fact they are not, as is the case with many other 

socioeconomic variables. As a result, the first step of the procedure to estimate inflation is 

biased. In order to solve this problem, this paper proposes a new approach to elaborate 

price relatives based on kriging methodology. The idea is to retain the spatial coordinates 

where prices are surveyed, weighting the basic price data by taking into account the spatial 

correlation they display. The weighted geometric and arithmetic averages proposed 

generalize and improve the simple geometric and arithmetic averages currently in use. 

Keywords: Price indexes; geostatistics; kriging; spatial analysis; elementary indexes. 

Acknowledgments: This research has been supported by the Spanish MICINN through 

the project CSO2009-11246. The authors wish to thank Tony Little for revising the 

English of the manuscript.  

 

 

Room document at the Ottawa Group Meeting, 2011



 2

1. Introduction 

Practically all citizens in developed countries are affected by changes in the Consumer 

Price Index (CPI). In general, the CPI is mainly used as an economic indicator, as a means 

of adjusting income payments, as a way of preventing inflation-induced tax changes and as 

a deflation instrument to express other economic series at constant prices. In particular, in 

the United States (US) it is used to adjust billions of dollars in Federal payments and 

programs including annual adjustments to Social Security payments and Federal income 

tax brackets. Meanwhile, in the European Union (EU) the Harmonized Indices of 

Consumer Prices (HICP) provide the official measure of consumer price inflation in the 

euro-zone. Monetary policy and the assessment of inflation convergence in the euro zone 

are both affected by these measures. 

 The importance of CPIs in current economies therefore requires as precise and up-

to-date measurement as possible of inflation and calls for the introduction of as many 

technical improvements as can be reasonably achieved. In fact, CPIs have undergone a 

large number of changes and avatars over time in order to perfect it. Changes have been 

made right from the outset to enhance the surveys and methods and to update the sample 

and weights in an attempt to provide a better way of reflecting consumer substitution 

behaviour. 

 Historically, the first attempts to measure inflation date back to the 19th century, 

although it was not until after World War I when the Bureau of Labor Statistics (BLS) 

began to publish a US national CPI on a regular basis. Later, in the 20th century, Eurostat 

set up a homogenising methodology across European countries (Reinsdorf and Triplett, 

2009). At present, a Laspeyres price index is used in both the US and the EU to aggregate 

elementary price indexes using expenditure information on each of the elementary 

aggregates as weights. As regards calculating the basic index [the so-called elementary 

aggregate index in European terminology; European Communities, 2001, p. 209], which 

shows the average price change in each item in each geographical area (BLS, 2008), the 

geometric mean is, as a rule, preferred to the arithmetic mean. In addition to the 

superiority that geometric mean displays when dealing with percentages and rates of 

change and the well-known sensitivity of arithmetic averages to anomalous data (e.g., 

Fenwick, 1998), it seems that geometric means also eliminate the so-called functional form 

bias problem (BLS, 1998), which appears when the arithmetic mean is employed. In fact, 
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according to Boskin et al. (1996), the use of the arithmetic mean implicitly implies that the 

quantity purchased of an item does not change when prices change. Hence, following the 

advice from what is commonly known as the Boskin Commission (Advisory Commission 

to Study the Consumer Price Index; see Boskin et al. 1996), the European Commission 

recommended in September 1996, coinciding with the implementation of HICP measures, 

the use of ratios of geometric or arithmetic means of elementary prices (European 

Communities, 2001, p. 217). Furthermore, in January 1999 the BLS introduced the 

geometric mean formula to average price change within most of its categories (covering 

more than 60 percent of total consumer spending). 

 Anyway, despite the continuous improvements, a weak point still persists in the 

base of CPI elaboration: item elementary prices are handled as geographically independent 

entities, omitting the fact that, according to Tobler’s first law of geography (Tobler, 1970), 

prices (of one same item) drawn in closer outlets are more alike than prices collected 

further apart. Fortunately, this shortcoming could be easily solved by merely slightly 

modifying the way data are collected and by applying the appropriate methodologies. On 

the one hand, it would be sufficient for the spatial coordinates of the outlets (or stores) 

where prices come from to be saved along with prices; while, on the other hand, employing 

the recorded coordinates, kriging techniques could be used to geographically weight prices 

at elementary level. 

 Spatial Statistics deals with the importance of space in statistics and comprises a 

series of techniques (including geostatistics) that take into account the topological, 

geometric or geographic characteristics of the entities under study. Kriging stands out 

among these techniques. Developed in the 1950’s by Daniel Gerhardus Krige (a South 

African mining engineer) to solve ore reserve estimation problems, kriging was expanded 

in the sixties by Georges Matheron (1962) from the Commissariat de l’Energie Atomique 

in France. Nowadays, apart from the well-established earth sciences and environmental 

applications where it is widespread (e.g., Lasslet et al., 1987; Englund, 1993; Montero, 

Chasco and Larraz, 2010), kriging is being used a great deal in almost all social sciences, 

from economics (e.g., Nagle, 2010) to political science (Pavia, Larraz and Montero, 2008), 

including medicine (e.g., Goovaerts, 2006), real estate (Chica-Olmo, 2007; Montero, Larraz 

and Paez, 2009) or epidemiology (e.g., Lawson, 2001). In contrast with the classic random 

sampling approach, where data are commonly assumed to be spatially independent, kriging 

incorporates the spatial correlation of sample data in the inference process. This topic 
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comes under a spatial stochastic process framework, in which each phenomenon is 

considered as a set of random variables that can be spatially dependent. 

