
Incorporating Geospatial Data into House Price
Indexes: A Hedonic Imputation Approach with

Splines

Robert J. Hill and Michael Scholz
Department of Economics

University of Graz
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Abstract:

We estimate a hedonic model of the housing market that includes a spline surface

defined on geospatial data (i.e., the longitudes and latitudes of individual dwellings).

House price indexes are then obtained by imputing prices for individual dwellings from

the hedonic model and then inserting them into the Fisher price index formula. Using

data for Sydney, Australia we compare the performance of four models: (i) generalized

additive model (GAM) with a geospatial spline, (ii) GAM with postcode dummies,

(iii) semilog with geospatial spline, (iv) semilog with postcode dummies. Our results

clearly confirm the superiority of geospatial-splines, both in terms of the deviation

between actual and imputed prices and in the case of repeat-sales between actual and

imputed price relatives. Furthermore, the use of geospatial splines significantly affects

the resulting house price indexes. The cumulative increase in our Fisher price indexes

is between 15 and 25 percent higher (depending on the functional form) over the 2001

to 2011 period when a geospatial spline is used. This difference can be attributed to

the failure of postcode dummies to fully adjust for omitted locational characteristics.
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1 Introduction

Every house is different both in terms of its physical characteristics and its location. It is

important that house price indexes take account of these quality differences. Otherwise

the price index will confound price changes and quality differences.

Hedonic methods which express house prices as a function of a vector of characteris-

tics are potentially useful for this purpose. In recent years, the increased availability of

housing data and improvements in computing power have together led to a surge in the

number of providers of hedonic house price indexes around the world (see Hill 2013).

Most hedonic indexes at present adjust for location using postcode dummy variables.

The increased availability of geospatial data (i.e., longitudes and latitudes), however,

means that a more sophisticated approach is possible. Geospatial data have thus far

been largely ignored for two reasons. First, the use of geospatial data clearly complicates

the index computation process. Second, most existing hedonic indexes use the average-

characteristics method, which defines an average house and then measures how the

price of this hypothetical average house changes over time. While it may be meaningful

to average the physical characteristics of the houses (such as land area and number of

bedrooms), it makes no sense to average their longitudes and latitudes. In other words,

the inclusion of geospatial data will require a shift away from average-characteristics

methods.

The two main alternatives to the average-characteristics method are the time-dummy

and imputation methods. Time-dummy methods include a dummy variable for each

period. The price index for that period is then obtained directly from the estimated

coefficient on the dummy variables (the coefficient must be exponentiated when the

semilog model is used). By contrast, imputation methods use the hedonic model to

impute a price for each individual house. These imputed prices can then be fed into a

standard price index formula.

One way of including geospatial data in a hedonic model is through a spatial-

autoregressive specification. The spatial dependence is captured through a distance

weights matrix that is itself derived from the geospatial data. However, the focus of

these papers is typically on the estimation of a hedonic model for a single period rather

than the computation of hedonic price indexes.

There are a few examples where spatial-autoregressive models have been combined
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with time-dummy methods. In our opinion, however, this is not the best way of using

geospatial data. The main problem with spatial-autoregressive models is that they

impose a lot of prior structure (that may not be valid) on the spatial dependence of

house prices.

A more flexible way of incorporating geospatial data is to include it as a nonparamet-

ric surface such as a spline in the hedonic model, and then compute the price indexes

using an imputations method. This is the approach we follow here. We implement this

approach in two different ways. First, we combine a geospatial spline with a generalized

additive model (GAM) defined on the physical characteristics. Second, we combine a

geospatial spline with a semilog model on the physical characteristics. We then compare

these two models with equivalent GAM and semilog models that use postcode dummies

instead of geospatial splines.

Applying our methods to data for Sydney, Australia covering the period 2001 to

2011, our results clearly confirm the superiority of geospatial-splines, both in terms of

the deviation between actual and imputed prices and in the case of repeat-sales between

actual and imputed price relatives.

An interesting feature of our data set is that all our hedonic indexes rise faster than

simple median or mean indexes. This indicates that the average quality of houses sold

deteriorates during our sample period. Furthermore, we find that our indexes that use

geospatial data rise faster than our indexes that use postcode dummies. This is because

part of this quality shift is from better to worse locations, and this shift can be discerned

even within postcodes. A hedonic index that uses postcode dummies therefore fails to

fully quality adjust for this shift. In the case of Sydney, as a result of the underlying

dynamics in the market, this failure to fully quality adjust causes a downward bias in the

price index (by between 15 and 30 percent over 11 years depending on the functional

form used). Turning this result around, our results also imply that house prices in

Sydney have risen rather more more than previously realized over this period.

