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Introduction

• What is the quality adjustment problem from a statistical

agency perspective?

• The problem boils down to this: a product is purchased in a

prior period at a certain price. In the present period, a product

with similar (but not exactly the same) characteristics has

replaced the prior period product and it is sold at a certain price.

What is the relative utility of a unit of the new product relative

to a unit of the old product?

• It can be seen that there is no unambiguous answer to this

question. There are many plausible methods for dealing with

this problem.

• In this paper, I will attempt to place several quality adjustment

methods into a common framework.

• This paper is Chapter 8 in the forthcoming CPI Theory volume.

Draft chapters are available on the IMF CPI webpages. 2



Introduction

• The paper takes a consumer demand perspective to the problem

of adjusting product prices for quality change.

• The various approaches to the problem of quality adjustment

can be seen as special cases of the general framework. This

framework is presented in section 2.

• The special cases are:

(i) the use of inflation adjusted carry forward and carry

backward prices (sections 3 and 4);

(ii)the use of hedonic regressions (sections 5-8) and

(iii) the estimation of Hicksian reservation prices (sections 9-10).

• Due to the time constraint, I will not be able to cover the third

approach in my presentation.
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The Basic Consumer Theory Framework

• Notation: Let pt  [pt1,...,ptN] and qt  [qt1,...,qtN] denote the price

and quantity vectors for time periods t = 1,...,T.

• The period t quantity for product n, qtn, is equal to total

purchases of product n by purchasers or to the sales of product

n by the outlet (or group of outlets) for period t, while the period

t price for product n, ptn, is equal to the value of sales (or

purchases) of product n in period t, vtn, divided by the

corresponding total quantity sold (or purchased), qtn.

• Thus ptn  vtn/qtn is the unit value price for product n in period t

for t = 1,...,T and n = 1,...,N.

• Initially, we assume that all prices, quantities and values are

positive; in subsequent sections, this assumption will be relaxed.

• I have in mind a scanner data context for an elementary

category.
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The Basic Consumer Theory Framework (cont)

• Let q  [q1,...,qN] be a generic quantity vector.

• In order to compare various methods for comparing the value of

alternative combinations of the N products, it is necessary that a

valuation function or utility function, f(q), exist.

• This function allows us to value alternative combinations of

products; if f(q2) > f(q1), then purchasers of the products place a

higher utility value on the vector of purchases q2 than they place

on the vector of purchases q1.

• The function f(q) can also act as an aggregate quantity level for

the vector of purchases, q.

• Thus f(qt) can be interpreted as an aggregate quantity level for

the period t vector of purchases, qt, and the ratios, f(qt)/f(q1), t =

1,..,T, can be interpreted as fixed base quantity indexes covering

periods 1 to T.
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Properties of f(qt)

• f(q) has the following properties:

(i) f(q) > 0 if q >> 0N;

(ii) f(q) is nondecreasing in its components;

(iii) f(q) = f(q) for q  0N and   0; (linear homogeneity);

(iv) f(q) is a continuous concave function over the nonnegative

orthant.

• Assumption (iii), linear homogeneity of f(q), is a somewhat

restrictive assumption.

• However, this assumption is required to ensure that the

aggregate price level, P(p,q)  pq/f(q) that corresponds to f(q)

does not depend on the scale of q.

• Property (iv) will ensure that the first order necessary

conditions for the budget constrained maximization of f(q) are

also sufficient. 6



The Aggregate Price Level Defined

• Let p [p1,...,pN] > 0N and q [q1,...,qN] > 0N be generic price and

quantity vectors with pq  n=1
N pnqn > 0.

• Then the aggregate price level, P(p,q) that corresponds to the

aggregate quantity level f(q) is defined as follows:

(1) P(p,q)  pq/f(q).

• Thus the implicit price level that is generated by the generic

price and quantity vectors, p and q, is equal to the value of

purchases, pq, deflated by the aggregate quantity level, f(q).