 Under this framework, the general theory of index numbers can be redirected to 

geostatistics and the information provided by the geographical location where outlets are 

placed easily incorporated. This article suggests moving forward in the process of 

improving inflation measurement by showing how to include the structure of the spatial 

correlation of prices into the number index theory. In particular, we propose weighting 

prices at elementary level taking advantage of the information provided by the spatial 

location where prices are collected. The main aim of the paper is to offer better 

alternatives to estimate the mean prices of elementary aggregates (in European 

terminology) and basic indexes (in American terminology). The method leads to a better 

weighted estimator of the geometric and arithmetic means than the way they are currently 

used in the US and the EU when computing the first simple index of the elemental 

aggregate in CPI methodology. 

 The remainder of the paper is structured as follows. Section 2 briefly describes the 

parts of US and EU CPI methodologies that are relevant to this paper. Section 3 presents 

the technical details of kriging in a CPI environment and the tools we will use to estimate 

the structure of the spatial correlation that prices display. Section 4 weights basic prices by 

way of a kriging approach and presents the specific formulae. Section 5 summarises and 

concludes. 

 

2. Consumer Price Index Methodologies: European Union and United 

States 

In all countries, CPIs are elaborated following a multi-stage process, the first stage of which 

involves estimating elementary price indexes for elementary expenditure aggregates. 

Subsequently, in successive stages of aggregation, these elementary price indexes are 

combined to obtain higher-level indexes using information on the expenditures on each of 

the elementary aggregates as weights (Turvey, 2004). Focusing on the basic concepts, 

procedures and formulae used to construct the so-called price relatives for each area-item 

combination, the first step of European and American methodologies are succinctly 

described in this section. The aim is to become familiar with the terminologies involved at 
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this first stage, at elementary level, when the prices of each item are averaged. Discussion 

on the way the basic index of each item is aggregated to other basic indexes in the second 

and further stages is beyond the scope of this paper. More detailed information on this 

topic is available in BLS (2008) and European Communities (2001). 

2.1. European Union 

Since March 1997, Eurostat publishes, on a common reference base 1996=100, the 

comparable indexes of consumer prices (HICP) produced by each EU member state, as 

required by European Communities (1995). The aim is to measure inflation by means of 

CPIs on an equivalent basis, removing differences in national definitions. The 

harmonization project is based on detailed regulations, each one establishing specific 

implementing measures determining the computation of the HICP. In particular, the first 

Commission Regulation (European Communities, 1996) deals with the initial coverage, 

recently significant goods and services, elementary aggregates (the object of this paper) and 

minimum standards required for quality adjustments, sampling and prices. The HICP 

covers those goods and services which are included in household final monetary 

consumption expenditure classified according to the four digit categories and subcategories 

of the Classification of Individual Consumption by Purpose (United Nations, 2000) 

adapted to the needs of HICPs (COICOP/HICP). 

According to European Communities (1996, Article 7), HICP regulations establish 

the formulae to be used for computing the price indexes for elementary aggregates, which 

refers to the “expenditure or consumption covered by the most detailed level of 

stratification of the HICP and within which reliable expenditure information is not 

available for weighting purposes” (European Communities, 1996, Article 2, Definition j), 

the elementary aggregate index being the “price index for an elementary aggregate 

comprising only price data” (European Communities, 1996, Article 2, Definition i). In 

particular, Annex II of the regulation document (European Communities, 1996) states that 

either the ratio of arithmetic mean prices or the ratio of geometric mean prices shall be 

used and recommends that the arithmetic mean of price relatives should not normally be 

used. Table 1 reports such definitions. Note that none of the methods used to compile 

elementary aggregates are weighted. In fact, not even estimated quantities of the items 

purchased are used as weights. This implicitly implies the assumption of giving the same 
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importance to the quotations of one same item in different outlets, despite this not being 

the case, as expenditure is not the same in each store. 

Table 1: Methods for compiling elementary aggregates in the EU 
Formulae to be used Formula not to be used 

Ratio of geometric 
mean prices 

Ratio of arithmetic 
mean prices 

Arithmetic mean 
of price relatives 

1

1

t n

b n

p

p
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⎡ ⎤⎣ ⎦

∏
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1
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b

p
n

p
n

∑

∑
 1 t

b

p
n p∑  

tp is the current price 
bp is the reference price 

n is the number of prices in the elementary aggregate 
       Source: Own elaboration following European Communities (1996). 

Following the stepwise approach, firstly the elementary aggregates (which are 

defined on a regional level for most EU member states) are calculated. Secondly, these 

regional prices are compiled to the lowest level of aggregation within which reliable 

expenditure information is available for weighting purposes. Finally, these indexes are 

combined with expenditure groups at country level. 

2.2. United States 

Chapter 17 on Handbook of Methods (BLS, 2008) describes the methodology followed to 

construct the CPI in the US. The origin of the CPI dates back to 1919 in large cities, 

although regular publication of a US national index began in 1921, indexes being estimated 

back to 1913. The major outputs are the so-called American price indexes, which comprise 

three CPI series⎯(i) CPI for All Urban Consumers (CPI-U); (ii) Chained CPI for All 

Urban Consumers (C-CPI-U) and (iii) CPI for Urban Wage Earners and Clerical Workers 

(CPI-W)⎯as well as selected average prices. 

The sample, weights, coverage and methodology have been enhanced and updated 

several times, with the most significant developments over the past 30 years being: (i) the 

introduction of the rental equivalence concept in 1983; (ii) the sixth comprehensive 

revision carried out in 1998, when timelier consumer spending weights were introduced 

and geographic and housing samples were updated, among other changes; (iii) the use of 

the geometric mean formula to average price change within most item categories in 1999 
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and (iv) the implementation of the biennial weight updates and the inclusion of Chained 

CPI-Us, among other changes, in 2002.  

At present, the basket of goods and services that people buy for day-to-day living is 

divided into 211 categories (called ‘item strata’) and the urban part of the US CPI into 38 

geographic areas (called ‘index areas’). The calculation of price indexes consists of two 

stages. First, basic indexes are obtained for the average change in each item within each of 

the 8,018 (38x211) possible area-item combinations in order to, secondly, compute 

aggregate indexes by averaging across different subsets of the 8,018 item-area 

combinations. 