The remainder of this paper is structured as follows. Section 2 provides an overview

of the hedonic price index literature. Section 3 discusses ways of incorporating location

into a hedonic house price index. Section 4 presents our data set and hedonic models,

compares the performance of these models, and then derives the resulting hedonic price

indexes. Section 5 concludes the paper.
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2 Hedonic Price Indexes for Housing

2.1 An overview

A hedonic model regresses the price of a product on a vector of characteristics (whose

prices are not independently observed). The hedonic equation is a reduced form equa-

tion that is determined by the interaction of supply and demand. One use of hedonic

models is for constructing quality-adjusted price indexes. The majority of research

in this field has focused on products subject to rapid technological change, such as

computers (see e.g., Dulberger, 1989, and Berndt et al., 1995).

Hedonic methods can also be used to construct quality-adjusted price indexes for

differentiated products. Housing is an extreme case of a differentiated product in the

sense that every house is different. One can distinguish between a house’s physical and

locational attributes. Examples of the former include the number of bedrooms and land

area, while examples of the latter include the exact longitude and latitude of a house,

and the distance to local amenities such as a shopping center, park or school.

The hedonic approach can be implemented in three main ways (see Hill 2013). We

briefly discuss each of these below.

2.2 Time-dummy methods

The time-dummy method is the original hedonic method. It typically uses the semi-log

functional form – see Diewert (2003) and Malpezzi (2003) for a discussion of some of

the advantages of the semi-log model in this context. A standard semi-log formulation

is as follows:

y = Zβ +Dδ + ε, (1)

where y is an H × 1 vector with elements yh = ln ph, Z is an H × C matrix of charac-

teristics (some of which may be dummy variables), β is a C × 1 vector of characteristic

shadow prices, D is an H× (T −1) matrix of period dummy variables, δ is a (T −1)×1

vector of period prices (with the base period price index normalized to 1), and ε is

an H × 1 vector of random errors. Finally, H, C − 1 and T denote respectively the

number of dwelling, characteristics and time periods in the data set. The first column

in Z consists of ones, and hence the first element of β is an intercept. It is possible

also to include functions of characteristics (for example land size entering the model as

3



a quadratic function), and interaction terms between characteristics.

When the objective of the exercise is to construct a quality-adjusted price index, the

primary interest lies in the δ parameters which measure the period-specific fixed effects

on the logarithms of the price level after controlling for the effects of the differences in

the attributes of the dwellings. One attraction of the semi-log time-dummy model is

that the price index Pt for period t is derived by simply exponentiating the estimated

coefficient δ̂t obtained from the hedonic model:1

P̂t = exp(δ̂t). (2)

Although it is the original hedonic method and is widely used in other contexts, the

time-dummy method has received little attention in a housing context. This is perhaps

due its lack of flexibility, in that the shadow prices cannot evolve over time and because

each time a new period is added to the data set all the results need to be recomputed. A

more flexible version of the method only compares adjacent periods. A longer time series

is then obtained by chaining these bilateral comparisons together. The adjacent period

(AP) version of the method is used by RPData-Rismark in Australia and Informations

und Ausbildungszentrum für Immobilien in Switzerland.

2.3 Imputation methods

The hedonic imputation approach estimates a separate hedonic model for each period or

a few adjacent periods.2 The hedonic model is then used to impute prices for individual

dwellings. For example, let p̂t+1,h(zt,h) denote the imputed price in period t + 1 of a

dwelling sold in period t. This price is imputed by substituting the characteristics of

dwelling h sold in period t into the estimated hedonic model of period t+ 1 as follows:

p̂t+1,h(zt,h) = exp

(
C∑
c=1

β̂c,t+1zc,t,h

)
. (3)

1While P̂t is a biased estimator of Pt, Hill, Melser and Syed (2009) show that at least for the Sydney

data set used here the bias is so small it can be ignored.
2The appropriate time horizon for each model depends partly on the size of the data set. For

example, for our Sydney data, there are enough data to estimate the model separately for each year.

However, even when the focus is on quarterly indexes, we would not recommend estimating the model

separately for each quarter. We recommend estimating the model on an annual basis and including

quarterly dummy variables.
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These imputed price indexes can then be inserted into standard price index formulas.

We will refer to a formula that focuses on the dwellings that sold in the earlier period

t as Laspeyres-type, and a formula that focuses on the dwellings that sold in the later

period t+1 as Paasche-type. Our price indexes are constructed by taking the geometric

mean of the price relatives, giving equal weight to each dwelling.3 Taking a geometric

mean of Laspeyres and Paasche type indexes, we obtain a Fisher-type index that has

the advantage that it treats both periods symmetrically.

