Modernising the measurement of clothing price indices using web scraped data: classification and product grouping

Liam Greenhough

Office for National Statistics, United Kingdom

9th June 2022

Clothing data and goal

- Goal to introduce web scraped clothing data into consumer price statistics
- Scraping 500,000 unique products per month

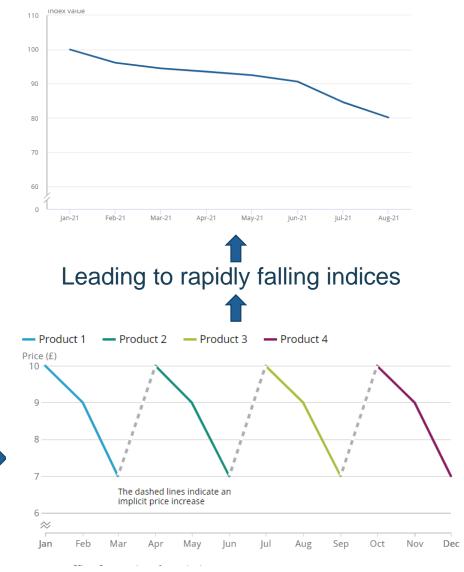
Key problem: churn

Clothing: ~30% monthly churn!

Problems:

- Too many data to classify
- Implicit price increases not captured

Index for women's dress

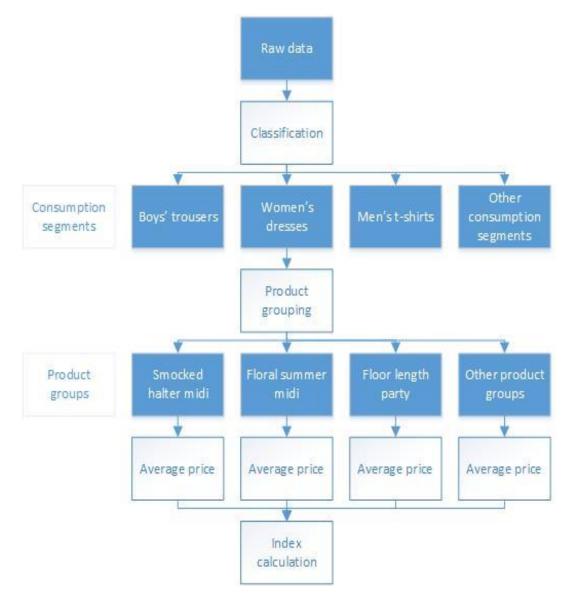


3

Clothing summary

Perform classification then product grouping:

- Classification: supervised machine learning assigns products to consumption segments which are used as elementary aggregates
- Product grouping: group together similar products within consumption segments, use average prices as inputs into index calculations



Classification

Classification lessons learnt

Торіс	Description	Lessons learnt
Labelled datasets	Crowd-sourcing Use of an application	Crowd-sourcing improves quantity; application improves quality!
Feature creation	FastText Text-mined (e.g. regex) age/gender	FastText: similar words = similar vectors Text-mining: for "key" features
Data augmentation	SMOTE	Augments smaller classes so algorithm treats classes with increased importance
Favoured algorithm	XGBoost	Confidence scores; quite fast to fit with GPU; high performing.
Quality	Labelling quality important	[See next slide]

Label consistency

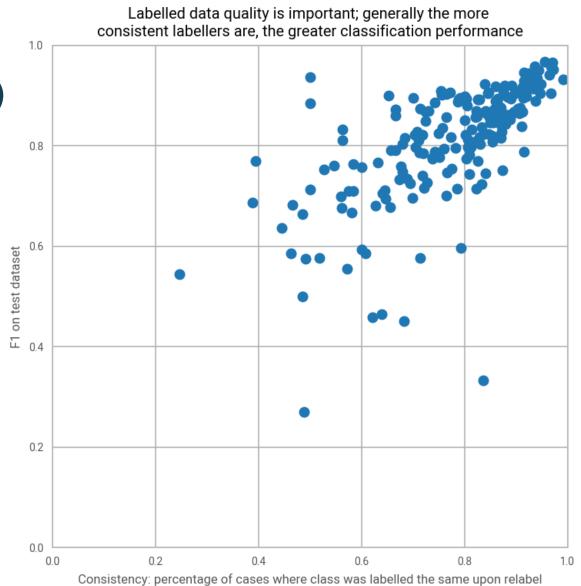
("sweater": "sweatshirt" or "jumper"?)

Started with smaller experiment: 12 labellers labelling same 313 products. (Findings in paper.)