Focusing on the first stage, from January 1999 the price relative calculation for 

most of the item strata (around 61% of total consumer spending) uses the geometric mean 

index formula, which entails the use of a geometric weighting of price ratios with the 

expenditures on each item in the corresponding sampling period as weights. The rest of the 

items continue applying a modified Laspeyres index number formula. Table 2 shows both 

procedures clarifying their meanings. 

Table 2: Formulae used in US to calculate price relatives for area-item combination, a,i, 
from previous period t-1 to current month t. 

Geometric Formula Laspeyres Formula 
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,j tP is the price of the jth observed item in month t for area-item combination a,i 

, 1j tP − is the price of the jth observed item in month t-1 for area-item combination a,i 

,j POPSP is an estimate of the item’s j’s price in the sampling period when its POPS(a) 
was conducted  

,j POPSW  is item’s j’s weight in the POPS(b)  
    Source: Own elaboration following BLS (2008). 
              (a) Point of Purchase Survey; (b) Details could be found in BLS (2008, p. 22). 
 

3. Basic Spatial Methodology adapted to Consumer Price Index Theory 

Classical sampling statistics looks at the observations drawn in a sample as realizations of 

independent random variables identically distributed, which share the same probability 

distribution as the population where they come from. When the data are geographically 

located, however, this interpretation can hardly be accepted on account of cluster effects 
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and spatial interdependence. As a result, they have to be regarded as realizations of spatially 

varying phenomena. From a mathematical point of view, geostatistics builds its inferences 

on the stochastic process or random function theory assuming that there is a family of 

random variables ( ){ },X X S= ∈s s  whose distributions vary as a function of a parameter 

s (space) belonging to S (the domain). This characterises a random field that in the 

multivariate case is defined by a vector of stochastic processes represented by a set of p 

random functions { }1 2, , , pX X X=X … , 

Under this framework, a set of collected prices { ( )i jx s }, the data, could seem an 

array of realizations of a finite set of random variables { ( )i jX s } ( 1, , , 1, ,i p j n= =… … ); 

where ( )i jX s  represents the variable ‘price of good or service i’ collected in the outlet 

placed at the geographical location ( , )j j jx y=s , and ( )i jx s  denotes the price of the good 

or service i observed in the outlet j (located in sj). Thus, taking into account that the prices 

of closer outlets tend to be more similar than the prices of outlets that are far away from 

each other, in this geostatistical context the prices of the good or service i in a particular 

geographical area no longer have to be considered as independent. What is more, given that 

they will usually be spatially autocorrelated their structure of spatial correlation should be 

explicitly considered in order to make proper inferences. For example, to attain the best 

linear unbiased estimate of, say, the price mean of the good or service i discounting the 

spatial dependence of the data, a two-step procedure is required. First, we must estimate 

the structure of the spatial correlation to secondly obtain the weights of the linear estimator 

that minimizes the variance of prediction under that structure of spatial autocorrelation.  

The structure of spatial correlation can be represented by two functions: the 

covariance function (or covariogram) and the so-called variogram⎯the main tool in 

geostatistics. The covariance function of the stochastic process is a non random function 

defined by: 

( )( )( ), ( ) ( ) ( ) ( ) ( )i j i k i j i j i k i kC X X E X Xμ μ⎡ ⎤⎡ ⎤ = − −⎣ ⎦ ⎣ ⎦s s s s s s , 2,j k S∀ ∈ ⊂s s R , 1, ,i p= …  

which, under the usual second-order stationary assumptions (constant mean and variance), 

collapses in a covariance function that only depends on the distance between outlets, h, 

being j k= −h s s . This new function shows the evolution of the correlation with distance: 
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[ ] 2( ) ( ) ( )i i i iC E X X μ= + −h s s h , 2, S∀ + ∈ ⊂s s h R , 1, ,i p= … . 

Nevertheless, due to the fact that in the intrinsically stationary random function 

case (when the first-order increments are second-order stationary) covariance cannot exist 

at the origin, the variogram is the most widely used tool to represent the structure of spatial 

correlation. It is defined by half of the variance of the increments: 

[ ]1( ) ( ) ( )
2i i iV X Xγ = + −h s h s , 2, S∀ + ∈ ⊂s s h R , 1, ,i p= …  

and leads to ( )21( ) ( ) ( )
2i i iE X Xγ ⎡ ⎤= + −⎣ ⎦h s h s in the intrinsically stationary random 

function case. Among other properties, the covariance function is a positive-definite 

function, whereas the variogram is a conditionally negative-definite function, both in order 

to assure that the variance of any linear combination of sample variables is non-negative 

(more details can be found in Wackernagel, 2003, p.35-40). Furthermore, if the variogram 

is bounded, it is not difficult to prove the relationship: 

( ) ( ) ( )i i iC Cγ = −h 0 h   

Fortunately, these two theoretical functions, covariance and the variogram, could 

be estimated from the available data (the prices of the good or service i collected in each 

outlet j, 1, ,j n= … ). 

The classic empirical variogram is computed using the estimator based on the 

method of moments proposed in Matheron (1962), through: 

( )
( ) 2*

1

1( ) ( ) ( )
2 ( )

N

i i j i j
i

X X
N

γ
=

= + −∑
h

h s h s
h

, 

where ( )i jX s  denotes the price of the good or service i in an outlet located at js  when the 

price of the same good is also available in another outlet sited at j +s h , and 

( )N h represents the number of pairs of outlets at distance h. 

Likewise, adapting the time series covariogram to the current context, Cressie and 

Glonek (1984) suggest estimating the covariogram by: 

( )( )
( )

*

1

1( ) ( ) ( ) ( ) ( )
( )

N

i i j i i j i
i

C X Med X X Med X
N =

= + − −∑
h

h s h s
h

 

where ( )iMed X  is the median of the set of observed prices { ( )i jx s }. 