In a hedonic setting a further complication is that while the counterfactual prices

(i.e., the prices in period t + 1 for Laspeyres and in period t for Paasche) must be

imputed, we have a choice whether or not to impute prices in period t for Laspeyres

and in period t+ 1 for Paasche. A single imputation Laspeyres or Paasche price index

imputes in only one period, while a double imputation index imputes in both periods

(see Silver and Heravi 2001, Pakes 2003, de Haan 2004, and Hill and Melser 2008).

The price index between periods t and t+ 1 is calculated as follows:

Paasche Single Imputation : P PSI
t,t+1 =

Ht+1∏
h=1

( pt+1,h

p̂t,h(zt+1,h)

)1/Ht+1


Laspeyres Single Imputation : PLSI
t,t+1 =

Ht∏
h=1

( p̂t+1,h(zt,h)

pt,h

)1/Ht


Fisher Single Imputation : P FSI
t,t+1 =

√
P PSI
t,t+1 × PLSI

t,t+1

(4)

=

√√√√√Ht+1∏
h=1

( pt+1,h

p̂t,h(zt+1,h)

)1/Ht+1
× Ht∏

h=1

( p̂t+1,h(zt,h)

pt,h

)1/Ht


Paasche Double Imputation : P PDI
st =

Ht+1∏
h=1

( p̂t+1,h(zt+1,h)

p̂sh(zt+1,h)

)1/Ht+1


Laspeyres Double Imputation : PLDI
st =

Ht∏
h=1

( p̂t+1,h(zt,h)

p̂t,h(zt,h)

)1/Ht


Fisher Double Imputation : P FDI
t,t+1 =

√
P PDI
t,t+1 × PLDI

t,t+1

(5)

=

√√√√√Ht+1∏
h=1

( p̂t+1,h(zt+1,h)

p̂t,h(zt+1,h

)1/Ht+1
× Ht∏

h=1

( p̂t+1,h(zt,h)

p̂t,h(zt,h)

)1/Ht


3This democratic weighting structure is in our opinion more appropriate in a housing context than

weighting each dwelling by its expenditure share.
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Imputation methods require reasonably large data sets. However, this is becoming

less of a constraint than it used to be, given the large increase in data availability.

Imputation methods are flexible in that they allow the characteristic shadow prices

to evolve over time. Even so they have not been used much. This may be because

they are conceptually more complicated than time-dummy and average-characteristics

methods. The only index providers to use an imputation method as far as we are aware

are the FNC Residential Price Index in the US and RPData-Rismark in Australia.

The FNC index described in Dorsey et al. (2010) uses the double imputation Laspeyres

formula in the context of a SASAR(1,1) model (see section 3.3), while RPData-Rismark

use a nonparametric method (see Hardman 2011 - although not enough information is

provided to know how the method works).

2.4 Average-characteristics methods

Average-characteristics methods, like imputation methods, generally estimate the hedo-

nic model separately for each period. They also use standard price index formulas. The

key difference is that an average-characteristics price index is defined in characteristics

space. Average-characteristics methods typically construct an average dwelling for each

period, and then impute the price of this hypothetical dwelling (which for example may

have two and a half bedrooms) as a function of its characteristics using the shadow

prices derived from the hedonic model. A price index is obtained by taking the ratio of

the imputed price of the same average dwelling in two different periods. By construction

the average-characteristics method uses double imputation since the average dwelling

is hypothetical rather than an actual dwelling.

Taking the semi-log hedonic model as our point of reference, a price index between

periods s and t can be calculated using the average dwelling from either period (see

Dulberger 1989 and Diewert 2001). In this way we obtain Laspeyres, Paasche and

Fisher-type indexes.

Laspeyres : PL
t,t+1 = p̂t+1(z̄t)/p̂t(z̄t) = exp

[
C∑
c=1

(β̂c,t+1 − β̂c,t)z̄c,t

]
,

Paasche : P P
t,t+1 = p̂t+1(z̄t+1)/p̂t(z̄t+1) = exp

[
C∑
c=1

(β̂c,t+1 − β̂c,t)z̄c,t+1

]
,

Fisher : P F
t,t+1 =

√
PL
t,t+1 × P P

t,t+1 = exp

[
1

2

C∑
c=1

(β̂c,t+1 − β̂c,t)(z̄c,t + z̄c,t+1)

]
, (6)
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where z̄c,t =
1

Ht

Ht∑
h=1

zc,t,h and z̄c,t+1 =
1

Ht+1

Ht+1∑
h=1

zc,t+1,h.

The main strength of the average-characteristics method is its intuitive interpretation

as measuring the change in the price of the average dwelling over time. Its biggest

weakness is that it cannot easily be extended to incorporate geospatial data. We return

to this issue in the next section.