• Note that using these definitions, the product of the aggregate

price and quantity levels equals the value of purchases during

the period, pq. (Product Test for Levels).
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More Introduction

• Once the functional form for the aggregator function f(q) is 
known, then the aggregate quantity level for period t, Qt, can be 
calculated in the obvious manner:

(2) Qt  f(qt);   t = 1,...,T. 

• Using definition (1), the corresponding period t aggregate price 
level, Pt, can be calculated as follows:

(3) Pt  ptqt/f(qt);   t = 1,...,T.                                                      

• Note that if f(q) turns out to be a linear aggregator function, so 
that f(qt)  qt = n=1

N nqtn, then the corresponding period t 
price level Pt is equal to ptqt/qt, which is a quality adjusted unit 
value price level. 
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The Assumption of Maximizing Behavior is Introduced

• Two additional assumptions are made:

(v) f(q) is once differentiable with respect to the components of q; 

(vi) the observed strictly positive quantity vector for period t, 

qt >> 0N, is a solution to the following period t constrained 

maximization problem:

(4) max q {f(q) : ptq = vt ; q  0N}; t = 1,...,T.

• The first order conditions for solving (4) for period t are the 

following conditions: 

(5) qf(qt) = tp
t ; t = 1,...,T;

(6)      ptqt = vt ; t = 1,...,T.

• This theory dates back to Konüs and Byushgens (1926), 

Shephard (1953) (in the context of a cost minimization 

framework),  Samuelson and Swamy (1974) and Diewert (1976).
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Some Implications of Maximizing Behavior

• Since f(q) is assumed to be linearly homogeneous with respect to

q, Euler’s Theorem on homogeneous functions implies that the

following equations hold:

(7) qtqf(qt) = f(qt) ; t = 1,...,T.

• Take the inner product of both sides of equations (5) with qt and

use the resulting equations along with equations (7) to solve for

the Lagrange multipliers, t:

(8) t = f(qt)/ptqt t = 1,...,T

=1/Pt

using definitions (3).

• Thus the Lagrange multipliers for the utility maximization

problems are equal to the reciprocals of the aggregate price

levels.
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Additional Implications of Maximizing Behavior

• Thus if we assume utility maximizing behavior on the part of

purchasers of the N products using the collective utility function

f(q) that satisfies the above regularity conditions, then the

period t quantity aggregate is Qt  f(qt) and the companion

period t price level defined as Pt  ptqt/Qt is equal to 1/t where

t is the Lagrange multiplier for problem t in the constrained

utility maximization problems (4) and where qt and t solve

equations (5) and (6) for period t.

• Equations (8) also imply that the product of Pt and Qt is exactly

equal to observed period t expenditure vt; i.e., we have

(9) PtQt = ptqt = vt ; t = 1,...,T. (the product test for levels).

• Substitute equations (8) into equations (5) and after a bit of

rearrangement, the following fundamental equations are

obtained:

(10) pt = Ptqf(qt) ; t = 1,...,T. (Note the appearance of  Pt here). 11



The Path Forward

• In the following section, we will assume that the aggregator

function, f(q) is a linear function and we will show how this

assumption along with equations (10) for the case where T = 2

and N = 3 can lead to a simple well known method for quality

adjustment that does not involve any econometric estimation of

the parameters of the linear function.

• In subsequent sections, equations (10) will be utilized in both the

hedonic regression context and in the estimation of reservation

prices.

• Basically, different assumptions about the utility function will

generate different models of quality adjustment.

• Since equations (10) are so important, I repeat them here!

(10) pt = Ptqf(qt) ; t = 1,...,T.
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A Nonstochastic Method for Quality Adjustment: A Simple 

Model

• Consider the special case where the number of periods T is equal

to 2 and the number of products in scope for the elementary

index is N equal to 3.