This median-based covariogram estimator is preferable, due to its minor bias 

(Cressie and Glonek, 1984), to the straightforward and frequently used mean-based 

estimator (e.g. Genton and Gorsich, 2002): 
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( )( )
( )

*

1

1( ) ( ) ( )
( )

N

i i j i j
i

C X X X X
N =

= + − −∑
h

h s h s
h

 

where ( )
1

1 ( )
n

i i j
j

X Xn
=

= ∑ s . 

 In practice, however, there are seldom sufficient (if any) observations linked by 

each vector h and so the data must be grouped for each “approximate distance” h (using a 

certain tolerance) in order to reach a discrete (punctual) estimation of the variogram 

(covariogram). These punctual estimates help to identify the form of the spatial correlation 

function of the data and are used to estimate a valid theoretical variogram (covariogram) by 

fitting the empirical estimates to a proper theoretical function following the linear model of 

regionalisation.  

 Once the structure of spatial dependence is available, kriging is the best linear 

alternative, taking into account the spatial correlation that the prices show, to make 

inferences about the random field (including the area mean price). Kriging is a linear 

minimum mean squared error statistical procedure for spatial estimation that assigns 

different weights to each observation to construct estimates. The weights , 1, ,j j nλ = …  

are obtained by minimising the variance of the estimation error under the condition of 

unbiasedness. This estimator provides the best linear unbiased punctual estimate. In this 

sense, kriging estimates are more precise than any estimates obtained by any other linear 

estimator and have minimal variance in the Gaussian case. 

 

4. Weighting basic prices through kriging 

As defined by the BLS (2008), the CPI is “a measure of the average change over time in the 

prices paid by urban consumers for a market basket of consumer goods and services.” In 

general, a CPI sums up the evolution of the set of prices of goods and services purchased 

by the households of the population that resides in a particular area and is constructed 

using the prices of a sample of representative items drawn periodically at fixed points in 

time (m: month, t: year) from a set of outlets in the target area , 1, ,r r R= … . In the initial 

stage of CPI construction, basic indexes (or elemental aggregate simple indexes in 

European terminology) for each product i are estimated using the prices recorded in the 
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sample. It is at this stage when space should be explicitly taken into account to consider the 

information derived from it, as once one begins to aggregate basic indexes, the geo-

reference of the information becomes increasingly diffuse and unavailable. 

4.1. European Union case 

As stated in Table 1, the arithmetic mean of price relatives was considered inadequate by 

the Commission of the European Communities (European Communities, 1996, Annex II, 

p. 217) to compile elemental aggregate simple indexes. As alternatives, either the ratio of 

arithmetic mean prices or the ratio of geometric mean prices were proposed. Observing 

both expressions (see Table 1), it is easy to note that both are constructed as a quotient of 

means (either geometric or arithmetic) in which all the prices receive the same weight: 1
n . 

That is, they are constructed as if the set of drawn prices was a simple random sample of 

the price population, omitting the spatial dependence that exists among them. In this 

section, taking account the spatial autocorrelation of prices, we propose more accurate 

alternative estimators, within the same family. In particular, (i) the Ratio of Kriged Means is 

proposed as a substitute of the ratio of arithmetic mean prices and (ii) the so-called 

Geometric Weighted Mean Prices is suggested as an alternative to the ratio of geometric mean 

prices. 

4.1.1. Arithmetic Weighted Mean Prices: Ratio of Kriged Means  

It is a well-known fact that price indexes based on arithmetic averages perform worse, as a 

rule, than indexes based on geometric means and consequently warrant less interest. 

However, as they must be considered, we had decided to present them first because, out of 

all the statistics proposed to construct elementary indexes by EU and US CPI authorities, 

they are the easiest to adjust in order to incorporate spatial autocorrelation, thereby 

representing a good way to begin familiarising the reader with the topic. Indeed, in this case 

spatial dependence can be included in straightforward fashion by using the well-known (in 

geostatistics literature) kriging the mean statistic (e.g., Wackernagel, 2003). 

 In particular, given a particular area, let mt
in be the number of commercial 

establishments where prices of the good or service i have been collected and let p be the 

size of the set of consumer goods and services (elemental aggregates) drawn. Then, instead 

of using a quotient of arithmetic means, the proposal is to use, for each item i (with 

1, ,i p= … ), a quotient of spatial weighted arithmetic means mt
AW iP and ( 1)Dec t

AW iP − ⎯ 
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mt
AW iP  being the spatial weighted mean price of the elemental aggregate i in month m of 

year t, ( 1)Dec t
AW iP −  the same value in December of the previous year and p the size of the set 

of consumer goods and services (elemental aggregates) drawn⎯, where a generic mt
AW iP  is 

obtained from ( )mt
i jP s  using the kriged mean formula: 

1
( )

mt
in

mt mt
AW i j i j

j
P w P

=

= ∑ s ,  

with ( )mt
i jP s  denoting the price of the item i collected from the outlet at js  in month m of 

year t, { }, 1, , mt
j ij n=s …  representing the set of spatial locations where prices are collected, 

and the spatial weights, jw , being obtained after imposing the conditions of unbiasedness 

and minimum error variance on the estimator. 

Unbiasedness condition: Let mt
iμ be the expected value of the prices of the elementary 

aggregate i in month m of year t: ( )( )mt mt
i j iE P μ=s .Then, given that the expected value is 

supposed to be constant under second-order stationarity, it follows that the unbiasedness 

condition is equivalent to ( ) 0mt mt
AW i iE P μ− = , and hence: 

( ) ( )
1 1

1 1 1

( ) ( )

1

mt mt
i i

mt mt mt
i i i

n n
mt mt mt

AW i j i j j i j
j j

n n n
mt mt mt

j i i j i j
j j j

E P E w P w E P

w w wμ μ μ

= =

= = =

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠

= = = ⇔ =

∑ ∑

∑ ∑ ∑

s s
 

That is, from the unbiasedness condition it follows (i) that the set of weights, jw , 

of the proposed estimator must sum up to one and, furthermore, (ii) that any linear 

estimator with weights that sum up to one will be unbiased. The best, therefore, will be that 

which displays minimum variance. 

