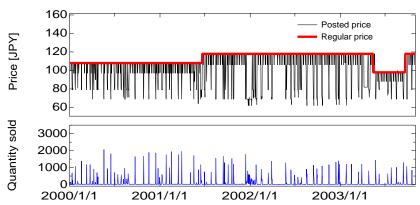
Storable Goods, Chain Drifts, and the Cost of Living Index: New Methodology and Application to Japanese Data

Kozo Ueda, Kota Watanabe and Tsutomu Watanabe


Waseda University, The Canon Institute for Global Studies&University of Tokyo

May 8, 2019 Very very preliminary

Illustrative Figure of Scanner Data

- Daily, from 1988 to 2013
- ullet Quantity and sales **sold** for product i at retailer r on date t
- Processed food and domestic articles (17 percent of household's expenditure)

A cup noodle i sold at retailer r

Goods are not perishable but storable

The key: a discrepancy between purchase and consumption

- Previous studies on price indices typically assume that goods are perishable.
- An important implication of storability is that the purchase of goods does not coincide with the consumption of goods.
 - Scanner data includes information about purchase, not necessarily consumption.
 - Temporary sales often increase purchase more than consumption.
 - The discrepancy between purchase and cosumption is reflected in changes in household inventory.
- In the context of price index construction, goods storability yields chain drifts.
 - It may be inappropriate to use purchase based weights. We should use consumption based weights.
 - It may be inappropriate to use purchase price. We should use consumption price.

What the paper does

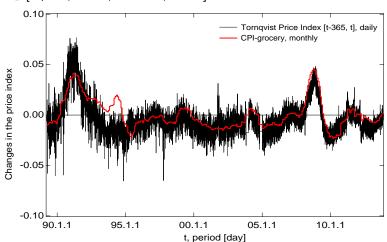
- Report empirical evidences associated with storable goods.
 - Huge bias in the purchase-based chained price index, consistent with theory
 - Evidence of household inventory, consistent with theory
- Construct a quasi dynamic model for storable goods
 - incorporate stockpiling behavior by households
 - explain the facts
- Propose a procedure to estimate consumption/inventory from the scanner data(purchase data)
 - Bias is mitigated by consumption-based index, but not perfectly.

Price index

- It is known that the Törnqvist price index is a good approximation of the Cost of Living Index (COLI),
 - ullet Changes in the Törnqvist price index between t-dt and t is defined as

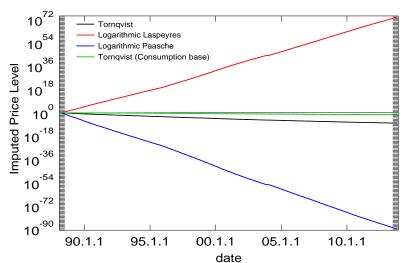
$$\pi_{t,dt}^{C,T} = \sum_{k \in \mathcal{K}_{t-dt} \cap \mathcal{K}_t} \frac{W_{t-dt}^k(\mathcal{K}_{t-dt} \cap \mathcal{K}_t) + W_t^k(\mathcal{K}_{t-dt} \cap \mathcal{K}_t)}{2} \log \left(\frac{p_t^k}{p_{t-dt}^k}\right), \tag{1}$$

where the weight share $W_t^k(K_{t-dt} \cap K_t) \equiv p_t^k x_t^k / \sum_{k' \in K_{t-dt} \cap K_t} p_t^{k'} x_t^{k'}$.


 Also changes in the price indices based on Logarithmic Laspeyres and Logarithmic Paasche are defined as

$$\pi_{t,dt}^{C,L} = \sum_{k \in \mathcal{K}_{t-dt} \cap \mathcal{K}_t} W_{t-dt}^k (\mathcal{K}_{t-dt} \cap \mathcal{K}_t) \log \left(\frac{p_t^k}{p_{t-dt}^k} \right), \qquad (2)$$

$$\pi_{t,at}^{C,P} = \sum_{k \in K_{t-at} \cap K_t} W_t^k (K_{t-at} \cap K_t) \log \left(\frac{p_t^k}{p_{t-at}^k} \right). \tag{3}$$


Unchained index

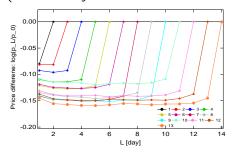
• Timeseries of $\pi_{t,dt}^{C,T}$, dt = 365days, $t \in [\text{Apr.1}, 1989, \text{Oct.31}, 2013]$

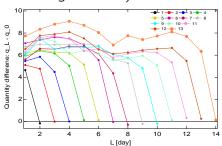
Chained index at the daily frequency

• $P_t^X = \exp\left(\sum_{s=1}^t \pi_{s,dt}^{C,X}\right)$, dt = 1day, $X = \{T, L, P\}$.

