
Machine learning for

classification with big data in

price statistics production

pipelines

Edward Rowland

Hazel Martindale
Prices Alternative Data Sources Project – UK Office for National

Statistics

Contact: edward.rowland@ons.gov.uk

Talk outline

PADSP – Building a pipeline

Machine learning (ML) approaches to classify price

quotes from web-scraped data to COICOP5/ONS item

level

Go over problems and (possible) solutions to each

Paper - describes a complex clothing classifier in more

detail

Pre
processing

Classification Averaging
Outlier

detection
Imputation

Retailer
indices

Index
aggregation

https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u161/semi-supervised_ml_for_price_stats-ottawa_group.pdf

Talk structure

Problem 1 – Making sense of text data

Problem 2 – Lots of data, few labels

Putting this all together – an example clothing

classifier

Problem 3 (If time permits) – Is it good?

Measuring classifier performance

MAKING SENSE OF TEXT

DATA

Problem 1

The problem

How do we make use of the text in machine learning algorithms?

Word embedding

A family of Natural Language Processing (NLP)

approaches to turn text into numerical data

Hopefully, this provides useful features in a

classification algorithm. Lets go through a few…

Count vectorisation

Counts occurrences of words in sentence, e.g.

Sentence1: “There is a black cat”,

Sentence2: “A black cat and a black ball”,

Sentence3: “Is there a black cat?”

Note that 1 and 2 have the same coding, bi-grams

can help with this

 black there is cat and ball a ‘is

there’

‘there is’

Sentence

1

1 1 1 1 0 0 1 0 1

Sentence

2

2 0 0 1 1 1 2 0 0

Sentence

3

1 1 1 1 0 0 1 1 0

Term Frequency – Inverse document

frequency (TF-IDF)
TF – how often a word (t) appears in a

document containing N words
𝑇𝐹 𝑡 = 𝑛𝑡/𝑁

IDF – how few documents contain a word(t)

(df(d,t)) of all docs in corpus (C)

𝐼𝐷𝐹 𝑡 = log
𝐶

𝑑𝑓 𝑑, 𝑡
+ 1

For each word in each document, then multiply
𝑇𝐹𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹

Assumes less common words have more task

relevance

word2vec

Two layer neural network trained on a corpus to

predict the next word in a sentence

e.g. “The mouse eats cheese from the box”

Target word : cheese

The network aims to predict the target word,

given the preceding words

We take the weights of the last layer in the

neural net as the vector for the target word

fastText

Similar to word2vec, except can predict out-of-

corpus words

Breaks down words into character n-grams e.g.

apple would have ap, pp, pl, le bi-grams.

Then predicts the next bi-gram in a sentence.

Therefore, it works with words it has not been

trained on

What do they look like

TF-IDF word2vec

From word embeddings for garment names in clothing data, 2D t-SNE projection

Take home messages

Can help you out, if the data looks ‘clustery’

Lots of ways of solving this problem

- Count vectorisation

- TF-IDF

- word2vec

- fastText

And some more advanced solutions not

covered here

- BERT

- ELMO

LOTS OF DATA, FEW LABELS

Problem 2

The problem

Supervised classification algorithms need to be told

what to do before they work out how to classify new

data.

This requires labelled data to train and evaluate the

approach(es)

Meaning somebody has to accurately assign COICOP5

labels to your data

Very time consuming with tens of thousands or millions

of observations, how can we avoid this?

Fuzzy matching

We compute measures of similarity and assign label to

those above a certain similarity score

Levenshtein/edit distance – number of insertions,

deletions or substitutions

- Sensitive to string length and word order

Partial ratio – similar levenshtein, but matches

substrings

- Insensitive to string length and word order

Jaccard distance – intersection/union

- Sensitive to string length, insensitive to word order

Fuzzy matching

Comparison Edit Partial ratio Jaccard

blue men’s shirt

4 100% 0.89 navy blue men’s

shirt

Good where similar text strings should have the same label

but probably is not going to label everything and likely domain

specific.

These methods, Levenshtein especially, scale poorly with

increasing data.

Can mitigate by capping edit metric, e.g. 0, 1, 2, >2.

Label propagation

Semi-supervised

method to increase

labels

Uses a small number

of labels

Represent entire

dataset in feature

space

Construct graph from

data structure (usually

K-NN)

Label propagation

Probability of an unlabelled point

being assign each label are

calculated by Weighted distance

along edges connected to labelled

points

Highest probability label assigned to

each point, then repeat

How the graph is built has big effect

on the final labels

Label spreading variant allows for

noise in assigned labels

Example with clothing product names

 Before propagation

Label propagation

 After propagation

Label propagation

 After propagation Actual labels

Label Propagation

Can work well if…

• Your data has a ‘clustery’ structure in feature

space,

• the structure relates to your labels

• and the initial ‘seed’ labels are representative.

