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Abstract

The issue of heterogeneity among samples of dwellings over time for calculating residential property price
index is well known. One of the main approaches to circumvent it necessarily involves estimating a hedonic
price model, which seeks to explain prices by means of a set of observable covariates related to intrinsic
characteristics of homes, among which location is of fundamental importance. In the process of estimating
hedonic effects, data availability, both in terms of number of observations and characteristics of dwellings,
plays a crucial role in the robustness of results. This paper addresses the issue of utilizing different sources
of information, which differ on the relative strengths of the information provided, by means of a statistical
spatial model.
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Introduction

Constructing a price index for residential properties involves the well-known challenges of large heterogeneity
among properties, and sparse transaction data for particular properties. The hedonic approach aims to
circumvent these limitations allowing the comparison between heterogeneous dwellings by attributing prices
to their individual observable characteristics. Imputation of these predictions for the observed characteristics
of dwellings in different points in time results in the necessary information for the chosen price-index formula.
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And the hedonic double imputation Fisher Index is found by taking the geometric mean of the Laspeyres and
Paasche Indices:
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In what follows, we propose a methodology for estimating the necessary quantities for the above formulas
leveraging the complementary information from different data sources.
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Data

Information on both prices and characteristics are provided by a large data set of appraisals, which are
required by prudential regulation as part of loan agreements in Brazil. This information set is very rich on
the characteristics of each dwelling, but is limited to loan operations in each month, meaning that the number
of data points as well their geographical coverage are somewhat limted.

On the other hand, advertisments provide a much larger dataset consistently throughout time. However, the
information on the characteristics of the advertised units is considerably smaller than the one contained in
teh appraisals backing the financing operations, while asking prices do not approximate actual transaction
prices as well.

In this paper, we analyze data for the city of Rio de Janeiro. Below, we compare the absolute number of
observations for houses on both datasets for each month in 2017, as well as their average prices.
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The number of observations of the ads dataset dwarfs the one from the appraisals dataset. It is interesting
to observe that mean advertised prices are, as expected, above appraisal prices for almost every period,
but also that the difference among them is not constant across these periods, which indicates considerable
heterogeneity between the datasets, both within and between months.

The same patterns appear when we look at the graphs for apartments only.
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Looking at just the data from October 2016, we see that the differences in number of observations from both
datasets also translates into very distinct regional coverage.
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These differences become more specific when we zoom in the southeast region of the city.
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One could follow the strategy of aggregating individual dwelling into regions to mitigate the lack of observations
and regional dispersions. Neighborhoods are too large to achieve a desired precision, but looking at census
sectors we note that there is still considerable heterogeneity in prices. For instance, aggregating prices over
census sectors in the southeast region of the city:
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Therefore, keeping the strategy of modeling individual price dwellings for estimating the hedonic price models,
we propose to combine both sources of information, leveraging their relative strenghtnesses by means of a
statistical spatial model. Central to the idea of this model is the strong correlation between appraisal and
advertisement prices on one hand, and of prices across space on the other. The model adopted deals with the
fact that prices on both datasets are correlated among themselves, but usually not measured in the same
locations at each point in time.

Data Misalignment Model

The basic model (Banerjee et alli (2015)) is

Y (s) = X(s)β + ω(s) + ε(s)

where Y (s) = [y1(s), y2(s)] is a vector of measurements (prices) for each dataset, in locations s. ε(s) represents
measurement error, assumed distributed as gaussian, with a diagonal covariance matrix with parameters
Ψ1,Ψ2. X(s)β is the deterministic effect of each dwelling’s attributes on the prices. Non-deterministic spatial
effects are represented by a Gaussian Process ω(s), with spatial memory parameters φ1, φ2. While these
parameters capture the spatial autocorrelation of each dataset, when combining these datasets we have an
additional parameter measuring the correlation among the values in the datasets, ρ. The combinations among
the parameters φi and ρi define a cross spatial covariance matrix.