The average-characteristics method in its various guises has proved to be by far the

most popular for computing hedonic house price indexes. The New House Price Index

computed by the Census Bureau in the US, the Halifax and Nationwide indexes in the

UK, and the permanent tsb index in Ireland are calculated using the Laspeyres version

of the characteristics method with a semi-log functional form for the hedonic equation

(see US Census Bureau undated, and Fleming and Nellis 1985). Statistics Finland uses

an implicit Paasche price index (see Saarnio 2006) to compute house price indices for

Finland. Statistics Norway uses the same method as Statistics Finland except that it

calculates its hedonic model using the previous five years of data and chains the index

on an annual basis (see Thomassen 2007). Statistics Sweden also uses a variant on an

implicit Laspeyres price index (see Ribe 2009), although the exact details of the method

are not provided. Closely related to these Nordic methods is the Conseil Supérieur du

Notariat (CSN) and INSEE method used to compute hedonic indexes for regions in

France (see Gouriéroux and Laferrère 2009).

3 Methods for Incorporating Location into House

Price Indexes

3.1 Postcode dummy variables

One of the key determinants of house prices is location. The explanatory power of the

hedonic model can therefore be significantly improved by exploiting information on the

location of each property. Probably the simplest way to do this is to include postcode

identifiers for each dwelling in the hedonic model. Hill, Melser and Syed (2009) find

that the inclusion of postcode dummy variables increases their R-squared coefficients

from about 0.56 to 0.76. Postcode dummies can be used in combination with any of

the time-dummy, imputation, and average-characteristics methods.
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3.2 Distances to amenities

Given the availability of geospatial data, the distance of each dwelling to landmarks

such as the city center, airport, nearest train station, or nearest beach can be mea-

sured. These distances (or some function of them) can then be included as additional

characteristics in the time-dummy or imputation versions of the hedonic model (see for

example Hill and Melser 2008). Such an approach, however, does not work with the

characteristics method. Averaging longitudes and latitudes throws away the underlying

spatial dependence. Also, the average geospatial location may anyway not make much

sense. For example, in the case of a city like Sydney built round a natural harbor it

may be underwater!

Using distances to amenities as characteristics is problematic even for the time-

dummy and imputation methods for a few reasons. First, it makes only limited use

of the available geospatial data, and hence throws away a lot of potentially useful

information. Second, direction (i.e, north, south, east or west) matters as well as

distance. For example, in the case of an airport, a house’s position relative to the flight

path is at least as important as the actual distance from the airport. Third, the impact

of distance from an amenity on the price of a house may be quite complicated and not

necessarily monotonic. For example, one may want to live not too close and not too far

from the city center, airport, etc.

3.3 Spatial-autoregressive models

The inclusion of postcode dummies or distance-to-amenities characteristics will only

partially capture the effect of locational omitted variables. Locational effects can be

captured more effectively by a spatial autoregressive model. For example, the (first-

order) autoregressive spatial model with (first-order) autoregressive errors, referred to

henceforth as the SARAR(1,1) model, has been widely used for this purpose (see for

example Anselin 1988 and Corrado and Fingleton 2011).

y = ρSy +Xβ + u,

u = λMu+ ε,

where y is the vector of log prices, (i.e., each element yh = ln ph), and S and M are

spatial weights matrix that are calculated from the geospatial data. Often S and M
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are the same.

A simplified version of the SARAR(1,1) model where λ is set to zero (typically

referred to as the spatial lag model) is used in the construction of the FNC Residential

Price Index (see Dorsey et al. 2010), and by Ord (1975), Can and Megbolugbe (1997),

and Kim, Phipps and Anselin (2003), and others. It can be rationalized by buyers and

sellers treating the price at which nearby dwellings sell as a signal of value. Alternatively,

sometimes ρ is set to zero. LeSage and Pace (2009) provide an externality motivation

for this version of the model (typically referred to as the spatial error model) where the

quality of nearby dwellings directly influences the price of a particular dwelling. This

version of the SAR model is used for example by Cliff and Ord (1973), Pace and Gilley

(1997), Bell and Bockstael (2000), and Hill, Melser and Syed (2009).

Methods used to estimate the β vector and ρ and λ scalars of the SARAR(1,1)

model include maximum likelihood (see Anselin 1988, and Pace and Barry 1997), two-

stage-least squares (2SLS) (see Anselin 1988, Kelejian and Prucha 1998 and Lee 2003),

and generalized method of moments (GMM) (see Lee 2007, Kelejian and Prucha 2010,

and Liu, Lee and Bollinger 2010). 2SLS and GMM estimators, while generally less

efficient than ML, have the advantage of relying on weaker assumptions and being

computationally simpler (see Lee 2007).