• Product 1 is present in both periods, product 2 is present in

period 1 but not in period 2 (a disappearing product) and

product 3 is not present in period 1 but is present in period 3 (a

new product).

• We assume that purchasers of the three products behave as if

they collectively maximized the following linear aggregator

function:

(11) f(q1,q2,q3)  1q1 + 2q2 + 3q3

• where the n are positive constants. Under these assumptions, 

equations (10) written out in scalar form become the following 

equations:
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The Simple 3 Product, 2 Period Model

(12) ptn = Ptn ; n = 1,2,3; t = 1,2.

• Equations (12) are 6 equations in the 5 parameters P1 and P2 (which

can be interpreted as aggregate price levels for periods 1 and 2) and 1,

2 and 3, which can be interpreted as quality adjustment factors for

the 3 products; i.e., each n measures the relative usefulness of an

additional unit of product n to purchasers of the 3 products.

• However, product 3 is not observed in the marketplace during period

1 and product 2 is not observed in the marketplace in period 2 and so

there are only 4 equations in (12) to determine 5 parameters.

• However, the Pt and the n cannot all be identified using observable

data; i.e., if P1, P2, 1, 2 and 3 satisfy equations (12) and  is any

positive number, then P1, P2, −11, 
−12 and −13 will also satisfy

equations (12).

• Thus it is necessary to place a normalization (like P1 = 1 or 1 = 1) on

the 5 parameters which appear in equations (12) in order to obtain a

unique solution.
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The Simple 3 Product, 2 Period Model (cont)

• In the index number context, it is natural to set the price level

for period 1 equal to unity and so we impose the following

normalization on the 5 unknown parameters which appear in

equations (12):

(13) P1 = 1.

• The 4 equations in (12) which involve observed prices and the

single equation (13) are 5 equations in 5 unknowns. The unique

solution to these equations is:

(14) P1 = 1; P2 = p21/p11; 1 = p11; 2 = p12; 3 = p23/(p21/p11) = p23/P
2.

• Note that the resulting price index, P2/P1, is equal to p21/p11, the 

price ratio for the commodity that is present in both periods. 

• Thus the price index for this very simple model turns out to be a 

maximum overlap price index.
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Reservation Prices for the Missing Prices

• Once the Pt and n have been determined, equations (12) for the

missing products can be used to define the following imputed

prices ptn
* for commodity 3 in period 1 and product 2 in period

2:

(15) p13
*  P13 = p23/(P

2/P1) ; p22
*  P22 = (p21/p11)p12 = (P2/P1)p12.

• These imputed prices can be interpreted as Hicksian (1940; 12) 

reservation prices; i.e., they are the lowest possible prices that 

are just high enough to deter purchasers from purchasing the 

products during periods if the unavailable products 

hypothetically became available.

• Note that p13
* = p23/(P

2/P1) is an inflation adjusted carry backward 

price; i.e., the observed price for product 3 in period 2, p23, is 

divided by the maximum overlap price index P2/P1 in order to 

obtain a “reasonable” valuation for a unit of product 3 in period 

1.
16



Reservation Prices for the Missing Prices (cont)

• Similarly, p22
* = (P2/P1)p12 is an inflation adjusted carry forward

price for product 2 in period 2; i.e., the observed price for

product 2 in period 1, p12, is multiplied by the maximum overlap

price index P2/P1 in order to obtain a “reasonable” valuation for

a unit of product 2 in period 2.

• The use of carry forward and backward prices to estimate

missing prices is widespread in statistical agencies. For

additional materials on this method for estimating missing

prices, see Triplett (2004), de Haan and Krsinich (2012) and

Diewert, Fox and Schreyer (2017).

• The simple model explained above provides a consumer theory

justification for the use of these imputed prices.

17



Two Methods for Computing Price and Quantity Levels

• Note that the above algebra can be implemented without a

knowledge of quantities sold or purchased.

