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Talk outline 

PADSP – Building a pipeline 

 

 

 

 

 

Machine learning (ML) approaches to classify price 

quotes from web-scraped data to COICOP5/ONS item 

level  

 

Go over problems and (possible) solutions to each 

Paper -  describes a complex clothing classifier in more 

detail 

Pre 
processing 

Classification Averaging 
Outlier 

detection 
Imputation 

Retailer 
indices 

Index 
aggregation 

https://eventos.fgv.br/sites/eventos.fgv.br/files/arquivos/u161/semi-supervised_ml_for_price_stats-ottawa_group.pdf


Talk structure  

Problem 1 – Making sense of text data 

 

Problem 2 – Lots of data, few labels 

 

Putting this all together – an example clothing 

classifier 

 

Problem 3 (If time permits) – Is it good? 

Measuring classifier performance 



MAKING SENSE OF TEXT 

DATA 

Problem 1 



The problem 

How do we make use of the text in machine learning algorithms? 



Word embedding 

A family of Natural Language Processing (NLP) 

approaches to turn text into numerical data  

Hopefully, this provides useful features in a 

classification algorithm. Lets go through a few… 



Count vectorisation 

Counts occurrences of words in sentence, e.g. 

Sentence1: “There is a black cat”, 

Sentence2: “A black cat and a black ball”, 

Sentence3: “Is there a black cat?” 

Note that 1 and 2 have the same coding, bi-grams 

can help with this 

  black  there is cat and  ball  a  ‘is 

there’ 

‘there is’ 

Sentence

1 

1 1 1 1 0 0 1 0 1 

Sentence

2 

2 0 0 1 1 1 2 0 0 

Sentence

3 

1 1 1 1 0 0 1 1 0 



Term Frequency – Inverse document 

frequency (TF-IDF) 
TF – how often a word (t) appears in a 

document containing N words 
𝑇𝐹 𝑡 = 𝑛𝑡/𝑁 

 

IDF – how few documents contain a word(t) 

(df(d,t)) of all docs in corpus (C) 

𝐼𝐷𝐹 𝑡 = log
𝐶

𝑑𝑓 𝑑, 𝑡
+ 1 

For each word in each document, then multiply 
𝑇𝐹𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹 

Assumes less common words have more task 

relevance 

 

 

 



word2vec 

Two layer neural network trained on a corpus to 

predict the next word in a sentence 

e.g. “The mouse eats cheese from the box” 

Target word : cheese 

The network aims to predict the target word, 

given the preceding words 

We take the weights of the last layer in the 

neural net as the vector for the target word     



fastText 

Similar to word2vec, except can predict out-of-

corpus words 

 

Breaks down words into character n-grams e.g. 

apple would have ap, pp, pl, le bi-grams.  

 

Then predicts the next bi-gram in a sentence. 

 

Therefore, it works with words it has not been 

trained on 



What do they look like 

TF-IDF word2vec 

From word embeddings for garment names in clothing data, 2D t-SNE projection 



Take home messages 

Can help you out, if the data looks ‘clustery’ 

 

Lots of ways of solving this problem 

- Count vectorisation 

- TF-IDF 

- word2vec 

- fastText 

And some more advanced solutions not 

covered here 

- BERT 

- ELMO 



LOTS OF DATA, FEW LABELS 

Problem 2 



The problem 

Supervised classification algorithms need to be told 

what to do before they work out how to classify new 

data. 

 

This requires labelled data to train and evaluate the 

approach(es)  

 

Meaning somebody has to accurately assign COICOP5 

labels to your data 

 

Very time consuming with tens of thousands or millions 

of observations, how can we avoid this? 



Fuzzy matching 

We compute measures of similarity and assign label to 

those above a certain similarity score 

 

Levenshtein/edit distance – number of insertions, 

deletions or substitutions 

- Sensitive to string length and word order 

 

Partial ratio – similar levenshtein, but matches 

substrings 

- Insensitive to string length and word order 

 

Jaccard distance – intersection/union 

- Sensitive to string length, insensitive to word order 

 



Fuzzy matching 

 

 

Comparison Edit Partial ratio Jaccard 

blue men’s shirt 

4 100% 0.89 navy blue men’s 

shirt 

Good where similar text strings should have the same label 

 

but probably is not going to label everything and likely domain 

specific. 