Minimum variance: The variance of the estimator can be expressed by: 

( ) ( ) ( )

( ) ( )

2
2 22

1

2

1 1

( )

( ) ( )

mt
i

mt mt
i i

n
mt mt mt mt mt

AW i AW i AW i j i j i
j

n n
mt mt mt

j k i j i k i
j k

V P E P E P E w P

w w E P P

μ

μ

=

= =

⎡ ⎤⎛ ⎞⎡ ⎤ ⎢ ⎥⎡ ⎤= − = − =⎜ ⎟⎣ ⎦⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎝ ⎠⎣ ⎦

= −

∑

∑∑

s

s s

, 
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or, equivalently, denoting the covariance function of the stochastic process mt
iP  by 

( ) ( )( ) ( )( )( ), ( ) ( ) ( ) ( ) ( )mt mt mt mt mt mt
i j i k i j i j i k i kC P P E P E P P E P⎡ ⎤= − ⋅ −⎣ ⎦s s s s s s , it follows that 

the expected value of the product of variables can be written in covariance terms as: 

( ) ( ) ( ) ( )2 2

1 1

( ), ( )
mt mt
i in n

mt mt mt mt mt
AW i j k i j i k i i

j k

V P w w C P P μ μ
= =

⎡ ⎤= + −⎢ ⎥⎣ ⎦∑∑ s s  

an expression that, taking into account that the weights sum up to one, simplifies to: 

( ) ( )
1 1

( ), ( )
mt mt
i in n

mt mt mt
AW i j k i j i k

j k

V P w w C P P
= =

=∑∑ s s  

Thus, in order to minimise the variance of the estimator under the condition of 

unbiasedness, we can define the following Lagrange function: 

( ) ( )
1 1 1

, ( ), ( ) 2 1
mt mt mt
i i in n n

mt mt
j j k i j i k j

j k j
L w w w C P P wϑ ϑ

= = =

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑s s , 1, , mt

ij n= … , 

which, after setting partial derivatives to zero, yields the following 1mt
in +  equation system: 

( )
1

1

( ), ( ) 0, 1, ,

1

mt
i

mt
i

n
mt mt mt

j i j i k i
k
n

j
j

w C P P j n

w

ϑ
=

=

⎧
− = =⎪⎪

⎨
⎪ =
⎪⎩

∑

∑

s s …
 

 This system can be easily expressed in matrix form through: ⋅ =C W A , with 

C , W  and A given respectively by:  

1 2 1 3 1

2 1 2 3 2

3 1 3 2 3

1 2 3

( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( ) 1
( ) ( ) ( ) ( ) 1

( ) ( ) ( ) ( ) 1
1 1 1 1 0

mt
i

mt
i

mt
i

mt mt mt
i i i

n

n

n

n n n

C C C C
C C C C
C C C C

C C C C

− − − −⎛ ⎞
⎜ ⎟− − − −
⎜ ⎟

− − − −⎜ ⎟=
⎜ ⎟
⎜ ⎟− − − −
⎜ ⎟
⎝ ⎠

0 s s s s s s
s s 0 s s s s
s s s s 0 s sC

s s s s s s 0

"
"
"

# # # % # #
"
"

, 

1

2

3

mt
in

w
w
w

w
ϑ

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

W #  and 

0
0
0

0
1

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

A # , 

where, to shorten the notation, ( )( ), ( )mt mt
i j i kC P Ps s  has been replaced by ( )j kC −s s . 

 Thus, provided that C  is invertible, it is easy to obtain the set of weights 

, 1, , mt
j iw j n= …  through 1−= ⋅W C A , and from them the best linear unbiased estimator 
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of the mean of the prices of item i in month m of year t and, subsequently, the desired ratio. 

Note that this solution is a generalisation of the EU expression. Indeed, it is not difficult to 

prove (e.g., Montero and Larraz, 2010) that in the case of spatial independence this process 

leads to the usual (non-weighted) arithmetic mean. 

Finally, standard errors of the estimators can be obtained through the Lagrange 

multiplier as: 

( ) ( ) ( )
1 1 1 1

1

( ), ( ) ( ), ( )
mt mt mt mt
i i i i

mt
i

n n n n
mt mt mt mt mt

AW i j k i j i k j k i j i k
j k j k

n

j
j

V P w w C P P w w C P P

w ϑ ϑ

= = = =

=

= = =

= =

∑∑ ∑ ∑

∑

s s s s
 

4.1.2. Geometric Weighted Mean Prices 

Proceeding in similar fashion to when we generalized the ratio of the arithmetic mean 

statistic, the spatial-based estimator suggested for the geometric price index of an 

elementary aggregate is in this case defined straightforwardly by: 

( 1) ( 1)

mt
mt GW i

Dec t i Dec t
GW i

PI
P− −= , 1, ,i p∀ = …  

where mt
GW iP  denotes the spatially weighted geometric mean price of the elemental 

aggregate i in month m of year t and ( 1)Dec t
GW iP −  the corresponding value of December of 

the previous year, and a generic mt
GW iP  obtained through the expression: 

( ) ( )1

1 1

( ) ( )

mtni mt mt
i ij j j

j

n n wmt mt mt
GW i i j i j

j j

P P P
ω ω

=

= =

∑
= =∏ ∏s s , where 

1

mt
i

j
j n

j
j

w
ω

ω
=

=

∑
 

Compared to the previous case, however, it is a bit more complicated to obtain the 

spatial weights, jw , that characterise the proposed geometric mean of the elementary 

aggregates. In this case, based on the (approximate) relationship ( ) ( )( ) ( )E Ln X Ln E X≈ , 

the spatial weights are obtained by linearising the estimator through a natural logarithm 