• Assuming that quantity information is available, we now

consider how companion quantity levels, Q1 and Q2, for the

price levels, P1 = 1 and P2, can be determined.

• Note that q13 = 0 and q22 = 0 since consumers cannot purchase

products that are not available.

• Use the imputed prices defined by (15) to obtain complete price

vectors for each period; i.e., define the period 1 complete price

vector by p1  [p11, p12, p13
*] and the complete period 2 price

vector by p2  [p21, p22
*, p23].

• The corresponding complete quantity vectors are by q1  [q11,

q12, 0] and q2  [q21, 0, q23].
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Two Methods for Computing Price and Quantity Levels (cont)

• The period t aggregate quantity level Qt can be calculated

directly using only information on qt and the vector of quality

adjustment factors,   [1, 2, 3], or indirectly by deflating

period t expenditure vt  ptqt by the estimated period t price

level, Pt.

• Thus we have the following two possible methods for

constructing the Qt:

(16) Qt  qt ; or Qt  ptqt/Pt ; t = 1,2.

• However, using the complete price vectors pt with imputed 

prices filling in for the missing prices, equations (12) hold 

exactly and thus it is straightforward to show that Qt = qt = 

ptqt/Pt for t = 1,2. 

• Thus it does not matter whether we use the direct or indirect 

method for calculating the quantity levels; both methods give 

the same answer in this simple model. 19



Time Product Dummy Regressions: The Case of No Missing 

Observations and Equal Weighting

• Let pt  [pt1,...,ptN] and qt  [qt1,...,qtN] denote the price and

quantity vectors for time periods t = 1,...,T.

• Initially, we assume that there are no missing prices or

quantities so that all NT prices and quantities are positive.

• We assume that the quantity aggregator function f(q) is the

following linear function:

(27) f(q)  n=1
N npn = q

• where the n are positive parameters, which can be interpreted 

as quality adjustment factors. 

• Under the assumption of maximizing behavior on the part of 

purchasers of the N commodities, assumption (27) applied to 

equations (10) imply that the following NT equations should 

hold exactly:
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Time Product Dummy Regressions (cont)

(28) ptn = tn ; n = 1,...,N; t = 1,...,T

• where we have redefined the period t price levels Pt in

equations (10) as the parameters t for t = 1,...,T.

• Note that equations (28) form the basis for the time dummy

hedonic regression model which is due to Court (1939). Note

that these equations are a special case of the model of

consumer behavior that was explained in section 2 above.

• At this point, it is necessary to point out that our consumer 

theory derivation of equations (28) is not accepted by all 

economists. Rosen (1974), Triplett (1987) and Pakes (2001) 

have argued for a more general approach to the derivation of 

hedonic regression models that is based on supply conditions as 

well as on demand conditions. The present approach is obviously

based on consumer demands and preferences only. 
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Time Product Dummy Regressions (cont)

• Empirically, equations (28) are unlikely to hold exactly.

• Thus we assume that the exact model defined by (28) holds only

to some degree of approximation and so error terms, etn, are

added to the right hand sides of equations (28).

• Here are the two key questions that are addressed in the paper:

(i) How exactly are the error terms to be introduced into the

exact equations (28)?

(ii) Should we weight equations (28) according to their economic

importance and if so, what weights should be used?

• Our approach to answering both questions was a pragmatic one.

We experimented with different ways of introducing error

terms and weights into equations (28) and reject specifications

which give rise to indexes which have awkward axiomatic or

economic properties.
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Time Product Dummy Regressions (cont)

• We will postpone the weighting problem for a while and look at
different ways of introducing the error terms into equations (28).

• Our approach will not be very rigorous from an econometric
point of view; we will simply generate different indexes as
solutions to various least squares minimization problems.

• Our first approach is to simply add error terms, etn, to the right
hand sides of equations (28). The unknown parameters,  
[1,...,T] and   [1,...,N], will be estimated as solutions to the
following (nonlinear) least squares minimization problem:

(29) min , n=1
N t=1

T [ptn −tn]2 .