 

These methods, Levenshtein especially, scale poorly with 

increasing data. 

 

Can mitigate by capping edit metric, e.g. 0, 1, 2, >2. 



Label propagation 

Semi-supervised 

method to increase 

labels 

Uses a small number 

of labels 

Represent entire 

dataset in feature 

space 

Construct graph from 

data structure (usually 

K-NN) 

 



Label propagation 

Probability of an unlabelled point 

being assign each label are 

calculated by Weighted distance 

along edges connected to labelled 

points 

 

Highest probability label assigned to 

each point, then repeat 

 

How the graph is built has big effect 

on the final labels 

 

Label spreading variant allows for 

noise in assigned labels 



Example with clothing product names 

     Before propagation 

Label propagation 

     After propagation 



Label propagation 

     After propagation      Actual labels 



Label Propagation 

Can work well if… 

• Your data has a ‘clustery’ structure in feature 

space, 

• the structure relates to your labels 

• and the initial ‘seed’ labels are representative.  

Some issues… 

‘Junk’ items are particularly hard to find 

representative labels for  

There are unresolved issues with scaling as  

K-NN does not distribute effectively   

 

 

 



PUTTING THIS ALL TOGETHER 



WGSN dataset 

• Used sample from WGSN data  

• Split into two, to train and 

evaluate  

• Each half contains 3485 

observations 

• Very few initial labels 

• Label propagate and train first 

half 

• Second classified compared 

against manual labels 

 

Item Description Unique 

products 

‘Junk’ Items 981 

Women's Coat 

(SEASONAL) 

430 

Men's Casual Shirt, long or 

short sleeved  

379 

Women's Sportswear 

Shorts 

65 

Women's Swimwear 593 

Boy's Jeans (5-15 Years) 512 

Girl's Fashion Top (12-13 

years)  

411 

Men's Pants/Boxer Shorts 235 

Men's Socks 239 



Overall method for clothing data 

Out of sample 

validation 

Use labelled 

data to train 

classifier 

Fuzzy matching: 

partial ratio 

Fuzzy matching: 

Jaccard distance 

Fuzzy matching: Edit 

distance 

Combine 3 

metrics & clean 

fuzzy labels 

Word vectors: 

fastText 

Word vectors: 

word2vec 

Word vectors: TF-

IDF 

Label spreading:  TF-

IDF 

Label spreading: 

fastText 

Label spreading: 

word2vec 

Combine 3 

vectors & clean 

label propagation 

labels 

Combine 

labels across 

all categories 

Repeat process 

for next category  

1. Fuzzy 

Matching 
2. Clean 

and 

combine 

fuzzy labels 

3. Build word 

vectors 
4. Label 

propagation 

5. Clean and 

combine label 

propagation 

6. Repeat for next 

category 

7. Combine 

labels for all 

items  

8. Train 

classifier   

9. Use 

classifier with 

new data  



Results 

Expand 91 original labels to 1692 (48.5%) labels 

with fuzzy matching 

Then expand these to 2802 (73%) with label 

propagation 

And then classify, giving the below results 

Training data Test data 

 Metric Precision Recall F1-score Precision Recall F1-score 

Non-linear SVM 0.89 0.89 0.89 0.85 0.83 0.84 

Decision Tree 0.88 0.88 0.88 0.84 0.85 0.83 

Random Forest 0.88 0.88 0.88 0.86 0.86 0.86 



Caveats 

Toy data – real data likely to be more unbalanced 

 

Some cleaning for sense checking applied e.g. item 

with “girl’s” in a men’s category is removed 

 

Performance across classes is not uniform 

- Men’s casual shirts; hard to distinguish from formal 

- Woman’s swimwear; separates incorrectly classified 

- Woman’s sportswear shorts; small sample 

- Woman’s coats; similar items in ‘junk’ e.g. girl’s coats 

 



Conclusions 

Despite issues, 

- Classifying nearly 4000 clothing items 

-  with a F1-score of 0.86 

- Using only a short text description  

- and 91 labels 

Is extremely promising 



Future work 

More data! 

