

Towards a new paradigm for scanner data price indices: applying big data techniques to big data

Jens Mehrhoff European Commission (Eurostat) 16th Meeting of the Ottawa Group Rio de Janeiro, 8 – 10 May 2019

Preamble

- Me at the 15th Meeting of the Ottawa Group: 'not more data are better, better data are better!'
 A 'big data' gaze at why electronic transactions
 and web-scraped data are no panacea
- Me at the 16th Meeting of the Ottawa Group: 'scanner and web-scraped data are better in measurable terms – and worse, too!'
- Also me at this meeting: 'Panacea's potion: dynamic factor models'.

1. Introduction

- Chaining price indices at monthly frequency, say, can lead to significant drift; in order to overcome chain drift, multilateral methods have been proposed that are by construction drift-free.
- These methods are borrowed from the literature on international purchasing power parity comparisons and may not be tailored to the problem in intertemporal comparisons.

1. Introduction

- The present paper proposes a shift towards a new paradigm: a model-based procedure is derived that yields figures, which do no longer possess the classical formula interpretation.
- The new index series convey a similar
 information content in terms of the statistical
 signal but come with much lower noise than
 the classical concepts; this is exemplified using
 the <u>Dominick's Finer Foods</u> data set (→poster).

- How much (more) information is contained in price indices based on scanner or web-scraped data compared to traditional methods?
- Statistical decomposition of price indices variation in signal and noise using structural time series models.
- Harvey, A.C. (1989), Forecasting, structural time series Models and the Kalman filter, Cambridge University Press: local level (plus drift) model.

• The model controls for sale periods (δ) and allows for deterministic trends (β):

$$\ln P_{0,t} = y_t = \mu_t + \delta x_t + \varepsilon_t$$

$$\mu_t = \mu_{t-1} + \beta + \eta_t$$

• The explanatory variable for sale periods (x_t) is the **share of products sold on a promotion**.

- The **signal-noise ratio** is $q = \sigma_{\eta}^2/\sigma_{\varepsilon}^2$ and the **goodness-of-fit measure** is $R_U^2 = 1 U^2$, where U is Theil's inequality measure (random walk).
- Using both the weighted and unweighted time-product dummy (TPD) approach, price index numbers are estimated.
- The latter is less affected by quantity increases due to price decreases – very much like webscraped data.

Prices for bottled juice, Dominick's Finer Foods

Oct 1989 = 100, log scale

	Weighted TPD				Unweighted TPD				Old CPI-U			
	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
δ			-0.27 (0.000)	-0.27 (0.000)			-0.08 (0.000)				0.02 (0.046)	0.02 (0.041)
β		0.23 (0.054)		0.25 (0.053)		0.26 (0.009)		0.26 (0.012)		0.19 (0.051)		0.20 (0.045)
$\sigma_{arepsilon}^2$	8.22 (0.000)	8.45 (0.000)	4.16 (0.000)	4.49 (0.000)	0.59 (0.003)	0.73 (0.001)	0.22 (0.085)	0.34 (0.025)	0.00	0.00	0.00	0.00
σ_{η}^2	1.43 (0.013)	1.01 (0.024)	1.67 (0.008)	1.17 (0.017)		0.74 (0.003)	1.12 (0.000)		0.92 (0.000)	0.88 (0.000)	0.88 (0.000)	0.84 (0.000)
q	0.17 (0.030)	0.12 (0.043)	0.40 (0.035)	0.26 (0.045)	1.83 (0.049)	1.01 (0.048)	5.00 (0.148)	2.40 (0.105)	∞	∞	∞	∞
R_U^2	0.36 (0.000)	0.38 (0.000)	0.60 (0.000)	0.61 (0.000)		0.15 (0.001)	0.33 (0.000)		0.00 (1.000)	0.04 (0.149)	0.04 (0.137)	0.08 (0.047)

Note: *p*-values in parentheses.

- Modelling troughs in sale periods (δ) greatly reduces noise (weighted TPD: -49%) and increases signal (+17%) as well as R_U^2 (+68%).
- Adding deterministic trends (β) amplifies noise (+8%) and dampens signal (-30%) without significant gain in the log-likelihood function.
- Sales periods have more than three times the effect on weighted TPD than on unweighted TPD; they are irrelevant for the old CPI-U.

- **Noise** (σ_{ε}^2) in weighted TPD is **18-fold** that in unweighted TPD; it is not identifiable in the old CPI-U.
- **Signal** (σ_{η}^2) in weighted TPD is **1.5 times** as strong as in unweighted TPD; twice compared to the old CPI-U.
- Signal-noise ratio (q) of weighted TPD is <u>less</u> than a twelfth of that of unweighted TPD; the old CPI-U is over-smoothed.

