Towards a new paradigm for scanner data price indices: applying big data techniques to big data Jens Mehrhoff European Commission (Eurostat) 16th Meeting of the Ottawa Group Rio de Janeiro, 8 – 10 May 2019 #### **Preamble** - Me at the 15th Meeting of the Ottawa Group: 'not more data are better, better data are better!' A 'big data' gaze at why electronic transactions and web-scraped data are no panacea - Me at the 16th Meeting of the Ottawa Group: 'scanner and web-scraped data are better in measurable terms – and worse, too!' - Also me at this meeting: 'Panacea's potion: dynamic factor models'. #### 1. Introduction - Chaining price indices at monthly frequency, say, can lead to significant drift; in order to overcome chain drift, multilateral methods have been proposed that are by construction drift-free. - These methods are borrowed from the literature on international purchasing power parity comparisons and may not be tailored to the problem in intertemporal comparisons. #### 1. Introduction - The present paper proposes a shift towards a new paradigm: a model-based procedure is derived that yields figures, which do no longer possess the classical formula interpretation. - The new index series convey a similar information content in terms of the statistical signal but come with much lower noise than the classical concepts; this is exemplified using the <u>Dominick's Finer Foods</u> data set (→poster). - How much (more) information is contained in price indices based on scanner or web-scraped data compared to traditional methods? - Statistical decomposition of price indices variation in signal and noise using structural time series models. - Harvey, A.C. (1989), Forecasting, structural time series Models and the Kalman filter, Cambridge University Press: local level (plus drift) model. • The model controls for sale periods (δ) and allows for deterministic trends (β): $$\ln P_{0,t} = y_t = \mu_t + \delta x_t + \varepsilon_t$$ $$\mu_t = \mu_{t-1} + \beta + \eta_t$$ • The explanatory variable for sale periods (x_t) is the **share of products sold on a promotion**. - The **signal-noise ratio** is $q = \sigma_{\eta}^2/\sigma_{\varepsilon}^2$ and the **goodness-of-fit measure** is $R_U^2 = 1 U^2$, where U is Theil's inequality measure (random walk). - Using both the weighted and unweighted time-product dummy (TPD) approach, price index numbers are estimated. - The latter is less affected by quantity increases due to price decreases – very much like webscraped data. #### Prices for bottled juice, Dominick's Finer Foods Oct 1989 = 100, log scale | | Weighted TPD | | | | Unweighted TPD | | | | Old CPI-U | | | | |------------------------|---------------------|-----------------|---------------------|---------------------|---------------------|-----------------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------| | | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | | δ | | | -0.27
(0.000) | -0.27
(0.000) | | | -0.08
(0.000) | | | | 0.02 (0.046) | 0.02
(0.041) | | β | | 0.23
(0.054) | | 0.25 (0.053) | | 0.26
(0.009) | | 0.26
(0.012) | | 0.19
(0.051) | | 0.20
(0.045) | | $\sigma_{arepsilon}^2$ | 8.22
(0.000) | 8.45
(0.000) | 4.16 (0.000) | 4.49
(0.000) | 0.59 (0.003) | 0.73
(0.001) | 0.22 (0.085) | 0.34
(0.025) | 0.00 | 0.00 | 0.00 | 0.00 | | σ_{η}^2 | 1.43
(0.013) | 1.01
(0.024) | 1.67
(0.008) | 1.17
(0.017) | | 0.74
(0.003) | 1.12
(0.000) | | 0.92 (0.000) | 0.88 (0.000) | 0.88 (0.000) | 0.84
(0.000) | | q | 0.17 (0.030) | 0.12
(0.043) | 0.40
(0.035) | 0.26
(0.045) | 1.83
(0.049) | 1.01
(0.048) | 5.00
(0.148) | 2.40
(0.105) | ∞ | ∞ | ∞ | ∞ | | R_U^2 | 0.36 (0.000) | 0.38 (0.000) | 0.60 (0.000) | 0.61
(0.000) | | 0.15
(0.001) | 0.33 (0.000) | | 0.00
(1.000) | 0.04
(0.149) | 0.04
(0.137) | 0.08
(0.047) | Note: *p*-values in parentheses. - Modelling troughs in sale periods (δ) greatly reduces noise (weighted TPD: -49%) and increases signal (+17%) as well as R_U^2 (+68%). - Adding deterministic trends (β) amplifies noise (+8%) and dampens signal (-30%) without significant gain in the log-likelihood function. - Sales periods have more than three times the effect on weighted TPD than on unweighted TPD; they are irrelevant for the old CPI-U. - **Noise** (σ_{ε}^2) in weighted TPD is **18-fold** that in unweighted TPD; it is not identifiable in the old CPI-U. - **Signal** (σ_{η}^2) in weighted TPD is **1.5 times** as strong as in unweighted TPD; twice compared to the old CPI-U. - Signal-noise ratio (q) of weighted TPD is <u>less</u> than a twelfth of that of unweighted TPD; the old CPI-U is over-smoothed. • Time-product dummy model ($\delta_0 = \gamma_N = 0$): $$\ln p_{i,t} = \alpha + \underbrace{\delta_t}_{t=1,\dots,T} + \underbrace{\gamma_i}_{i=1,\dots,N-1} + \varepsilon_{i,t}$$ Expenditure-share weighted TPD index: $$P_{0,t} = \exp \hat{\delta}_t = \frac{\prod_{i \in S_t} (p_{i,t}/\exp \hat{\gamma}_i)^{S_{i,t}}}{\prod_{i \in S_0} (p_{i,0}/\exp \hat{\gamma}_i)^{S_{i,0}}}$$ Products stacked into N-vector: $$\ln \mathbf{p}_t = \mathbf{\iota}_N \delta_t + \underbrace{\widetilde{\gamma}}_{\widetilde{\gamma}_i = \alpha + \gamma_i} + \boldsymbol{\varepsilon}_t$$ Dynamic factor model (DFM) with K common trends: $$\underbrace{\mathbf{y_t}}_{[N\times1]} = \underbrace{\mathbf{\Theta}}_{[N\times K]} \underbrace{\mathbf{\mu_t}}_{[K\times1]} + \underbrace{\mathbf{\mu_0}}_{[N\times1]} + \underbrace{\mathbf{\epsilon_t}}_{[N\times1]}$$ • If μ_t scalar (K = 1) as well as Θ restricted to ι_N : $$\mathbf{y}_t = \mathbf{\iota}_N \mu_t + \mu_0 + \mathbf{\varepsilon}_t$$ • Then $\mathbf{y_t} = \ln \mathbf{p_t}$, $\mu_t = \delta_t$ and $\mu_0 = \tilde{\gamma}$: $$\ln \mathbf{p}_t = \mathbf{\iota}_N \delta_t + \tilde{\mathbf{\gamma}} + \mathbf{\varepsilon}_t$$ • Key difference: TPD model estimates δ_t as independent time dummies; DFM uses structural time series modelling instead. $$\ln \mathbf{p}_{t} = \mathbf{\iota}_{N} \mu_{t} + \tilde{\mathbf{\gamma}} + \mathbf{\varepsilon}_{t}$$ $$\mu_{t} = \mu_{t-1} + \eta_{t}$$ - Stock, J.H., and Watson, M.W. (2011), 'Dynamic factor models,' in: Clements, M.P., and Hendry, D.F. (eds.), The Oxford handbook of economic forecasting, Oxford University Press: third generation factor estimation. - 1. Estimation of δ_t and $\tilde{\gamma}$ as well as Σ_{ε} (diagonal) by means of the **TPD model**. - 2. Estimation of σ_{η}^2 by **regressing** δ_t onto its lags, i.e. **conditional on TPD estimates**. • Populate the **state-space model** with the estimates of $\tilde{\gamma}$, Σ_{ε} and σ_{η}^2 (but not δ_t !) and compute an improved estimate of μ_t using the **Kalman smoother**: $$\ln \mathbf{p}_{t} - \widehat{\widetilde{\mathbf{\gamma}}} = \mathbf{\iota}_{N} \mu_{t} + \widehat{\mathbf{\Sigma}}_{\varepsilon}^{1/2} \mathbf{\varepsilon}_{t}^{*}$$ $$\mu_{t} = \mu_{t-1} + \widehat{\sigma}_{\eta} \eta_{t}^{*}$$ #### Prices for bottled juice, Dominick's Finer Foods Oct 1989 = 100, log scale | | Weighted TPD | | | | Unweighted TPD | | | | Kalman smoother | | | | |--------------------------|-----------------|-----------------|---------------------|------------------|-----------------|-----------------|------------------|-----------------|---------------------|-----------------|------------------|---------------------| | | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | | δ | | | -0.27
(0.000) | -0.27
(0.000) | | | -0.08
(0.000) | | | | -0.05
(0.000) | -0.05
(0.000) | | β | | 0.23
(0.054) | | 0.25
(0.053) | | 0.26
(0.009) | | 0.26
(0.012) | | 0.23
(0.005) | | 0.23
(0.004) | | σ_{ε}^2 | 8.22
(0.000) | 8.45
(0.000) | 4.16 (0.000) | 4.49
(0.000) | 0.59
(0.003) | 0.73
(0.001) | 0.22
(0.085) | | 0.12
(0.102) | 0.19
(0.021) | 0.04
(0.299) | 0.11 (0.084) | | σ_{η}^2 | 1.43
(0.013) | 1.01
(0.024) | 1.67
(0.008) | 1.17
(0.017) | 1.07
(0.001) | 0.74
(0.003) | 1.12
(0.000) | 0.82
(0.002) | 0.71
(0.000) | 0.52
(0.001) | 0.67 (0.000) | 0.48
(0.000) | | q | 0.17
(0.030) | 0.12
(0.043) | 0.40
(0.035) | 0.26
(0.045) | 1.83
(0.049) | 1.01
(0.048) | 5.00
(0.148) | 2.40
(0.105) | 5.91 (0.159) | 2.70
(0.088) | 16.53
(0.317) | 4.58
(0.152) | | R_U^2 | 0.36
(0.000) | 0.38 (0.000) | 0.60 (0.000) | 0.61
(0.000) | 0.08
(0.005) | 0.15
(0.001) | 0.33 (0.000) | | 0.02
(0.203) | 0.10
(0.009) | 0.22 (0.000) | 0.29 (0.000) | Note: *p*-values in parentheses. - Kalman smoother with Θ restricted to ι_N is essentially unweighted. - Results are about the same as regards modelling troughs in sale periods and (not) adding deterministic trends vis-à-vis unweighted TPD. - Noise can be reduced by a <u>factor of 5½</u> compared to unweighted TPD. - Signal still is <u>three-fifth</u> of that of unweighted TPD. - Signal-noise-ratio is more than three times that of unweighted TPD. #### **Postscript** Kalman smoother can produce substantial improvements in estimates if the signal of the common component is <u>persistent</u> (so time averaging helps) and <u>small</u> (so substantial noise remains after cross-section averaging). #### Work in progress: - Expenditure-share weighted index - More refined time series model for μ_t - Real-time performance (non-revisable) - Maximum-likelihood estimation, etc. #### **Contact** #### New e-mail address from early-August on: jens.mehrhoff@bundesbank.de