Consistent Aggregation With Superlative and Other Price Indices (revised version, 14 May 2017)

Ludwig von Auer (Universität Trier) Jochen Wengenroth (Universität Trier)

Eltville, May 2017

└─ 1. Motivation and Background

1 Motivation and Background

- Often we want to decompose the overall inflation into sector specific inflation rates.
- For example, central banks decompose the overall inflation into the
 - core inflation (all products except energy and seasonal food) and the
 - non-core inflation (seasonal food and energy).
- A price index should give the same result with and without decomposition.
- Then the price index is said to be consistent in aggregation.

└ 1. Motivation and Background

- A very restrictive notion of consistency in aggregation has been introduced by Vartia (1976a, b).
- Blackorby and Primont (1980) develop a far less restrictive version.
- Auer (2004) proposes a compromise between Vartia and Blackorby/Primont.
- Balk (1995, 1996) and Pursiainen (2005, 2008) advocate reverting to Vartia's restrictive version.

2. Basic Principle of Two Stage Aggregation

2 Basic Principle of Two Stage Aggregation

- Set of items: *S* = (1, ..., *N*).
- Laspeyres index:

$$\mathcal{P}^{\mathsf{La}} = \sum_{i \in \mathcal{S}} r_i rac{m{v}_i^0}{\sum_{j \in \mathcal{S}} m{v}_j^0}$$

with $r_i = p_i^1 / p_i^0$ and $v_i^0 = p_i^0 q_i^0$.

- When N = 1, then all sensible price indices give $P = r_1$.
- Therefore, *r_i* is denoted as the primary attribute of the price index (Blackorby and Primont, 1980).
- The other attributes of a price index are secondary attributes (denoted by z¹_i, z²_i, ...)
- The Laspeyres index has only one secondary attribute $z_i^1 = v_i^0$.

└ 2. Basic Principle of Two Stage Aggregation

└─ 3. Illustrative Example

3 Illustrative Example

- Swedish CPI Data from the base period 2010 (t = 0) and the comparison period 2011 (t = 1).
- *S* = 1, 2, ..., 360 items (four-digit level COICOP classification)
- $S_1 = 1, 2, \ldots, 301$ are the items assigned to core inflation.
- $S_2 = 302, \ldots$, 360 are the items assigned to non-core inflation.
- For each item we know (r_i, v_i^0, v_i^1) .

Table 1: Two Stage Aggregation of Laspeyres Index

	BASIC HEADING INFORMATION						Sec. Attrib.	
Core)	i	COICOP	GROUP	Product	r_i	v_i^0	v_i^1	$z_i^1 = v_i^0$
	1	01.1.1	1113	Wheat Bread	1.0333	1524	1562	1524
	÷	÷	:	÷	:	:	:	÷
S_1 (301	12.7	9704	Lawyer Fees	1.0282	1067	1085	1067
				P_1^{La} =	= 1.0268			$Z_1^1 = 1243742$
2 (Other)	302	01.1.3	1307	Herring	1.0438	155	128	155
	÷	:	:	:	:	:	÷	÷
	360	07.2.2	6225	$\to 85$ Fuel	1.0479	1205	1245	1205
S.	$P_2^{\text{La}} = 1.0366$						$Z_2^1 = 182775$	

* Source: Statistics Sweden, Consumer Price Index Data for 2010-2011.

└─ 3. Illustrative Example

• Single stage aggregation by the Laspeyres index:

$$P^{\text{La}} = \sum_{i \in S} r_i \frac{z_i^1}{\sum_{j \in S} z_j^1} = 1.028025$$

with $z_i^1 = v_i^0$.

• Second stage of two stage aggregation by the Laspeyres index:

$$\mathcal{P}^{ extsf{La}} = \sum_{k=1,2} \mathcal{P}^{ extsf{La}}_k rac{Z^1_k}{\sum_{l=1,2} Z^1_l} = 1.028025$$

• Laspeyres index is consistent in aggregation with respect to the secondary attribute $z_i^1 = v_i^0$.

4 Superlative Price Indices

• Fisher index

$$P^{\mathsf{F}i} = \left(\frac{\sum_{i \in S} v_i^0 r_i}{\sum_{i \in S} v_i^0} \frac{\sum_{i \in S} v_i^1}{\sum_{i \in S} v_i^1 / r_i}\right)^{1/2}$$

• Törnqvist index

$$\ln \mathcal{P}^{\mathsf{T}\ddot{o}} = \sum_{i \in S} \ln \left(r_i \right) \frac{1}{2} \left(\frac{v_i^0}{\sum_{j \in S} v_j^0} + \frac{v_i^1}{\sum_{j \in S} v_j^1} \right)$$

Walsh index

$$P^{\mathsf{Wa}} = \sum_{i \in S} r_i \frac{\sqrt{v_i^0 v_i^1 / r_i}}{\sum_{j \in S} \sqrt{v_j^0 v_j^1 / r_j}}$$