Most of this literature, however, is concerned with the estimation of a hedonic model

at a point in time rather than the construction of house price indexes. In principle, such

indexes can be easily obtained by simply including quarter or year dummies in the X

characteristics matrix, and then by exponentiating the estimated parameters on these

dummy variables. The problem is that when the model is estimated over a number

of years of data the spatial weights matrix S should be replaced by a spatiotemporal

weights matrix W . That is, the magnitude of the dependence between observations

depends inversely on both their spatial and temporal separation. One response to this

problem is to use the adjacent-period (AP) version of the time-dummy method. In this

case the temporal separation between observations never gets that large and hence it

is more defensible to use a spatial weights matrix instead of the theoretically preferred

spatiotemporal weights matrix. This is the approach followed by Hill, Melser and Syed

(2009), and the FNC Residential Price Index, which is computed on a monthly basis

using a 12-month moving window, using the spatial lag version of the SARAR(1,1)

model (see Dorsey et al. 2010). Rambaldi and Rao (2011) also use a variant on this
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approach.

An alternative approach is to actually compute a spatiotemporal weights matrix.

The literature on this topic is thin. The main references are Pace, Barry, Clapp and

Rodriques (1998), Tu, Yu and Sun (2004), Sun, Tu and Yu (2005) and Nappi-Choulet

and Maury (2009).

The main problem with spatial autoregressive models is that they impose a lot of

prior structure on the spatial dependence. This point is made forcefully by Pinkse

and Slade (2010). They criticize SAR(1) models, and by extension models where the

errors also “have some simple spatial dependence relationship”. In other words, their

criticisms apply to the SARAR(1,1) model as well.

The limitations of the SAR(1) model are endless. These include: (1) the

implausible and unnecessary normality assumption, (2) the fact that if yi

depends on spatially lagged ys, it may also depend on spatially lagged xs,

which potentially generates reflection-problem endogeneity concerns . . ., (3)

the fact that the relationship may not be linear, and (4) the rather likely

possibility that u and X are dependent because of, e.g., endogeneity and/or

heteroskedasticity.

Even if one were to leave aside all of these concerns, there remains the

laughable notion that one can somehow know the entire spatial dependence

structure up to a single unknown multiplicative coefficient [two unknown

coefficients in the case of SARAR(1,1)]. (Pinkse and Slade 2010, p. 106 -

text in italics added by the authors)

3.4 Nonparametric approaches

Nonparametric methods provide an alternative to parametric modeling of spatial de-

pendence that largely avoid the problems highlighted by Pinkse and Slade (2010). Non-

parametric methods can be used to construct a flexible topographical surface describing

how price varies by location (measured by longitude and latitude) holding the other

characteristics fixed. Such a surface can then be added to a parametric or nonpara-

metric hedonic model defined over the physical characteristics. Examples of this type

of approach include Colwell (1998), Pavlov (2000), Clapp, Kim and Gelfand (2002),
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Fik, Ling and Mulligan (2003), Clapp (2003, 2004), McMillen and Redfearn (2010),

Brunauer et al. (2010), and Hardman (2011). What all these papers lack, with the

exception of Hardman (2011), is a method for obtaining a house price index from the

estimated hedonic model. The imputation method is the natural choice for this task.4

More specifically, consider the single imputation Fisher price index in (4). Imputed

prices in period t of houses actually sold in period t + 1, denoted by p̂t,h(zt+1,h), can

be derived from the hedonic model of period t + 1. That is, one can take the physical

characteristics and longitude/latitude of house h and insert them into the hedonic model

of period t+ 1 to obtain an imputed price. Similarly, imputed prices in period t+ 1 of

houses actually sold in period t, denoted by p̂t+1,h(zt,h), can be derived from the hedonic

model of period t. This is all the hedonic model is required for, to make sure that prices

are available for each house included in the price index formula in both period t and

t+ 1.

The hedonic imputation method can therefore be applied to any hedonic function

that provides an imputed price, irrespective of whether the functional form is parametric

or nonparametric. In this sense the imputation method is very flexible and provides

a natural way of incorporating geospatial data in the form of a nonparametric surface

such as a spline into the index calculation.5

4 Empirical Strategy

4.1 The data set

We use a data set obtained from Australian Property Monitors that consists of prices

and characteristics of houses sold in Sydney (Australia) for the years 2001–2011. For

each dwelling we have the following characteristics: the actual sale price, time of sale,

postcode, property type (i.e., detached house or semi), number of bedrooms, number

of bathrooms and land area. In addition, we have the exact address and longitude and

4Hardman (2011), which describes the method used to compute the Daily Home Value Index of

RPData-Rismark, however, is rather vague and lacking in detail.
5As far as we are aware the only papers to use splines in the estimation of hedonic models of the

housing market are Bao and Wan (2004) and Brunauer, et al. (2010). However, Bao and Wan do not

have geospatial data. They fit a spline to the physical characteristics of houses. Also, neither Bao and

Wan nor Brunauer and et al. construct house price indexes.
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latitude of each dwelling. Some summary statistics are provided in Table 1.