Some issues…

‘Junk’ items are particularly hard to find

representative labels for

There are unresolved issues with scaling as

K-NN does not distribute effectively

PUTTING THIS ALL TOGETHER

WGSN dataset

• Used sample from WGSN data

• Split into two, to train and

evaluate

• Each half contains 3485

observations

• Very few initial labels

• Label propagate and train first

half

• Second classified compared

against manual labels

Item Description Unique

products

‘Junk’ Items 981

Women's Coat

(SEASONAL)

430

Men's Casual Shirt, long or

short sleeved

379

Women's Sportswear

Shorts

65

Women's Swimwear 593

Boy's Jeans (5-15 Years) 512

Girl's Fashion Top (12-13

years)

411

Men's Pants/Boxer Shorts 235

Men's Socks 239

Overall method for clothing data

Out of sample

validation

Use labelled

data to train

classifier

Fuzzy matching:

partial ratio

Fuzzy matching:

Jaccard distance

Fuzzy matching: Edit

distance

Combine 3

metrics & clean

fuzzy labels

Word vectors:

fastText

Word vectors:

word2vec

Word vectors: TF-

IDF

Label spreading: TF-

IDF

Label spreading:

fastText

Label spreading:

word2vec

Combine 3

vectors & clean

label propagation

labels

Combine

labels across

all categories

Repeat process

for next category

1. Fuzzy

Matching
2. Clean

and

combine

fuzzy labels

3. Build word

vectors
4. Label

propagation

5. Clean and

combine label

propagation

6. Repeat for next

category

7. Combine

labels for all

items

8. Train

classifier

9. Use

classifier with

new data

Results

Expand 91 original labels to 1692 (48.5%) labels

with fuzzy matching

Then expand these to 2802 (73%) with label

propagation

And then classify, giving the below results

Training data Test data

 Metric Precision Recall F1-score Precision Recall F1-score

Non-linear SVM 0.89 0.89 0.89 0.85 0.83 0.84

Decision Tree 0.88 0.88 0.88 0.84 0.85 0.83

Random Forest 0.88 0.88 0.88 0.86 0.86 0.86

Caveats

Toy data – real data likely to be more unbalanced

Some cleaning for sense checking applied e.g. item

with “girl’s” in a men’s category is removed

Performance across classes is not uniform

- Men’s casual shirts; hard to distinguish from formal

- Woman’s swimwear; separates incorrectly classified

- Woman’s sportswear shorts; small sample

- Woman’s coats; similar items in ‘junk’ e.g. girl’s coats

Conclusions

Despite issues,

- Classifying nearly 4000 clothing items

- with a F1-score of 0.86

- Using only a short text description

- and 91 labels

Is extremely promising

Future work

More data!

- 10k labels ~80,000 unique items

- Enough data to build price indices from

Better classifier!

- Hyper parameter tuning

- Pretrained word2vec and fastText on large (e.g.

Wikipedia) corpus

Dealing with unwanted items better

– positive unlabelled learning

IS IT GOOD? MEASURING CLASSIFIER

PERFORMANCE

Problem 3

Measuring classifier performance

The classification output is not the end product,

the price index is

Classifier performance should be considered in

this context.

How might it affect the

- Variance

- Bias

of the price index?

Unbalanced data

Surely you just look at how often it is correct...?

Consider a dataset where 90% of data should be

included in the index

A naïve classifier would include everything (label all as

true). 90% accuracy, Great

Actually, it always makes false positive errors!

Therefore we need to consider

- True positive rates (recall)

- False positive rates

- Precision

What about the impact of different

errors?
A doctor sees a patient with symptoms that might be a

serious condition or a minor one.

Do they refer them to a specialist even if it is much

more likely to be a minor condition?

Yes – the risk of a false positive (sending them to a

specialist) is lower than a false negative.

The same is for price indices - we need to consider the

impact of

- false negatives (incorrectly excluded)

- false positives (incorrectly included)

Metrics – define terms

• True positive – correctly included

• True negative – correctly excluded

• False positive – incorrectly included

• False negative –incorrectly excluded

Classified Truth

Positive Negative

L
a
b

e
l

Positive

True +ve False -ve (Type II) Total labelled +ve

Negative

False +ve (type I) True -ve Total labelled -ve

Classified as Total classified

+ve

Total classified -ve Total observations

Some ways of measuring classifier

performance

Balanced accuracy/average recall

- 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

- Mean recall for all classes

Fβ-score

 - 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

- Fβ = (1 + 𝛽2) ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙

- β determines importance of recall over precision

- β = 1 equal importance for both

Multiclass classification

Reduce this to a binary problem via one-versus-rest for

each class

- True labels; a single class

- False labels; everything else

Micro average

- Sum quadrants (TP, TN, FP, FN) for each 1-v-rest

- Compute metrics from summed values

Macro average

- Compute metrics from all 1-v-rest

- Compute (weighted) mean of these

Multiclass classification

Reduce this to a binary problem via one-versus-rest for

each class

- True labels; a single class

- False labels; everything else

Micro average

- Sum quadrants (TP, TN, FP, FN) for each 1-v-rest

- Compute metrics from summed values

Macro average

- Compute metrics from all 1-v-rest

- Compute (weighted) mean of these

When to use?

Micro

 - does not take into account individual class

performance

- All observations are equal

- Insensitive to class imbalance

Macro

 - can examine individual class performance

- Over-represents small classes

- Can correct with weighting, but will this

change in future?

Current and future work

Initial guidelines on metric usage – email

(Edward.Rowland@ons.gov.uk) for a copy

Future work

Develop a quality framework for classification

- Relationship between index quality and

metrics

- Guidelines on quality control and checking

- Expenditure weights and cost functions

- How often to retrain classifiers? Batch or

active?

THANK YOU FOR LISTENING