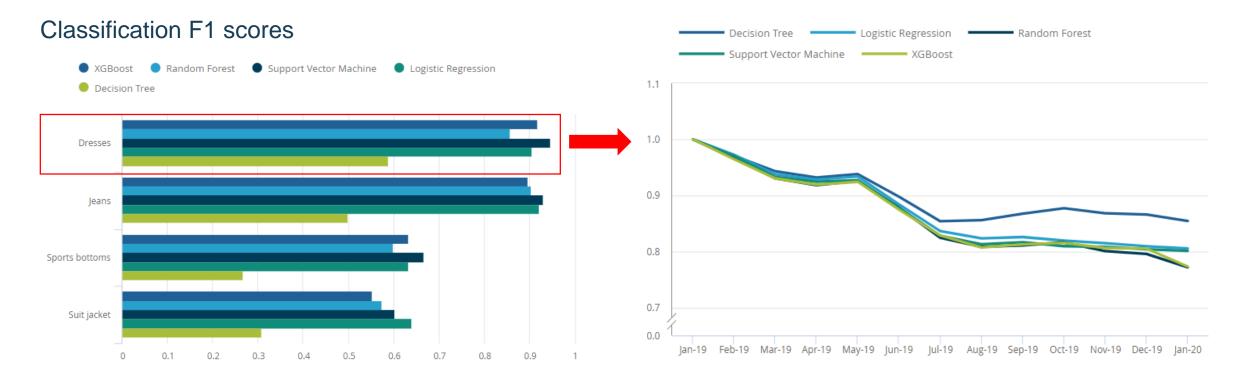
Expanded experiment to labelling 30,000 products twice. Measured consistency:

 $Consistency = \frac{Number \ products \ labelled \ same}{Number \ of \ products}$

Strong relationship between consistency and performance! Machine only as good as the data it is trained on!



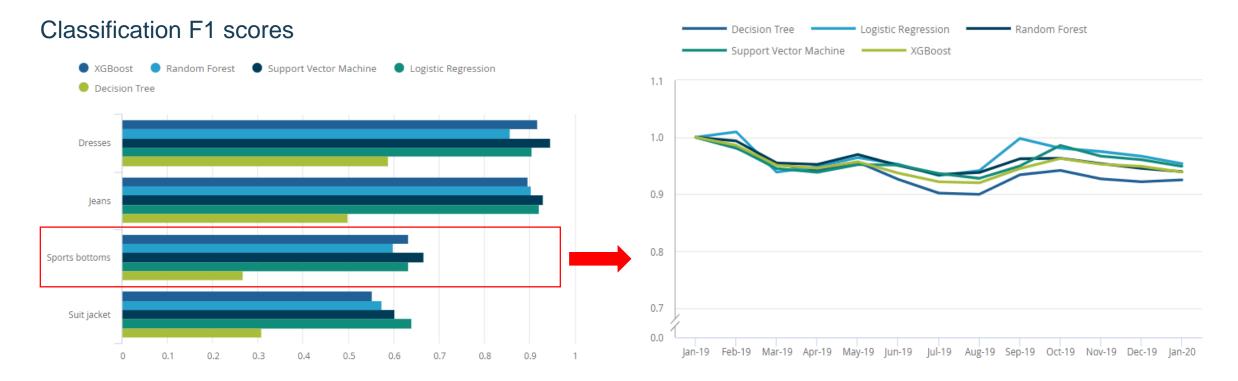
Dresses (high F1) indices



Office for National Statistics

8

Sports bottoms (low F1) indices



9

Product Grouping

Problem

Due to rapid product churn, can only use single product match in index

Product	Price, Jan	Price, Aug	
Floral winter dress 1	39		
Floral winter dress 2	38		
Floral winter dress 3	44		
Floral summer dress 1	25	20	
Floral summer dress 2		45	
Party midi dress 1	100		
Party midi dress 2		90	

Grouping – extreme examples

"Every product in single group":

Group homogeneity: low.Match rate: 1.

Group	Product	Price, Jan	Price, Aug	Price change	
1	Floral winter dress 1	39			
1	Floral winter dress 2	38			
1	Floral winter dress 3	44			
1	Floral summer dress 1	25	20		
1	Floral summer dress 2		45		
1	Party midi dress 1	100			
1	Party midi dress 2		90		
1	All dresses group	49.2	51.6	1.05	
1 	Party midi dress 2			1.05	

Note:

- Group homogeneity: in-group variance of prices.
- Match rate: propensity for inputs into indices to be available in both months

Grouping – extreme examples

"Every product is own group":

- Group homogeneity: 1.
- Match rate: low.