• Throughout the paper, we obtained estimators for the aggregate 
price levels t and the quality adjustment parameters n as 
solutions to least squares minimization problems like those 
defined by (29) or as solutions to weighted least squares 
minimization problems that were considered in subsequent 
sections.
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Time Product Dummy Regressions: Approach 1

• The first order necessary (and sufficient) conditions for  

[1,...,T] and   [1,...,N] to solve the minimization problem

defined by (29) are equivalent to the following N + T equations:

(30) n = t=1
T tptn/t=1

T t
2; n = 1,...,N

= t=1
T t

2 (ptn/t)/t=1
T t

2 ;

(31) t = n=1
N nptn/t=1

T n
2 ; t = 1,...,T

= n=1
N n

2(ptn/n)/t=1
T n

2.

• Solutions to the two sets of equations can readily be obtained by 

iterating between the two sets of equations.

• If *  [1
*,...,T

*] and *  [1
*,...,N

*] is a solution to (30) and

(31), then * and −1* is also a solution for any  > 0. Thus to

obtain a unique solution we impose the normalization 1
* = 1.

• Then 1,2
*,...,T

* is the sequence of price levels that is generated

by the least squares minimization problem defined by (29).
24



Time Product Dummy Regressions: Approach 1 (cont)

• If quantity data are available, then using the general

methodology that was outlined in section 2, aggregate quantity

levels for the t periods can be obtained as Qt*  *qt = n=1
N

n
*qtn for t = 1,...,T.

• Estimated aggregate price levels can be obtained directly from

the solution to (29); i.e., set Pt* = t
* for t = 1,...,T.

• Alternative price levels can be indirectly obtained as Pt** 

ptqt/Qt* = ptqt/*qt for t = 1,...,T.

• If the optimized objective function in (29) is 0 (so that all errors

etn
*  ptn − t

*n
* equal 0 for t = 1,...,T and n = 1,...,N), then Pt*

will equal Pt** for all t.

• However, usually nonzero errors will occur and so a choice

between the two sets of estimators must be made.
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Time Product Dummy Regressions: Approach 1 Rejected

• From (30), it can be seen that n
*, the quality adjustment

parameter for product n, is a weighted average of the T inflation

adjusted prices for product n, the ptn/t
*, where the weight for

ptn/t
* is t

*2 /=1
T 

*2. This means that the weight for ptn/t
* will

be very high for periods t where general inflation is high, which

seems rather arbitrary.

• In addition to having unattractive weighting properties, the 

estimates generated by solving the least squares minimization 

problem (29) suffer from a fatal flaw: the estimates are not 

invariant to changes in the units of measurement.

• In order to remedy this defect, we turn to an alternative error 

specification.
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Time Product Dummy Regressions: Approach 2

• Instead of adding approximation errors to the exact equations
(28), we could append multiplicative approximation errors.
Thus the exact equations become ptn = tnetn for n = 1,...,N and
t = 1,...,T. Upon taking logarithms of both sides of these
equations, we obtain the following system of estimating
equations:

(29) lnptn = lnt + lnn + lnetn ; n = 1,...,N; t = 1,...,T

= t + n + tn

• where t  lnt for t = 1,...,T and n  lnn for n = 1,...,N. 

• The model defined by (30*) is the basic Time Product Dummy
regression model with no missing observations.

• Now choose the t and n to minimize the sum of squared
residuals, n=1

N t=1
T tn

2. Thus let   [1,...,T] and   [1,...,N]
be a solution to the following least squares minimization
problem:

(30) min ,  n=1
N t=1

T [lnptn − t − n]2 . 27



Time Product Dummy Regressions: Approach 2 (cont)

• The first order necessary conditions for 1,...,T and 1,...,N to
solve (33) are the following T + N equations:

(34) Nt + n=1
N n = n=1

N lnptn ; t = 1,...,T;

(35) t=1
T t + Tn = t=1

T lnptn ; n = 1,...,N.