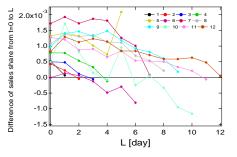
*The missing prices are imterpolated by the estimated regular price 7/17

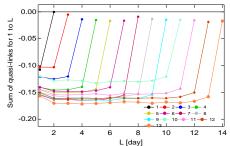
Nature of drift: Simple guesstimation

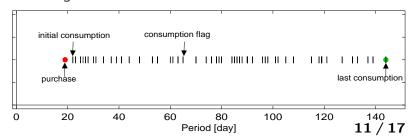

- Suggestive thought experiment by Haan and van der Grient(2011)
 - ullet Estimate the price inflation from the following table. 0 < r < 1

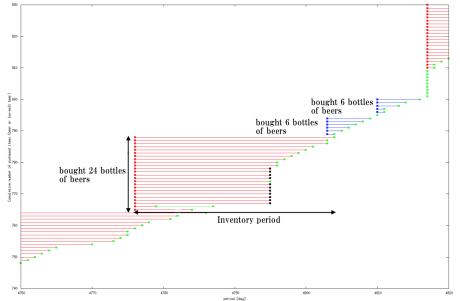

		t = 0	t = 1	t=2
Item A	Price	p_A	$(1-r)p_A$	p_A
	Share	w_0	w ₁	w_2
Item B	Price	p_B	p_B	p_B
	Share	1-w ₀	1-w ₁	1-w ₂

- if $w_2 < w_0 < w_1 \rightarrow \text{Paasche} < \text{T\"{o}rnqvist} < 0\% < \text{Laspeyres}$.
- The household have enough inventory on the day after the sale ends, then they do not buy much on that day.

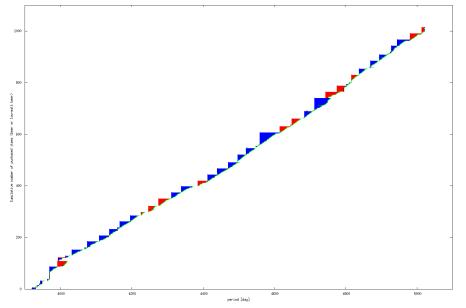

Movement of prices (left) and quantities (right) over a sales period


Comparison with the price/quantity just before sales(L=0). (more analysis needed to test statistical significance)

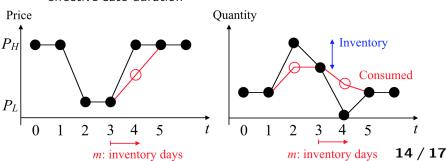

This causes the chain drift left)Changes in sales share, right)Chained weighted changes.



Illustrative fiure of household-side data


- About 4,000 households in total (about 400 hhs in each period).
- Daily, from 1998 to present
- Food only
- Records
 - who, what, when and where purchased, when and who consumed, when and why consumption ends(used up, wasted, etc.).
 - no price information
- Consumption pattern of a salt product for a household(purchased on t=19, started using on t=22 and finished using on t=144.

Consumption pattern of items in beer category for a particular household (the last use in green).

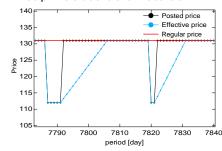


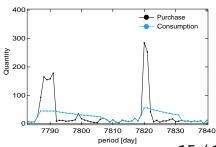
Consumption pattern of items in beer category for a particular household (the last use in green).

Very brief overview of the model

- Closely follow Hendel and Nevo (2006), in which goods are storable and prices change stochastically between the high level (i.e. regular price) and the low level (i.e. sale price)
 - Introduce warehouse firms in order to separate capability of inventory from the household
 - A household can purchase good from a producer or warehouse
 - Quantities consumed deviate from quantities purchased because goods are stockpiled during a sale period
 - Consumption price deviates from purchase price because the warehouse firms sell at prices between P_L and P_H during an effective sale duration

Algorithm to estimate consumption

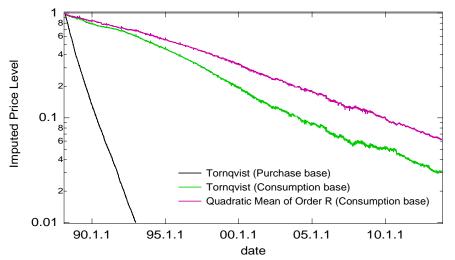

- lacktriangle Estimate the price elasticity σ for each product category.
- ② Calculate m for each sale event of each product as:


$$m = \frac{P_H - P_L}{P_L} \frac{\sigma - 1}{1 - (P_H/P_L)^{-\sigma + 1}} \frac{I_L}{X_L},$$

where $X_L = (P_L/P_H)^{-\sigma} X_H$ and $I_L = \sum_{j=1}^T X_j - T X_L$ are the quantity consumed in each day of the sale and the level of inventory on the sale ends.

3 Calculate the consumption price: $r_{H,j} = (j/m)(P_H - P_L) + P_L$, and the quantity consumed: $c_j = (r_{H,j}/P_L)^{-\sigma}X_L$ for $j \in [1, m]$

A cup noodle at a retailer



15 / 17

Consumption-based chained price indices

Milder chain drift, but not completely disappeared (roughly -10% annually).

Concluding remarks

- Summarize stylized facts associated with storable goods
- Construct an economic model for storable goods
- Estimate consumption from purchase data and construct the consumption-based price index.
 - Bias(Serious drift) is mitigated but not perfectly.
 - As for an asymmetric price up-and-down due to the non-negative constraint of inventory and purchase, the price index like Törnqvist is still biased even in the consumption-base.
- Things to be done in the near future
 - More careful analysis on whether implications of the model are consistent with the actual data.
 - More careful comparison of our consumption based price index with other indices including GEKS proposed by Ivanvic et al.(2011).
 - More careful treatment with things such as quality adjustment and price imputation.