

Empirical Findings on Upper-level Aggregation Issues in the HICP Thomas Knetsch / Deutsche Bundesbank 7 June 2022

Table of contents

- 1. Introduction
- 2. Methodology
- 3. Empirical results
- 4. Weight concept in benchmark index
- 5. Summary and conclusions

Underlying manuscript: Herzberg J., Knetsch T. A., Popova D., Schwind P. and Weinand S. (2022), Empirical Findings on Upper-level Aggregation Issues in the HICP.

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page $1\ /\ 20$

1. Introduction

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 2 / 20

Motivation

- Inflation measurement is a relevant issue for monetary policy \rightarrow e.g. ECB's recent Monetary Policy Strategy Review
- Total HICP measurement bias plays a role for the derivation of the monetary policy target
- Various sources of inflation mismeasurement:
 - (i) upper-level $\operatorname{aggregation}$
 - (ii) lower-level aggregation
 - (iii) quality adjustment
 - (iv) new products/new outlets
 - (v) sampling

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 3 / 20

Contribution of this paper

- Focus on mismeasurement at the upper level of aggregation
- Distinguish between representativity and data vintage effects
 - representativity effect: choice of index formula
 - data vintage effect: reliability of weights

 \rightarrow Assessing the trade-off that the use of more current weights may come at the cost of relying on preliminary data

 \rightarrow Specific example: 2012 introduction of annual update of HICP weights with preliminary national accounts data on households' consumption expenditures

(see companion paper Herzberg et al, RoIW, forthcoming)

Contribution of this paper

- Quantification of upper-level aggregation bias and uncertainty for the euro area HICP
 - analysis impossible for the euro area as a whole
 - Big-5 aggregate (Germany, France, Italy, Spain, Netherlands), representing more than 80% of euro area HICP
- By-product cross-country comparison

 \rightarrow providing insights into (still) non-harmonised elements in HICP weight updating rules (to-price-update vs. not-to-price-update options)

Related literature

- Boskin Commission Report and the literature emerged worldwide in the aftermath of this famous study
- Greenlees/Williams (2010)
 - \rightarrow effect of shortening time interval for updating of weights
- Silver/Ioannidis (1994)
 - \rightarrow untimely weights, root mean squared error, European CPIs
- Herzberg et al. (forthcoming)
 - \rightarrow very similar evaluation framework

2. Methodology

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 7 / 20

- Upper-level aggregation principles of HICP
 - Laspeyres-type index

$$P^{o}_{\mathrm{HICP}}(y,m) = \sum_{i=1}^{I} w^{o}_{i}(y-1,12) \cdot \frac{p_{i}(y,m)}{p_{i}(y-1,12)} ,$$

 $p_i(y,m)$ - price of good i in year y and month m; $w^o_i(y-1)\equiv w^o_i(y-1,12)$ - official HICP weight

• Annual updating of weights

$$w_i^o(y-1) = \bar{w}_i(y-\xi) \cdot \frac{c_i(y-2;y-1)}{c_i(y-\xi;y-1)} \cdot \frac{p_i(y-1)}{p_i(y-2)} \cdot \frac{p_i(y-1,12)}{p_i(y-1)}$$

 $c_i(y;v)$ - households' consumption expenditure of good i in year y as reported in the national accounts vintage released in year v; $\bar{w_i}(y-\xi)$ - (hypothetical) base weight referring to $y-\xi, \, \xi>2$

- To-price-update: $\frac{p_i(y-1)}{p_i(y-2)}$ included
- Not-to-price-update: $\frac{p_i(y-1)}{p_i(y-2)}$ removed, the Netherlands

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 8 / 20

Benchmark price index

- Superlative price index \rightarrow Törnqvist formula
- Final national accounts (NA) weights [final vintage $v = \infty$]

$$w_i^f(y-1) = \bar{w}_i(y-\xi) \cdot \frac{c_i(y-1;\infty)}{c_i(y-\xi;\infty)} \cdot \frac{p_i(y-1,12)}{p_i(y-1)}$$

	vintage available by end of year										
reporting	porting block A			block B				block C			
period	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
y_0	×	×	×	×	×	×	×	×	×	×	×
1	1	1	1	1	1	1	÷	1	1	1	1
2009	×	×	×	×	×	×	×	×	×	×	×
2010	0	×	×	×	×	×	×	×	×	×	×
2011		0	×	×	×	×	×	×	×	×	f
2012			0	×	×	×	×	×	×	×	f
2013				0	×	×	×	×	×	×	f
2014					0	×	×	×	×	×	f
2015						0	×	×	×	×	f
2016							0	×	×	×	f
2017								0	×	×	f
2018									0	×	f
2019										×	f
2020											×