• Time-product dummy model ($\delta_0 = \gamma_N = 0$):

$$\ln p_{i,t} = \alpha + \underbrace{\delta_t}_{t=1,\dots,T} + \underbrace{\gamma_i}_{i=1,\dots,N-1} + \varepsilon_{i,t}$$

Expenditure-share weighted TPD index:

$$P_{0,t} = \exp \hat{\delta}_t = \frac{\prod_{i \in S_t} (p_{i,t}/\exp \hat{\gamma}_i)^{S_{i,t}}}{\prod_{i \in S_0} (p_{i,0}/\exp \hat{\gamma}_i)^{S_{i,0}}}$$

Products stacked into N-vector:

$$\ln \mathbf{p}_t = \mathbf{\iota}_N \delta_t + \underbrace{\widetilde{\gamma}}_{\widetilde{\gamma}_i = \alpha + \gamma_i} + \boldsymbol{\varepsilon}_t$$

 Dynamic factor model (DFM) with K common trends:

$$\underbrace{\mathbf{y_t}}_{[N\times1]} = \underbrace{\mathbf{\Theta}}_{[N\times K]} \underbrace{\mathbf{\mu_t}}_{[K\times1]} + \underbrace{\mathbf{\mu_0}}_{[N\times1]} + \underbrace{\mathbf{\epsilon_t}}_{[N\times1]}$$

• If μ_t scalar (K = 1) as well as Θ restricted to ι_N :

$$\mathbf{y}_t = \mathbf{\iota}_N \mu_t + \mu_0 + \mathbf{\varepsilon}_t$$

• Then $\mathbf{y_t} = \ln \mathbf{p_t}$, $\mu_t = \delta_t$ and $\mu_0 = \tilde{\gamma}$:

$$\ln \mathbf{p}_t = \mathbf{\iota}_N \delta_t + \tilde{\mathbf{\gamma}} + \mathbf{\varepsilon}_t$$

• Key difference: TPD model estimates δ_t as independent time dummies; DFM uses structural time series modelling instead.

$$\ln \mathbf{p}_{t} = \mathbf{\iota}_{N} \mu_{t} + \tilde{\mathbf{\gamma}} + \mathbf{\varepsilon}_{t}$$

$$\mu_{t} = \mu_{t-1} + \eta_{t}$$

- Stock, J.H., and Watson, M.W. (2011), 'Dynamic factor models,' in: Clements, M.P., and Hendry, D.F. (eds.), The Oxford handbook of economic forecasting, Oxford University Press: third generation factor estimation.
- 1. Estimation of δ_t and $\tilde{\gamma}$ as well as Σ_{ε} (diagonal) by means of the **TPD model**.
- 2. Estimation of σ_{η}^2 by **regressing** δ_t onto its lags, i.e. **conditional on TPD estimates**.

• Populate the **state-space model** with the estimates of $\tilde{\gamma}$, Σ_{ε} and σ_{η}^2 (but not δ_t !) and compute an improved estimate of μ_t using the **Kalman smoother**:

$$\ln \mathbf{p}_{t} - \widehat{\widetilde{\mathbf{\gamma}}} = \mathbf{\iota}_{N} \mu_{t} + \widehat{\mathbf{\Sigma}}_{\varepsilon}^{1/2} \mathbf{\varepsilon}_{t}^{*}$$

$$\mu_{t} = \mu_{t-1} + \widehat{\sigma}_{\eta} \eta_{t}^{*}$$

Prices for bottled juice, Dominick's Finer Foods

Oct 1989 = 100, log scale

	Weighted TPD				Unweighted TPD				Kalman smoother			
	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
δ			-0.27 (0.000)	-0.27 (0.000)			-0.08 (0.000)				-0.05 (0.000)	-0.05 (0.000)
β		0.23 (0.054)		0.25 (0.053)		0.26 (0.009)		0.26 (0.012)		0.23 (0.005)		0.23 (0.004)
σ_{ε}^2	8.22 (0.000)	8.45 (0.000)	4.16 (0.000)	4.49 (0.000)	0.59 (0.003)	0.73 (0.001)	0.22 (0.085)		0.12 (0.102)	0.19 (0.021)	0.04 (0.299)	0.11 (0.084)
σ_{η}^2	1.43 (0.013)	1.01 (0.024)	1.67 (0.008)	1.17 (0.017)	1.07 (0.001)	0.74 (0.003)	1.12 (0.000)	0.82 (0.002)	0.71 (0.000)	0.52 (0.001)	0.67 (0.000)	0.48 (0.000)
q	0.17 (0.030)	0.12 (0.043)	0.40 (0.035)	0.26 (0.045)	1.83 (0.049)	1.01 (0.048)	5.00 (0.148)	2.40 (0.105)	5.91 (0.159)	2.70 (0.088)	16.53 (0.317)	4.58 (0.152)
R_U^2	0.36 (0.000)	0.38 (0.000)	0.60 (0.000)	0.61 (0.000)	0.08 (0.005)	0.15 (0.001)	0.33 (0.000)		0.02 (0.203)	0.10 (0.009)	0.22 (0.000)	0.29 (0.000)

Note: *p*-values in parentheses.

- Kalman smoother with Θ restricted to ι_N is essentially unweighted.
- Results are about the same as regards modelling troughs in sale periods and (not) adding deterministic trends vis-à-vis unweighted TPD.
- Noise can be reduced by a <u>factor of 5½</u> compared to unweighted TPD.
- Signal still is <u>three-fifth</u> of that of unweighted TPD.
- Signal-noise-ratio is more than three times that of unweighted TPD.

Postscript

 Kalman smoother can produce substantial improvements in estimates if the signal of the common component is <u>persistent</u> (so time averaging helps) and <u>small</u> (so substantial noise remains after cross-section averaging).

Work in progress:

- Expenditure-share weighted index
- More refined time series model for μ_t
- Real-time performance (non-revisable)
- Maximum-likelihood estimation, etc.

Contact

New e-mail address from early-August on:

jens.mehrhoff@bundesbank.de