Table 1: Summary of characteristics

PRICE BED BATH AREA LAT LONG

Minimum 100000 1.000 1.000 100.0 -34.20 150.6

1st Quartile 426000 3.000 1.000 461.0 -33.92 150.9

Median 615000 3.000 2.000 590.0 -33.83 151.1

Mean 758311 3.454 1.744 631.8 -33.84 151.1

3rd Quartile 885000 4.000 2.000 725.0 -33.75 151.2

Maximum 4000000 6.000 6.000 9994.0 -33.40 151.3

For a robust analysis it was necessary to remove some outliers. This is because there

are a much higher proportion of data entry errors in the tails, caused for example by the

inclusion of erroneous extra zeroes. These extreme observations can distort the results.

The exclusion criteria we applied are shown in Table 2.

Table 2: Criteria for removing outliers

PRICE BED BATH AREA LAT LONG

Minimum Allowed 100000 1.000 1.000 100.0 -34.20 150.60

Maximum Allowed 4000000 6.000 6.000 10000.0 -33.40 151.35

We also exclude all townhouses from our analysis since the corresponding land area

is for the whole strata. To keep the estimation procedure as simple as possible we also

excluded from the raw data in a prior step all observations missing one or more of our

characteristics.6 Our data set consists in total of 454 507 house sales. Complete data

on all our hedonic characteristics are available for 240 142 observations. Table 3 shows

the distribution of houses with missing characteristics per year. It can be seen from

Table 3 that the quality of the data improves over time. For this reason the fit of our

hedonic models also improves in later years.

6For example, if the number of bedrooms is missing for a particular house, we exclude it. We intend

to revisit this issue and redo our results including these houses.
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Table 3: Number of observations per year with missing characteristics

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

Total 51885 47351 47374 34734 34361 37072 42938 34601 44791 40114 39286

Missing

-price 116 135 110 74 204 194 292 206 264 404 215

-long 2589 1994 1718 1194 1308 1347 1789 1807 4533 5027 5093

-lat 2589 1994 1718 1194 1308 1347 1789 1807 4533 5027 5093

-bed 34355 31294 29000 17382 9754 8747 8921 5978 8471 6512 480

-bath 45834 40987 39435 25871 12314 10143 9404 6053 8566 6613 484

-area 582 547 450 353 399 462 605 488 466 500 494

Included 5886 6188 7759 8668 21662 26467 32936 28063 35703 32933 33877

4.2 Model estimation and performance

Here we compare the performance of four models:

(i) generalized additive model (GAM) with a geospatial spline;

(ii) GAM with postcode dummies;

(iii) semilog with geospatial spline;

(iv) semilog with postcode dummies.

Model (i) is nonparametric, (ii) and (iii) are semiparametric, and (iv) is parametric.

In (iii) the geospatial data are modelled nonparametrically, while in (ii) it is the physi-

cal characteristics that are modelled nonparametrically. A GAM as used in (i) and (ii)

has the advantage of being more flexible than semilog while avoiding the curse of di-

mensionality that arises in a fully nonparametric model (see for example Stone 1986).7

Furthermore, it is relatively straightforward to include a bivariate function of the longi-

tude and latitude in the modelling process and to account in this way for topographical

(locational) effects in house prices. For an overview of non- and semi-parametric models,

their properties and estimation, see Härdle et al. (2004).

Models (i) and (ii), which are estimated separately for each year t = 2001, . . . , 2011,

7To be more precise, we use the Gaussian family with the identity link function. In future work we

may explore alternative distributions of log-prices.
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take the following form:

y = c1 +Dδ1 +
C∑
c=1

f1,c(zc) + g1(zlat, zlong) + ε1, (7)

y = c2 +Dδ2 +
C∑
c=1

f2,c(zc) +m2(zpc) + ε2, (8)

where y is a H × 1 vector of log-prices, ci is a H × 1 vector of constants, D is a H × 3

matrix of quarterly dummy variables, δi is a 3×1 vector of parameters, fi,c an unknown

function for characteristic zc (in our case number of bathrooms, number of bedrooms

and land area), gi is a unknown bivariate function of latitude and longitude, mi is an

unknown function of the postcode, and εi an H×1 vector of error terms. In the simpler

version we replace the unknown functions fc by their linear analogs:

y = c3 +Dδ3 +
C∑
c=1

zcβ3,c + g3(zlat, zlong) + ε3, (9)

y = c4 +Dδ4 +
C∑
c=1

zcβ4,c + Zpcm4 + ε4, (10)

where in (10) Zpc is a H × 250 matrix of postcode dummy variables (where 250 is the

number of postcodes included in our data set), and m4 is a 250×1 vector of parameters.