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 9 / 20

Bias and inaccuracy metrics

- Mismeasurement is quantified by $\frac{P_L}{P_{L}^{f}}$

 - P_L^o Laspeyres-type index based on official weights (HICP) P_{To}^f Törnqvist index based on final NA weights(benchmark)
 - $P_{T\ddot{o}}^o$ Törnqvist index based on official weights.
- Decomposition:

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page $10\ /\ 20$

3. Empirical results

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 11 / 20

Time plots of monthly deviations

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 12 / 20

Bias (=mean deviation)

$$MD_{\text{Total}} = \frac{1}{T} \sum_{t=1}^{T} \ln \left(P_L^o(t) / P_{T\ddot{o}}^f(t) \right).$$

	${\it Representativity}$	Data vintage	Total
Germany	0.044	0.046	0.090
France	0.027	0.029	0.056
Italy	0.031	0.036	0.068
Spain	0.042	0.025	0.067
Netherlands	0.040	-0.069	-0.028
Big-5	0.037	0.030	0.066
Euro Area	0.022	-	-

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 13 / 20

Uncertainty surrounding HICP inflation

•
$$RMSD_{Total} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} \ln\left(P_L^o(t)/P_{T\ddot{o}}^f(t)\right)^2}$$

• IDR - Interdecile Range

	R	IDR		
	$\operatorname{Representativity}$	Data vintage	Total	
Germany	0.062	0.063	0.112	0.153
France	0.035	0.039	0.070	0.115
Italy	0.043	0.051	0.091	0.143
Spain	0.052	0.045	0.088	0.149
Netherlands	0.052	0.081	0.059	0.125
Big-5	0.043	0.036	0.075	0.097
Euro Area	0.028	-	-	-

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 14 / 20

4. Weight concepts in benchmark index

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 15 / 20

Final NA weights vs. full-information weights: Concepts

- Final NA weights keep construction principle of HICP weights and incorporate timely and more mature NA data
- Full-information weights make complete use of the universe of information helpful for weight compilation, irrespective of when it becomes available

 \Rightarrow crucial additional element: weights are compiled using information from all household budget survey (HBS) waves.

• Our view: Price index based on full-information weights is better proxy of "true" inflation than one based on final NA weights

Final NA weights vs. full-information weights: Comparison

Mean absolute difference between official

and alternative weights (average 2011-2019)

Contribution of data vintage component to upper-level aggregation bias of German HICP

- final NA weights: + 0.05 pp
- full-information weights:
 + 0.07 pp

→ With final NA weights, only a lower bound of "true" data vintage effect can be approximated

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 17 / 20

5. Summary and conclusions

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 18 / 20

Summary of results

- Total upper-level aggregation bias of the Big-5 aggregate (representing more than 80% of euro area HICP) falls short of one-tenth of a percentage point
 - Representativity and data vintage components contribute to overall bias in quite similar shares
- The interdecile range measuring the uncertainty surrounding HICP inflation due to upper-level aggregation is about one-tenth of a percentage point for the Big-5 aggregate
 - Wider interdecile ranges are observed for individual countries, suggesting that contrary developments tend to balance out in the aggregate

Conclusions

- Upper-level aggregation issues are one source of HICP mismeasurement
 - Results confirm the view that their contribution to overall mismeasurement is likely to be small
- To draw a full picture of upper-level aggregation issues, it is necessary to quantify the data vintage effect, in addition to the representativity effect
 - It is feasible to calculate final NA weights for the Big-5 aggregate.
 With this weight concept, however, it is possible to quantify the data vintage effect in terms of a lower bound
- Systematic cross-country differences in data vintage effects may be related to still non-harmonised elements of HICP weight updating rules
 - European price statisticians might think of future harmonisation

Thomas Knetsch (Deutsche Bundesbank) 17th Meeting of the Ottawa Group – 7 June 2022 Page 20 / 20