(which maps multiplication into addition) before imposing the minimum mean squared 

error condition. That is, the weights are those associated to the best spatial linear unbiased 

estimator of the log-transformed prices. Indeed, taking logs in mt
GW iP , we obtain: 
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( )
1 1

1

1 ( ) ( )
mt mt
i i

mt
i

n n
mt mt mt mt

w i GW i j i j j i jn
j j

j
j

Y Ln P LnP w LnPω
ω = =

=

= = =∑ ∑
∑

s s , 

that defining ( ) ( )mt mt
i j i jY LnP=s s  collapses in an expression of the same type as that 

addressed in the previous section. In particular, mt
iη  representing the expected value of the 

natural logarithm of the prices of the elementary aggregate i in month m of year t: 

( )( )mt mt
i j iE Y η=s , which is supposed to be constant under second-order stationarity, the 

condition of unbiasedness once again leads to: 

( ) ( )
1 1

1 1 1

( ) ( )

1

mt mt
i i

mt mt mt
i i i

n n
mt mt mt

w i j i j j i j
j j

n n n
mt mt mt

j i i j i j
j j j

E Y E w Y w E Y

w w wη η η

= =

= = =

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠

= = = ⇔ =

∑ ∑

∑ ∑ ∑

s s
 

And, in the same way as before, denoting the covariance function of the log-

transformed stochastic process mt
iY  with 

( ) ( )( ) ( )( )( ), ( ) ( ) ( ) ( ) ( )mt mt mt mt mt mt
i j i k i j i j i k i kC Y Y E Y E Y Y E Y⎡ ⎤= − ⋅ −⎣ ⎦s s s s s s , we have that 

the variance of mt
w iY could be expressed by: 

( ) ( ) ( ) ( )2 2

1 1
( ), ( )

mt mt
i in n

mt mt mt mt mt
w i j k i j i k i i

j k
V Y w w C Y Y η η

= =

⎡ ⎤= + −⎢ ⎥⎣ ⎦∑∑ s s , 

which, considering that the weights must sum up to one, simplifies to: 

( ) ( )
1 1

( ), ( )
mt mt
i in n

mt mt mt
w i j k i j i k

j k

V Y w w C Y Y
= =

= ∑∑ s s  

Thus, defining the corresponding Lagrange function by: 

( ) ( )
1 1 1

, ( ), ( ) 2 1
mt mt mt
i i in n n

mt mt
j j k i j i k j

j k j

L W w w C Y Y wϑ ϑ
= = =

⎛ ⎞
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
∑∑ ∑s s , 1, , mt

ij n= …   

and setting partial derivatives to zero (in order to minimise estimator variance), the 

following equation system is obtained: 

( )
1

1

( ), ( ) 0, 1, ,

1

mt
i

mt
i

n
mt mt mt

j i j i k i
k
n

j
j

w C Y Y j n

w

ϑ
=

=

⎧
− = =⎪⎪

⎨
⎪ =
⎪⎩

∑

∑

s s …
, 

and from it, the weights , 1, , mt
j iw j n= … . 
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 Once the weights have been obtained, the log-transformed estimator can be 

computed and, taking antilogarithms, the desired spatial weighted geometric 

mean:
mt

w iYmt
GW iP e= . We should note again that the proposed estimator is a generalisation 

of the EU ratio of non-weighted geometric means. If prices were spatially independent they 

would both coincide. 

Finally, using the fact that the variance of mt
w iY is the Lagrange multiplier: 

( ) ( ) ( )
1 1 1 1

1

( ), ( ) ( ), ( )
mt mt mt mt
i i i i

mt
i

n n n n
mt mt mt mt mt

w i j k i j i k j k i j i k
j k j k

n

j
j

V Y w w C Y Y w w C Y Y

w ϑ ϑ

= = = =

=

= = =

= =

∑∑ ∑ ∑

∑

s s s s
 

and a well-know result of the variance of the natural logarithm of a random variable X , 

( ) ( ) 2
( ) ( )V Ln X E X V X

−
≈ ⎡ ⎤⎣ ⎦ , it follows that: 

( )
22 ( ) 2( )

mt mt
w i iE Ymt mt

GW i GW iV P E P e e ηϑ ϑ ϑ⎡ ⎤⎡ ⎤≈ ≈ =⎣ ⎦ ⎣ ⎦ ,  

from which it is straightforward to obtain an estimator for the variance of the spatial 

weighted geometric mean by replacing the unknown parameter mt
iη  with its best available 

estimator mt
w iY . 

4.2. United States case 

As mentioned in subsection 2.2., since January 1999 the BLS has implemented two 

different statistics to calculate its basic indexes: a geometric weighted mean of price ratios 

and a modified Laspeyres index number formula. The geometric mean formula is, 

nevertheless, recommended ahead of the Laspeyres formula and is broadly used in all item 

strata. In fact, the expression of the expenditure-share-weighted geometric 

average, [ ], ; 1
G

a i t tR − , is applied, except for some selected items (some shelter services, some 

utilities and government charges and some medical services), for most of all usable quotes 

in each of the 8,018 area-item combination a,i.  