Note:

- Group homogeneity: in-group variance of prices.
- Match rate: propensity for inputs into indices to be available in both months

Group	Product	Price, Jan	Price, Aug	Price change
1	Floral winter dress 1	39		
2	Floral winter dress 2	38		
3	Floral winter dress 3	44		
4	Floral summer dress 1	25	20	
5	Floral summer dress 2		45	
6	Party midi dress 1	100		
7	Party midi dress 2		90	
1	Floral winter dress 1	39		
2	Floral winter dress 2	38		
3	Floral winter dress 3	44		
4	Floral summer dress 1	25	20	0.8
5	Floral summer dress 2		45	
6	Party midi dress 1	100		
7	Party midi dress 2		90	

Product grouping

"Droduct groupe":	Group	Product	Price, Jan	Price, Aug	Price change
"Product groups":	1	Floral winter dress 1	39		
	1	Floral winter dress 2	38		
 Group homogeneity: medium-high. Match rate: medium-high. 	1	Floral winter dress 3	44		
	2	Floral summer dress 1	25	20	
	2	Floral summer dress 2		45	
	3	Party midi dress 1	100		
	3	Party midi dress 2		90	
	1	Floral winter dresses	40.3		
	2	Floral summer dresses	25	32.5	1.3
Note:	3	Party midi dresses	100	90	0.9

note.

- Group homogeneity: in-group • variance of prices.
- Match rate: propensity for inputs into • indices to be available in both months

Assessment: MARS (Chessa)

 $MARS = (match rate) \times R^2$

Where:

- $(match rate) \in [0,1]$ measures match rate
- $R^2 \in [0,1]$ measures in-group homogeneity

Goal:

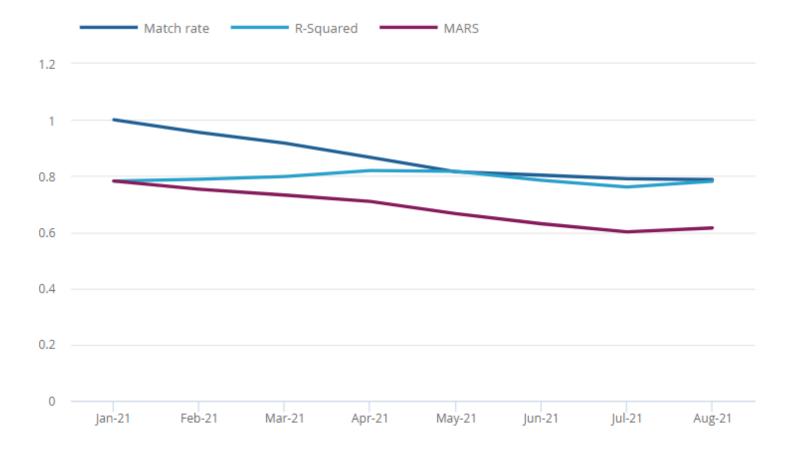
Produce groups with high MARS, balancing homogeneity and match rate

Our grouping method

- 1. Remove non-quality defining stopwords/punctuation
- 2. Rank words in chosen columns by commonality
- 3. Select top X words (X chosen to maximise MARS)
- 4. Groups are a combination of these words:

Product name	Material	Group
v-neck dress	polyester	polyester_v-neck
floral maxi dress	100% cotton	maxi_cotton
floor length maxi dress	cotton, elastic	maxi_cotton

MARS scores for women's dresses

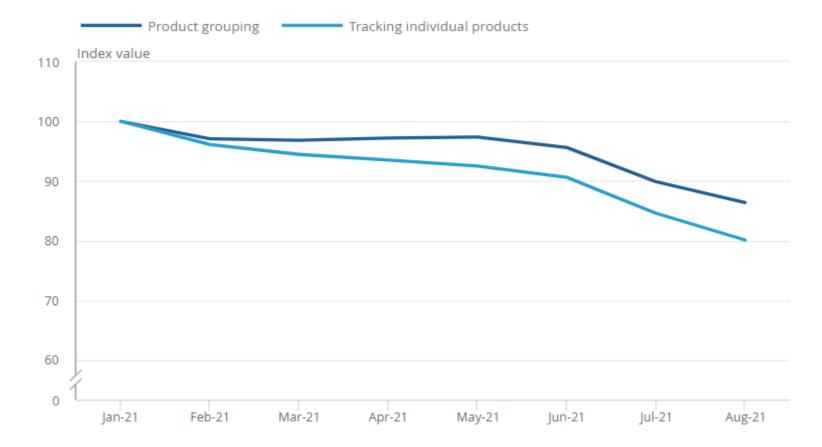


Office for National Statistics

R-squared (left); match rate (right)

Office for National Statistics

How index is affected



Office for National Statistics

Any questions?

Future work:

Classification

Productionise and efficiency gains Improve labelling consistency! Choose suitable number of consumption segments Explore precision/recall trade-off Extend time series of analysis Other pre-trained word vector models

Product Grouping

Productionise and efficiency gains Extend time series of analysis Explore product group sizes as weights (GEKS-T) Improve algorithm word choices Other measures of homogeneity beyond MARS Generalise across clothing categories