- 10k labels ~80,000 unique items 

- Enough data to build price indices from 

 

Better classifier! 

- Hyper parameter tuning 

- Pretrained word2vec and fastText on large (e.g. 

Wikipedia) corpus 

 

Dealing with unwanted items better  

– positive unlabelled learning  

 



IS IT GOOD? MEASURING CLASSIFIER 

PERFORMANCE 

Problem 3 



Measuring classifier performance 

The classification output is not the end product, 

the price index is 

 

Classifier performance should be considered in 

this context. 

 

How might it affect the  

- Variance  

- Bias  

of the price index? 



Unbalanced data 

Surely you just look at how often it is correct...? 

 

Consider a dataset where 90% of data should be 

included in the index 

 

A naïve classifier would include everything (label all as 

true). 90% accuracy, Great 

 

Actually, it always makes false positive errors! 

Therefore we need to consider  

-  True positive rates (recall) 

- False positive rates  

- Precision  

 



What about the impact of different 

errors? 
A doctor sees a patient with symptoms that might be a 

serious condition or a minor one. 

 

Do they refer them to a specialist even if it is much 

more likely to be a minor condition? 

 

Yes – the risk of a false positive (sending them to a 

specialist) is lower than a false negative. 

 

The same is for price indices - we need to consider the 

impact of  

- false negatives (incorrectly excluded) 

- false positives (incorrectly included) 



Metrics – define terms 

• True positive – correctly included 

• True negative – correctly excluded 

• False positive – incorrectly included 

• False negative –incorrectly excluded 

 

 

Classified Truth  

Positive Negative 

L
a
b

e
l 

 

Positive 

 

True +ve False -ve (Type II) Total labelled +ve 

Negative 

 

False +ve (type I) True -ve Total labelled -ve 

Classified as Total classified 

+ve 

Total classified -ve Total observations 



Some ways of measuring classifier 

performance 

Balanced accuracy/average recall 

- 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
  

- Mean recall for all classes 

 

Fβ-score 

 - 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

- Fβ =  (1 + 𝛽2) ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)+𝑟𝑒𝑐𝑎𝑙𝑙
 

- β determines importance of recall over precision  

- β = 1 equal importance for both 

 



Multiclass classification 

Reduce this to a binary problem via one-versus-rest for 

each class 

- True labels; a single class 

- False labels; everything else 

 

Micro average 

- Sum quadrants (TP, TN, FP, FN) for each 1-v-rest 

- Compute metrics from summed values 

Macro average 

- Compute metrics from all 1-v-rest  

- Compute (weighted) mean of these 



Multiclass classification 

Reduce this to a binary problem via one-versus-rest for 

each class 

- True labels; a single class 

- False labels; everything else 

 

Micro average 

- Sum quadrants (TP, TN, FP, FN) for each 1-v-rest 

- Compute metrics from summed values 

Macro average 

- Compute metrics from all 1-v-rest  

- Compute (weighted) mean of these 



When to use? 

Micro 

 - does not take into account individual class 

performance 

- All observations are equal 

- Insensitive to class imbalance 

 

Macro  

 - can examine individual class performance 

- Over-represents small classes 

- Can correct with weighting, but will this 

change in future? 

 



Current and future work 

Initial guidelines on metric usage – email 

(Edward.Rowland@ons.gov.uk) for a copy 

 

Future work 

Develop a quality framework for classification  

- Relationship between index quality and 

metrics 

- Guidelines on quality control and checking 

- Expenditure weights and cost functions 

- How often to retrain classifiers? Batch or 

active? 

 

 



THANK YOU FOR LISTENING 