As in the EU case, alternative formulae, which take into account the information 

provided by the spatial coordinates of the stores where prices are collected, are proposed in 

this section. In particular, the New Spatial-Expenditure Weighted Geometric Average is suggested 

as a substitute for the US geometric formula and the New Spatial-Expenditure Weighted 

Arithmetic Average is provided as an option instead of the Laspeyres expression. 
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4.2.1. New Spatial-Expenditure Weighted Geometric Average 

Adapting the notation introduced previously to the US BLS case, let us assume that the 

price relative measuring the short-term price change between any two consecutive (either 

monthly or bimonthly) periods (t -1, t) of an item j of item-strata i can be built in each 

outlet drawn in an area a: 

,
, 1

, 1

( )
( )

( )
j t jt

j t j
j t j

P
I

P−
−

=
s

s
s

, for ,1, , a ij n= … , 

where , 1( )t
j t jI − s  represents the price relative of item j in an outlet located at  js  in area a, 

, ( )j t jP s  the price of the jth observed item in month t in outlet js , , 1( )j t jP − s  the price of 

the same item in period t -1 and ,a in denotes the number of items observed for area-item 

combination a,i.  

In order to construct basic indexes, the current US methodology already weights 

these price relatives, , 1( )t
j t jI − s , albeit using only the proportion of estimated expenditures 

of the item, , ,
,

/j POPS k POPS
k a i

W W
∈
∑ , as weights in the POPS of the corresponding sampling 

period (BLS, 2008). That is, in order to construct basic indexes, the BLS takes into account 

expenditure structure but omits the spatial correlation of price relatives. 

Fortunately, however, without breaking away from the current methodology, the 

basic indexes can also be spatially weighted using, after some algebra, an approach similar 

to that followed in subsection 4.1.2. In particular, given that 

( ) ( ), , , ,,
,,,

( / )

, 1 , 1
, ,

( ) ( )j POPS a i j POPS k POPSk POPS
k a ia ik a i

W n W WW t tn
j t j j t j

j a i j a i

I I ∈∈ − −
∈ ∈

∑∑ =∏ ∏s s  and the fact that the 

expected value of , , ,
,

( / )a i j POPS k POPS
k a i

n W W
∈
∑  tends to one as ,a in  tends to infinity, it would 

not be difficult to observe the expression of [ ], , 1
G

a i t tR −  as a (un-weighted) geometric mean of 

the “weighted” price relatives, ( ) , , ,
,

( / )

, 1( ) a i j POPS k POPS
k a i

n W Wt
j t jI ∈−

∑s , and therefore making it 

possible to use the procedures in the previous subsection. 

Thus, in order to introduce the spatial structure of the stochastic process of price 

relatives into the expenditure-share-weighted geometric average statistic, we propose 

defining the new spatial-expenditure weighted geometric mean by  
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[ ] ( ) ( ), , , , , ,
, , ,

( / ) ( / )

, , , 1 , 1, 1
, ,

( ) ( )
j j

j a i j POPS k POPS a i j POPS k POPS
j a i k a i k a i

n W W n W WG t t
w a i j t j j t jt t

j a i j a i

R I I
λ ρλ

∈ ∈ ∈− −−
∈ ∈

∑ ∑ ∑⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦∏ ∏s s  

with the spatial weights,

,

j
j

j
j a i

λ
ρ

λ
∈

=
∑

, being obtained by imposing the conditions of 

unbiasedness and  minimum variance on the log-transformation of the “weighted” price 

relatives. These weights, combined with the expenditure weights, 

, , ,
,

( / )j a i j POPS k POPS
k a i

n W Wρ
∈
∑ , make it possible to weight price relatives taking into account 

both the spatial dependence and POPS expenditure structure of drawn items. 

Repeating the steps followed previously, it is straightforward to obtain the spatial 

weights. First, taking natural logarithms, the estimator is linearised yielding: 

   [ ] [ ]( ) ( ) , , ,
,

( / )

, , , , , 1 , 1, 1 , 1
, ,

( ) ( )a i j POPS k POPS
k a i

n W WG G t t
w a i w a i j j t j j j t jt t t t

j a i j a i
Y Ln R Ln I Yρ ρ∈− −− −

∈ ∈

∑⎛ ⎞= = =⎜ ⎟
⎝ ⎠∑ ∑s s , 

with ( ) , , ,
,

( / )

, 1 , 1( ) ( ) a i j POPS k POPS
k a i

n W Wt t
j t j j t jY Ln I ∈− −

∑⎛ ⎞= ⎜ ⎟
⎝ ⎠

s s . 

 Second, the condition of unbiasedness yields 
,

1j
j a i

ρ
∈

=∑ . 

Third, imposing the minimum error variance condition leads to the Lagrange 

Function ( ) ( ), 1 , 1
, , ,

, ( ), ( ) 2 1t t
j j j k j t j k t k j

j a i k a i j a i
L C Y Yρ ϑ ρ ρ ϑ ρ− −

∈ ∈ ∈

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∑ ∑ ∑s s , which after 

deriving and setting to zero produces the system: 

( ), 1 , 1
,

,

( ), ( ) 0, ,

1

t t
k j t j k t k

k a i

j
j a i

C Y Y j a iρ ϑ

ρ

− −
∈

∈

⎧ − = ∈
⎪
⎨ =⎪⎩

∑
∑

s s
,  

Fourth, solving the system the jρ spatial weights are obtained and from them the 

linear estimator [ ], , , 1
G

w a i t tR −  is computed. Finally, replacing , , [ ; 1]( )G
w a i t tE Y −  by [ ], , , 1

G
w a i t tR −  in 
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[ ]( ) [ ] [ ]( ) [ ], , ; 1
22 ( )

, , , , , ,; 1 ; 1 ; 1( )
G

w a i t tE YG G G
w a i w a i w a it t t t t tV R E R V Y e ϑ−

− − −
⎡ ⎤⎡ ⎤≈ =⎣ ⎦ ⎢ ⎥⎣ ⎦

, an estimate for the 

variance of the new spatial-expenditure weighted geometric mean is obtained. 