	$P^{\text{Fi}} = \left(\frac{\sum_{i \in S} v_i^0 r_i}{\sum_{i \in S} v_i^0} \frac{\sum_{i \in S} v_i^1}{\sum_{i \in S} v_i^0}\right)^{1/2} z_i^1 = v_i^0, z_i^2 = v_i^1, z_i^3 = v_i^0 r_i, z_i^4 = v_i^1 / r_i$
single stage	$P^{Fi} = \left(rac{\sum_{i \in S} z_i^3}{\sum_{i \in S} z_i^1} rac{\sum_{i \in S} z_i^2}{\sum_{i \in S} z_i^4} ight)^{1/2}$
two stage	
	$ \left \begin{array}{l} P_k^{Fi} = \left(\frac{\sum_{i \in S_k} z_i^3}{\sum_{i \in S_k} z_i^1} \frac{\sum_{i \in S_k} z_i^2}{\sum_{i \in S_k} z_i^4} \right)^{1/2} \\ Z_k^1 = \sum_{i \in S_k} z_i^1, \dots, Z_k^4 = \sum_{i \in S_k} z_i^4 \\ P^{Fi} = \left(\frac{\sum_{k=1}^{K} Z_k^3}{\sum_{k=1}^{K} Z_k^1} \frac{\sum_{k=1}^{K} Z_k^2}{\sum_{k=1}^{K} Z_k^4} \right)^{1/2} \end{array} \right) $

- Fisher index is consistent in aggregation with respect to $z_i^1 = v_i^0$, $z_i^2 = v_i^1$, $z_i^3 = v_i^0 r_i$, and $z_i^4 = v_i^1 / r_i$.
- Possible objections:
 - primary attribute is missing in index formula • $z_i^3 = z_i^1 r_i$, and $z_i^4 = z_i^2 / r_i$, but $Z_k^3 \neq Z_k^1 P_k$, and $Z_k^4 \neq Z_k^2 / P_k$.
 - secondary attributes must be either v_i^0 or v_i^1 .

Consistent Aggregation With Superlative and Other Price Indices

	$P^{Wa} = \sum_{i \in S} r_i \frac{\sqrt{v_i^0 v_i^1 / r_i}}{\sum_{j \in S} \sqrt{v_j^0 v_j^1 / r_j}}$ $z_i^1 = \sqrt{v_i^0 v_i^1 / r}$
single stage	$\mathcal{P}^{W_{a}} = \sum_{i \in S} r_i rac{z_i^1}{\sum_{j \in S} z_j^1}$
two stage	$P_k^{Wa} = \sum_{i \in S_k} r_i \frac{Z_i}{\sum_{j \in S_k} Z_j}$ $Z_k^1 = \sum_{i \in S_k} z_i^1$ $P^{Wa} = \sum_{k=1}^K P_k^{Wa} \frac{Z_k}{\sum_{l=1}^K Z_l}$

- Walsh index is consistent in aggregation with respect to $z_i^1 = \sqrt{v_i^0 v_i^1 / r_i}$.
- Possible objections:
 - secondary attributes must be either v_i^0 or v_i^1 .

5 Other Price Indices

Table 2: More Price Indices That Are Consistent in Aggregation

NAME	PRICE INDEX FORMULA	Function $f(r_i, z_i^1,, z_i^Q)$	Secondary Attributes z_i^q
Laspeyres	$P^{\text{La}} = \frac{\sum v_i^0 r_i}{\sum v_i^0}$	$r_i z_i$	v_i^0
Paasche	$P^{\rm Pa} = \frac{\sum v_i^1}{\sum v_i^1/r_i}$	$r_i^{-1} z_i$	v_i^1
Marshall- Edgeworth	$P^{\rm ME} = \sum r_i \frac{v_i^0 + v_i^1/r_i}{\sum \left(v_i^0 + v_i^1/r_i\right)}$	$r_i z_i$	$(v_i^0 + v_i^1/r_i)$
Walsh-2	$\ln P^{\text{Wa2}} = \sum \ln r_i \frac{\sqrt{v_i^0 v_i^1}}{\sum \sqrt{v_i^0 v_i^1}}$	$(\ln r_i) z_i$	$\sqrt{v_i^0 v_i^1}$

Table 2: (contin.)

$$\begin{array}{ll} \text{Walsh-} & \ln P^{\text{WV}} = \sum \ln r_i \frac{\sqrt{v_i^0}}{\sqrt{\sum v_j^0}} \frac{\sqrt{v_i^1}}{\sqrt{\sum v_j^1}} & (\ln r_i) \sqrt{z_i^1 z_i^2} & v_i^0, \ v_i^1 \\ \text{Vartia} \end{array}$$

$$\text{Theil} \qquad \ln P^{\text{Th}} = \sum \ln r_i \frac{\sqrt[3]{\frac{1}{2}(v_i^0 + v_i^1)v_i^0v_i^1}}{\sum \sqrt[3]{\frac{1}{2}(v_j^0 + v_j^1)v_j^0v_j^1}} \quad (\ln r_i) \, z_i \qquad \qquad \sqrt[3]{\frac{1}{2}(v_i^0 + v_i^1)v_i^0v_i^1}$$