The X(s)s represent the intrinsic characteristics of each unit, and their amount of information differs
considerably among the datasets. In the appraisals dataset we have a large number of covariates, including not
only type (house or apartment), area, number of bedrooms, bathrooms and garage slots, but also information
on the availability of amenities such as swimming pools, playgrounds, barbecue kiosks, fireplaces, among
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others. In the advertisements dataset the information consistently available is much smaller, comprising type,
area and number of bedrooms, and in some cases the availability of a small number of amenities.

The statistical model assumes a gaussian distributio for Y (s) with mean function µ(s;β) and covariance
function C (s− s′;θ) = σ2ρ (s− s′;φ) so that θ =

(
σ2,φ

)T .
So we have

Ys

∣∣β,θ ∼ N (µs(β), σ2Hs(φ)
)

where µs(β)i = µ (si;β) e (Hs(φ))ii′ = ρ (si − si′ ;φ). Prediction for new localities in a Bayesian context
result from the predictive distribution function.
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∫
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]

This model is estimated using the SpBayes package available for the statistical software R. Further statistical
and computational details can be found in Banerjee et alli (2015). Estimates for prices of particular houses
are obtained from their posterior predictve distributions.

Results

The above methodology is applied to estimating house prices in the city of Rio de Janeiro, with data
from appraisals and advertisements spanning the months between january 2014 and december 2017. The
MAPE (Mean Absolute Percentage Error) evaluation metric is calculated using LOOCV (Leave one out cross
validation) for both datasets. The results are compared to two other models applied individually to each
dataset:

• Univariate spatial model, using the same specification and Bayesian strategy of the model presented in
last section, but with latent spatial effects modeled using purely auto-regressive correlation matrices.

• Tree-based Gradient Boosting Machine model (see Picchetti (2017)), a popular machine learning
algorithm, trained to predict house prices based on their intrinsic characteristics including location
information.

Model Appraisals Advertisements
GBM 18.3 28.1
Spatial Univariate 19.2 31.6
Spatial Misaligned 16.8 25.7
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MAPE for the estimates based on appraisal data are significantly lower than the ones for advertisemnt data,
which is expected given the greater availability of information on covariates contained in the appraisals. The
univariate spatial model performs worse then the GBM algorithm, but the multivariate misaligned data
model improves the results according to the MAPE metric.

Conclusions and further research

The methodology applied above results in precision gains when estimating hedonic models of house prices, in
the context of different sources of information that complement each ohter. Once the values for individual
dwellings on each month have been estimated in the best possible way, one can use these estimates to calculate
any of the above price formulas based on hedonic modeling.

An alternative approach (see, for example Hill et alli (2017)) is to leverage the information of correlations
between house prices not only across space, but across time as well.
The spatio-temporal model is

yt(s) = xt(s)>βt + ut(s) + εt(s), εt(s)
ind∼ N

(
0, τ2

t

)
βt = βt−1 + ηt, ηt

i.i.d.∼ N (0,Ση)

ut(s) = ut−1(s) + wt(s), wt(s)
ind∼ GP (0, Ct (·,θt)) , t = 1, 2, . . . , Nt

This model has some attractive features that make it worth exploring:

• The dynamic specification of the latent spatial effect ut(s) induces interactions between time and spatial
effects on house prices not easily captured the direct specification of a proper parametric spatio-temporal
correlation function.

• The induced smooth time trajectory of the intercept component in xt(s)>β provides an attractive
estimate of a time-dummy price index (as in Eurostat (2013)).

• Among the coefficients estimated in Ct (·,θt), the covariance matrix of the gaussian process behind the
latent spatio-temporal effect, is the correlation between the values in yt(s). In our example, this is the
correlation between asking prices and appraisal prices. Since it is also estimated through a dynamic
specification, one can gain valuable insight on the trajectory of the differences between these prices,
especially during changes in the housing market cycles.

Combining this methodology with the one presented above, one can devise a two-step procedure for estimating
a dynamic hedonic housing price index, first combining information from different sources for constructing a
robust dataset for each period, and then applyng the spatio-temporal model on this dataset.
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