4.2.2. New Spatial-Expenditure Weighted Arithmetic Mean 

The modified Laspeyres index number formula shown in Table 2 is currently used to 

estimate basic indexes in 13 item-strata ⎯rent of primary residence; owners’ equivalent 

rent of primary residence; housing at school, excluding board; electricity; residential water 

and sewerage maintenance; landline telephone services, local charges; utility (piped) gas 

service; State and local registration, license, and motor vehicle property tax; physicians’ 

services; hospital services; dental services; services by other medical professionals; and 

nursing homes and adult daycare (BLS, 2008, Table 4)⎯ which represent around 39% of 

total consumer spending. This section proposes to modify this Laspeyres formula, which is 

a base-period-quantity-weighted arithmetic average, using the new Spatial-Expenditure 

Weighted Arithmetic Mean, which accounts for the spatial autocorrelation of price 

relatives. 

Expressing the Laspeyres formula of Table 2 in terms of price relatives: 

   [ ]

( )
( )

( )

( )

,
, , , 1, , , , 1

,, , 1 ,
, ; 1

, , , 1 , , , 1
,, ,

//

/ /

j t t
j POPS j POPS j tj POPS j POPS j t j t j

j a ij a i j t j a iL
a i t t

jj POPS j POPS j t j POPS j POPS j t
j a ij a i j a i

P
W P PW P P I w

P
R

wW P P W P P

− −
∈∈ − ∈

−
− −

∈∈ ∈

= = =
∑∑ ∑

∑∑ ∑
, 

with weights ,
, 1

,

j POPS
j j t

j POPS

W
w P

P −=  quote depending; it is not difficult to write it as a “non-

weighted” arithmetic mean: 

[ ], , 1 ,; 1
,,

,

1 jL t
a i j t a it t

j a ia i j
j a i

w
R I n

n w−−
∈

∈

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
 

which using the notation introduced in subsection 4.2.1 could be represented by: 

[ ], , 1 ,; 1
,,

,

1 ( ) jL t
a i j t j a it t

j a ia i j
j a i

w
R I n

n w−−
∈

∈

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑
s  
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 Thus, in the same line as before, the proposal to incorporate  spatial auto 

correlation into the new spatial-expenditure weighted arithmetic mean would lead this time 

to the statistic: 

[ ]
, ,

, , , 1 , 1; 1
, ,

, , ,

1 ( ) ( )a i j a i jL t t
w a i j j t j j j t jt t

j a i j a ij j j
j a i j a i j a i

n w n w
R I I

w w
λ ρ

λ − −−
∈ ∈

∈ ∈ ∈

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑∑ ∑ ∑
s s , 

with the spatial weights, 

,

j
j

j
j a i

λ
ρ

λ
∈

=
∑

, obtained (imposing again the conditions of 

unbiasedness and minimum error variance) using the spatial process defined by 

,
, 1 , 1

,

( ) ( )a i jt t
j t j j t j

j
j a i

n w
Y I

w− −

∈

=
∑

s s and the variance of the estimator coinciding this time with the 

Lagrange multiplier of the corresponding Lagrange function. 

 

5. Conclusions and Final Remarks 

Inflation (deflation) is a topic of great concern to economic authorities and citizens in 

developed countries, where almost every macro and microeconomic decision is markedly 

affected by it. It is therefore vitally important for inflation measures to be as accurate and 

up-to-date as possible. This explains why Consumer Price Indexes, the tools used to 

measure inflation, have been repeatedly modified over the years in an attempt to improve 

them. Despite frequent modifications, however, the spatial dimension of the data collected 

to elaborate them has been only superficially exploited. Although the weights used to 

aggregate basic indexes usually depend on the region (or area), the fact of the matter is that 

the spatial dependence shown by elementary prices has not as yet been taken into account 

in CPI construction, despite the prices drawn from stores closer together tending to be 

more similar than prices collected in stores that are further apart, as is the case with many 

other socioeconomic variables. In order to correct this situation, this paper proposes to 

explicitly consider the geographical coordinates where items are collected and to use the 

structure of the spatial correlation of prices to weight price relatives in the construction of 

basic indexes. This will only entail a slight modification of the way the survey is conducted, 

retaining the locations of the stores where prices are collected and adapting the formulae of 

the indexes currently in use accordingly. In particular, this paper shows how EU elementary 
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aggregate and US basic index formulae could be appropriately altered to include the spatial 

dependence of prices. 

Firstly, in order to familiarize readers with the terminology used in price index 

construction, EU and US CPI methodologies are succinctly analyzed. In both cases, the 

paper focuses on the most detailed level of stratification: the elementary aggregate indexes 

in European terminology, within which reliable expenditure information is not available for 

weighting purposes, and basic indexes, in American terminology, where weights are equal 

to expenditures on the items in their sampling periods. Secondly, geostatistical notation is 

adapted to CPI theory and we show how the structure of the spatial dependence of prices 

could be estimated using a covariogram or variogram function. Finally, we propose 

weighting elementary prices in CPI construction using kriging methodology. In each of the 

cases, the information provided by the location of the stores where sample prices have 

been collected is considered at the very beginning of CPI elaboration, before aggregation. 

In the European Union framework, two spatial alternatives have been developed: 

the Ratio of Kriged Means and the Geometric Weighted Mean Prices. Both of them provide the 

best estimator of price indexes of elementary aggregates in the presence of spatially 

autocorrelated prices for each of the formulae allowed in European regulations, both being 

unbiased and with minimum variance. In the US framework, the BLS uses a geometric 

formula in all item strata except for some selected items, which still use a Laspeyres 

formula average, both being expenditure-weighted means. In order to incorporate the 

information from the spatial location of the outlets where prices have been collected, 

thereby improving the weighted geometric and arithmetic means currently in use, this 

paper suggests a New Spatial-Expenditure Weighted Geometric Average and a New Spatial-

Expenditure Weighted Arithmetic Average for each area-item combination. In all cases, in the 

presence of spatial independence, the proposed weighted statistics reduce to the estimators 

recommended in either the European Commission or the BLS technical documents. The 

proposals could be therefore observed as more accurate generalizations of the CPIs 

currently in use. 
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