We estimate the models (7) and (9) with low rank smoothing splines where the

smoothing parameter is selected using Restricted Maximum Likelihood (REML).8 Table

4 shows the values of the Akaike information criterion (AIC) for each model in each

year, and Table 5 the sum of squared log errors, Ct, defined as follows:

Ct =
(

1

Ht

) Ht∑
h=1

[ln(p̂th/pth)]2.

In both Tables 4 and 5, a lower value implies a better fit. The Ct coefficients are

bounded from below by zero, while the AIC can be negative.

We find that the models including geospatial splines, (7) and (9), dramatically out-

performs their postcode-based competitors, (8) and (10), in terms of goodness-of-fit.

Also, the GAM version of each model, (7) and (8), outperforms its semilog counterpart,

(9) and (10), although in this case the differences are not so large.

8We use the implementation provided in the mgcv package of the R-Language. For details see for

example Wood (2011).
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Table 4: Akaike information criterion for models (7)-(10)

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

(7) 416 89 -778 -1599 -7290 -6417 -8544 -10271 -14059 -14953 -18493

(8) 4888 5456 5780 5598 8635 11678 16233 11652 12819 12313 8696

(9) -55 -85 -1093 -1571 -7192 -6199 -8917 -10286 -15529 -14649 -18520

(10) 4730 5337 5677 5571 8630 11677 16009 11564 12086 12307 8662

Table 5: Sum of squared log errors for models (7)-(10)

Model 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

(7) 0.061 0.057 0.051 0.047 0.041 0.046 0.045 0.040 0.039 0.037 0.034

(8) 0.133 0.140 0.123 0.111 0.087 0.091 0.096 0.089 0.084 0.085 0.076

(9) 0.056 0.056 0.049 0.048 0.042 0.046 0.044 0.040 0.038 0.037 0.034

(10) 0.130 0.138 0.121 0.111 0.087 0.091 0.095 0.088 0.082 0.085 0.075

4.3 Using repeat-sales as a benchmark

Our ultimate objective here is the construction of price indexes. In this sense, what

matters most is the quality of our estimated price relatives pt+1,h/pt,h, since they are

the building blocks from which our price indexes are computed. While in general we do

not observe both pt,h and pt+1,h, we do have some repeat-sales observations in our data

set that can be used as a benchmark.

Let pt+k,h/pth denote a repeat-sale price relative for house h. A corresponding im-

puted price relative for these repeat-sales dwellings can be calculated as follows:

Double imputation :
p̂t+k,h

p̂th
,

Single imputation :

√
pt+k,h

p̂th
× p̂t+k,h

pth
,

where pth denotes an actual price and p̂th an imputed price.

Now define Zh as the ratio of the actual to imputed price relative for dwelling h:

ZDI
h =

pt+k,h

pth

/
p̂t+k,h

p̂th
, (11)

ZSI
h =

pt+k,h

pth

/√
pt+k,h

p̂th
× p̂t+k,h

pth
=

√√√√pt+k,h

pth

/
p̂t+k,h

p̂th
=
√
ZDI

h . (12)
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We can now calculate the sum of squared errors of the price relatives of each hedonic

method:

DDI =
(

1

H

) H∑
h=1

[ln(ZDI
h )]2,

DSI =
(

1

H

) H∑
h=1

[ln(ZSI
h )]2.

It follows from (12) that DSI = DDI/4. Hence DSI and DDI will generate identical

rankings of methods. Here we focus on DSI . We prefer whichever model has the smaller

value of DSI .

Given that we use repeat-sales as a benchmark for our imputed price relatives, our

intention is to exclude repeat sales where the dwelling was renovated between sales. We

attempt to identify such dwellings in two ways. First, we exclude repeat sales where

one or more of the characteristics have changed between sales (for example a bathroom

has been added). Second, we exclude repeat sales that occur within six months on

the grounds that this suggests that the first purchase was by a professional renovator.9

Finally, for dwellings that sold more than twice during our sample period (2001-2011),

we only include the two chronologically closest repeat sales (as long as these are more

than six months apart). This ensures that all repeat-sales dwellings exert equal influence

on our results.

Initially we started with 27 852 repeat-sales dwellings. As a result of our deletions

this reduced our sample to 18 224 dwellings (or 7.6 percent of the dwellings in our

complete data set).

