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Abstract

The issue of heterogeneity among samples of dwellings over time
for calculating residential property price index is well known. One
of the main approaches to circumvent it necessarily involves estimat-
ing a hedonic price model, which seeks to explain prices by means
of a set of observable covariates related to intrinsic characteristics of
homes. Location is among the fundamental characteristics within this
set of variables, and recent developments in computation have made
it easy to associate exact geographic coordinates to each record in a
dataset of homes. Consideration of this information involves flexibility
in the functional form of the estimated hedonic models. This paper
contributes to this context, by considering an increasingly adopted
estimation algorithm originated in the fast growing machine-learning
literature.
JEL: C43, E01, E31, R31 Keywords: Housing Market, Price Index,
Hedonic Models, Geospatial Data, gradient boosting machine.

1 Introduction

Constructing a price index for residential properties involves the well-known
challenges of large heterogeneity among properties, and sparse transaction
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data for particular properties. The hedonic approach aims to circumvent
these limitations allowing the comparison between heterogeneous dwellings
by attributing prices to their individual observable characteristics. In this
paper, we implement a hedonic estimation for these prices using the gradient
boosting algorithm, which has been receiving a lot of attention in the fast-
growing statistical learning literature.

Essentially, this approach imputes prices for individual dwellings by
learning the relationship between observed prices and characteristics from
a representative sample of houses in a very flexible, non-parametric form.
A large number of regression trees is estimated sequentially for the original
data set, and the resulting residuals obtained by comparing observed and
predicted values, based on a set of observable characteristics. Finally, each
estimated regression tree receives a weight proportional to its predictive
accuracy, and final predictions are obtained and subjected to cross-validation
measures.

Imputation of these predictions for the observed characteristics of
dwellings in different points in time results in the necessary information
for the chosen price-index formula. Information on both prices and charac-
teristics are provided by a large data set of appraisals, which are required
by prudential regulation as part of loan agreements in Brazil. The pro-
posed price index is calculated from more than 1.5 million appraisals on
a monthly frequency, starting in January 2014. Among the various char-
acteristics present in the appraisals, such as construction area, number of
bedrooms, age, etc. there is also information on services available in the
neighborhood and general common facilities for apartments.

Each address is mapped into the corresponding latitude/longitude,
which serves as very precise geographical information for the learning algo-
rithm. The flexible nature allowed by this algorithm for the relationships
between characteristics and prices result in a detailed map of values control-
ling for every other characteristic, for nine of the major cities in Brazil. For
each of these cities, the index can be computed hierarchically, first for the
whole city and then for particular sub-regions of interest.
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2 Gradient Tree Boosting Algorithm

Generic gradient boosting at the m-th step fits a decision tree hm(x) to
pseudo-residuals. Let Jm be the number of its leaves. The tree partitions the
input space into Jm disjoint regions R1m, . . . , RJmm and predicts a constant
value in each region. Using the indicator notation, the output of hm(x) for
input x can be written as the sum: hm(x) =

∑Jm
j=1 bjmI(x ∈ Rjm), where

bjm is the value predicted in the region Rjm. In case of usual regression
trees, the trees are fitted using least-squares loss, and so the coefficient bjm
for the region Rjm is equal to just the value of output variable, averaged
over all training instances in Rjm.

Friedman(2002) proposes to modify this algorithm so that it chooses
a separate optimal value γjm for each of the tree’s regions, instead of a single
γm for the whole tree. He calls the modified algorithm ”TreeBoost”. The
coefficients bjm from the tree-fitting procedure can be then simply discarded
and the model update rule becomes:

Fm(x) = Fm−1(x) +

Jm∑
j=1

γjmI(x ∈ Rjm),

γjm = arg min
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ).

3 The Dataset

While data on actual transaction prices is the ideal information for calcu-
lating a resdidential price index, it is not realistically available on a regular
frequency for Brazil. However, prudential regulation on banks establishes
that loan operations should provide an independent appraisal of the price for
the dwelling being financed. Since this appraisals must be based on a com-
prehensive set of characteristics for each home, they provide the necessary
information for estimating hedonic price models, which in turn circumvent
the issue of heterogeneity of houses across time. The dataset considered
here contains around 5k monthly appraisals for houses and apartments in
the city of São Paulo, from january 2014 through march 2017. At each
month, the model is estimated using a 12-month moving window including
month dummies.
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4 Results

The estimation process uses cross-validation within the sample for tuning
hyper-parameters of the boosting regression tree, which allows for an ideal
compromise between minimizing mean squared predictions errors and over-
fitting.
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The results show a very good fit, with an out-of-sample root mean
squared error within 10pct of actual (appraisal) prices. Some outliers can be
seen in the residuals, which are checked for measurement and coding errors,
and eventually discarded from the dataset for the calculation of the actual
price index.

The relative importance of each covariate in the model for reducing
total squared errors is best seen on the graph below.
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Lat/lon variables are among the most relevant, and their interaction
across levels of the regression trees allow a flexible estimation of a response
surface in space.

The heatmap below simulates housing prices using averages for every
covariate in the model, except for lat/lon variables.
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The flexibility of the estimated relationship between location and
prices naturally allows for incorporating the effects of spatial non-stationarity,
anysotropy and discontinous jumps.
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5 Discussion

Prediction accuracy for house prices using geospatial data along with their
intrinsic characteristics in a flexible manner justifies considering machine-
learning algorithms such as gradient tree boosting for constructing residen-
tial price indexes. Exact lat/lon information allows for a much finer resolu-
tion of spatial effects when compared to aggreation over arbitrary regions,
such as the ones defined by administrative or postal code motivations. The
results of the model can then be applied to any of the traditional index
formulas such as time dummies or imputation. In the case of locations with-
out observed values in particular time periods, interpolation based on exact
neighborhood values should provide much better approximations. Two fur-
ther extensions are worth considering. First, spatio-Temporal estimation
and smoothing using machine-learning algorithms should complement ex-
histing approaches such as spatio-temporal kriging. Second, Bayesian hier-
archical estimation [Gelman and Hill (2000)] can be applied to the hyper-
parameters of the gradient tree boosting algorithm considered here.
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