Vartia

$$\begin{split} \ln P^{\text{Va}} &= \sum \ln r_i \frac{L(v_i^0, v_i^1)}{L(\sum v_i^0, \sum v_i^1)} & (\ln r_i) \, L(z_i^1, z_i^2) \, v_i^0, \, v_i^1 \\ \text{with}^* \\ L(a, b) &= \begin{cases} \frac{b-a}{\ln b - \ln a} & \text{for } a \neq b \\ a & \text{for } a = b \end{cases} \end{split}$$

Table 3: Generalized Unit Value (GUV) Indices

NAME	PRICE INDEX FORMULA	FUNCTION $f(r_i, z_i^1, \dots, z_i^Q)$	Secondary Attributes z_i^q
Banerjee (GUV-3)**	$P^{\text{Ba}} = \frac{\sum v_i^1}{\sum v_i^0} \frac{\sum v_i^0 \left(1 + r_i\right)}{\sum v_i^1 \left(1 + 1/r_i\right)}$	$r_i rac{z_i^1}{z_i^2} z_i^3$	$v_i^0, v_i^1, v_i^1 \frac{1+r_i}{r_i}$
Davies (GUV-4)**	$P^{\mathrm{Da}} = \frac{\sum v_i^1}{\sum v_i^0} \frac{\sum v_i^0 \sqrt{r_i}}{\sum v_i^1 \sqrt{1/r_i}}$	$r_i \frac{z_i^1}{z_i^2} z_i^3$	$v_i^0, v_i^1, v_i^1/\sqrt{r_i}$
(GUV-5)**	$P^{\text{GUV-5}} = \frac{\sum v_i^1}{\sum v_i^0} \frac{\sum v_i^0 \left(1 + r_i^{-1}\right)^{-1}}{\sum v_i^1 \left(1 + r_i\right)^{-1}}$	$r_i \frac{z_i^1}{z_i^2} z_i^3$	$v_i^0, v_i^1, v_i^1/(r_i\!+\!1)$

Table 3: (contin.)

$$(\text{GUV-6})^{**} P^{\text{GUV-6}} = \frac{\sum v_i^1}{\sum v_i^0} \frac{\sum v_i^0 r_i^{v_i^1/(v_i^0 + v_i^1)}}{\sum v_i^1 r_i^{-v_i^0/(v_i^0 + v_i^1)}} \qquad r_i \frac{z_i^1}{z_i^2} z_i^3 \qquad v_i^0, v_i^1, v_i^1 r_i^{\frac{-v_i^0}{v_i^0 + v_i^1}}$$

$$\begin{array}{ccc} \text{Lehr} & P^{\text{Le}} = \frac{\sum v_i^1 \sum v_i^0 \left(v_i^0 + v_i^1 \right) \left(v_i^0 + v_i^1 / r \right)}{\sum v_i^0 \sum v_i^1 \left(v_i^0 + v_i^1 \right) \left(v_i^0 r_i + v_i^1 \right)} & r_i \, \frac{z_i^1}{z_i^2} \, z_i^3 & v_i^0, v_i^1, v_i^1 \frac{v_i^0 + v_i^1}{r_i v_i^0 + v_i^1} \end{array}$$

6. Additional Requirements

6 Additional Requirements

- In contrast to Blackorby and Primont (1980), we allow only for secondary attributes that are functions of no other information than r_i , v_i^0 and v_i^1 .
- **Requirement A:** Secondary attributes should represent monetary values (e.g., v_i^0 or $\sqrt{v_i^0 v_i^1}$, but not $v_i^0 v_i^1$).
- Requirement B: The secondary attributes are aggregated additively: Z^q_k = ∑_{i∈Sk} z^q_i.
- **Requirement C:** Any functional relationship between the secondary attributes of the individual items must carry over to the aggregated secondary attributes.
- This eliminates the indices of Table 3, the Fisher index, but not the Walsh index.
- The Walsh index is "ABC-consistent in aggregation".

Consistent Aggregation With Superlative and Other Price Indices

6. Additional Requirements

- Requirement D: (Auer, 2004) Only the secondary attributes v_i^0 , v_i^1 , $v_i^0 r_i$ and v_i^1/r_i are admissable (note that $v_i^0 r_i = p_i^1 q_i^0$ and $v_i^1/r_i = p_i^0 q_i^1$).
- This eliminates the Walsh, the Walsh-2, and the Theil index.
- **Requirement E:** (Vartia, 1976a,b, Balk 1995, Pursiainen 2005, 2008) Only the secondary attributes v_i^0 and v_i^1 are admissable.
- This eliminates the Marshall-Edgeworth index.
- Then we are left with the Laspeyres, Paasche, Walsh-Vartia, and Vartia index.

└─ 7. Concluding Remarks

7 Concluding Remarks

- Very heterogeneous definitions of consistency in aggregation have been proposed in the literature.
- We have introduced a rigorous formalization of this notion that allows to compare these definitions.
- Our definition of consistency in aggregation can be made more restrictive by attaching additional requirements.
- The Walsh index satisfies the three least controversial of these requirements.