Our results are shown in Table 6. Again we find that the hedonic models including

geospatial splines (7) and (9) outperform their postcode-based competitors (8) and

(10). Interestingly the best performing model according to DSI is the semilog model

with geospatial spline in (9). This may be because the lower flexibility of the semilog

model acts to stabilize the imputed prices from one year to the next, and that this gain

in stability outweighs the loss of flexibility. Given our overall objective of estimating

the price-relatives as accurately as possible, a simple semilog model with a geospatial

spline seems worthy of serious consideration.

9Exclusion of repeat-sales within six months is standard practice in repeat-sales price indexes such

as the Standard and Poor’s/Case-Shiller (SPCS) Home Price Index.
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Table 6: Sum of squared log price relative errors for models (7)-(10)

Model DSI

(7) 0.017467

(8) 0.020900

(9) 0.016927

(10) 0.036040

4.4 House price indexes

Here we focus on the single-imputation Fisher price index formula in (4). The results

obtained using the double-imputation Fisher price index formula in (5) are almost

indistinguishable.

The price indexes obtained from the GAM with geospatial spline in (7) and with

postcodes in (8) are graphed in Figure 1. Similarly, the price indexes obtained from the

semilog model with with geospatial spline in (9) and with postcodes in (10) are graphed

in Figure 2. Also shown in Figures 1 and 2 are simple median and mean indexes. In

all cases, the price index is normalized to 1 in 2001. The index value for all other years

measures the cumulative price change since 2001.

Insert Figure 1 Here

Insert Figure 2 Here

The results in Figures 1 and 2 are quite striking. According to the quality-unadjusted

median and mean indexes, the price level in 2011 was slightly lower than in 2001. In

contrast, according to the hedonic indexes, the price level rose by between 30 and 60

percent over this period. This difference is attributable to a decline in the average

quality of the houses sold. We are currently investigating the extent to which this

decline in quality can be attributed to the physical characteristics, and how much is

due to changes in the location of sold dwellings.

At least part of the quality shift must be locational, since this explains why our

indexes computed using geospatial splines rise faster than the indexes computed us-

ing postcode dummies. The indexes computed using GAM and semilog models with

geospatial splines generate almost identical price indexes. This again suggests that

there is not much to be gained from using a GAM in preference to the semilog model
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when a geospatial spline is included. However, there is quite a big difference between

the GAM and semilog price indexes when locational effects are captured using postcode

dummies. In this case, the use of a GAM does seem to significantly improve the model’s

performance.

Even when a GAM is used, the cumulative price rise generated by the hedonic model

with postcode dummies is only 45 percent (i.e, 15 percent less than that obtained when

geospatial splines are used). The explanation for this is that even within each postcode

a locational quality shift towards worse locations seems to have occurred during our

sample period. We are still in the process of verifying that this is what has actually

happened. Assuming this is correct, it implies that when postcode dummies are used,

the hedonic model fails to fully adjust for a deterioration in the quality of dwelling sold,

and hence is downward biased.

There remains the question of why the average quality of houses sold deteriorated

over our sample period.10 One possible explanation is that this is a general phenomenon

that is observed in “hot” housing markets. The Sydney market experienced a long boom

that started in about 1993. As can be seen from Figures 1 and 2, whether the boom

is viewed as ending in 2003 or is still going in 2011 depends on which price index one

looks at. In a normal or falling market, better located dwellings may sell relatively more

frequently than their worse located counterparts, as compared with in a hot market.

When the market hots up enough, the badly located dwellings start to sell relatively

more frequently, i.e., “beggars (i.e., buyers) can’t be choosers”.

5 Conclusion

The increasing availability of geospatial data has the potential to significantly improve

the quality of house price indexes. Thus far, however, no consensus has emerged in

the literature as to how geospatial data can best be used. We have shown here how

geospatial data can be included using a nonparametric spline function. This approach

allows locational effects to be modelled more flexibly than in a fully parametric model

10One important thing we still need to do is to include the houses with one or more missing charac-

teristics. The proportion of such houses is much higher in the earlier part of our sample, as can be seen

from Table 3. Hence it is possible that our results are at least partly explained by sample selection

bias.
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such as a spatial autoregressive model. Once the hedonic model including a geospatial

spline has been estimated, we show how price indexes can then be computed using the

imputations method. Applying this approach to data for Sydney, Australia we find

that using geospatial splines instead of postcode dummy variables revises upwards the

cumulative price change from 2001 to 2011 by between 15 and 30 percent, depending on

how postcodes are included in the competing model. This difference can be attributed to

a failure of postcode dummies to fully capture changes over time in the locational quality

of houses sold. It is important therefore that index providers start using geospatial data

in their house price indexes.
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