• Replace the t and n in equations (34) and (35) by lnt and lnn

respectively for t = 1,...,T and n = 1,...,N. After some
rearrangement, the resulting equations become:

(36) t = n=1
N (ptn/n)1/N ; t = 1,...,T;

(37) n = t=1
T (ptn/t)

1/T ; n = 1,...,N.

• Thus the period t aggregate price level, t, is equal to the
geometric average of the N quality adjusted prices for period t,
pt1/1, ..., ptN/N, while the quality adjustment factor for product
n, n, is equal to the geometric average of the T inflation
adjusted prices for product n, p1n/1, ..., pTn/T.

• These estimators look very reasonable (if quantity weights are
not available). 28



Time Product Dummy Regressions: Approach 2 (cont)

• If *  [1
*,...,T

*] and *  [1
*,...,N

*] is a solution to (36) and

(37), then * and −1* is also a solution for any  > 0. Thus to

obtain a unique solution we impose the normalization 1
* = 1

(which corresponds to 1 = 0).

• Then 1,2
*,...,T

* is the sequence of price levels that is generated

by the least squares minimization problem defined by (33).

• Once we have the unique solution 1,2
*,...,T

* for the T price

levels that are generated by the (33), the price index between

period t relative to period s can be defined as t
*/s

*.

• Using equations (36) for t
* and s

*, we have the following

expression for the price index:

(38) t
*/s

* = n=1
N (ptn/n

*)1/N/ n=1
N (psn/n

*)1/N

= n=1
N (ptn /psn)1/N.

• This is simply the Jevons index for period t relative to period s.
29



Time Product Dummy Regressions: Approach 2 (conc)

• Thus if there are no missing observations, the Time Product

Dummy price indexes between any two periods in the window of

T period under consideration is equal to the Jevons index

between the two periods (the simple geometric mean of the price

ratios, ptn/psn).

• This is a somewhat disappointing result since an equally

weighted average of the price ratios is not necessarily a

representative average of the prices; i.e., unimportant products

to purchasers (in the sense that they spend very little on these

products) are given the same weight in the Jevons measure of

inflation between the two periods as is given to high expenditure

products.

• In the following sections of the paper, we look at generalizations

of the above model; i.e., we allow for missing observations and

introduce weighting by economic importance.
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More General Time Product Dummy Regressions

• For each period t, define the set of products n that are present in period t as
S(t)  {n: ptn > 0} for t = 1,2,...,T.

• For each product n, define the set of periods t where product n is present as
S*(n)  {t: ptn > 0}.

• The generalization of (30) to the case of missing products and the use of
weighting is the following weighted least squares minimization problem:

(40) min , t=1
T nS(t) stn[lnptn − t − n]2

= min , n=1
N tS*(n) stn[lnptn − t − n]2.

• The solution to (40) is given by:

(45) Pt*  t
* = exp[nS(t) stnln(ptn/n

*)] ; t = 1,...,T;

(46) Qt*  nS(t) ptnqtn/Pt* ; t = 1,...,T

where t  lnt for t = 1,…,T and n  lnn for n = 1,...,N.

• Thus Pt* (the period t price level) is a share weighted average of the quality
adjusted prices for period t, the ptn/n

*.

• The period t quality adjusted quantity or utility level Qt* is equal to period t
expenditures on the product group divided by Pt*.

• On the following slide, we define Qt* directly in terms of the estimated alpha
parameters.
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More General Time Product Dummy Regressions (cont)

• The t
* estimates can be used to form the aggregates using equations

(45) and (46) on the previous slide or the n
* estimates can be used to

form the aggregates using equations (47) and (48):

(47) Qt**  nS(t) n
*qtn ; t = 1,...,T;

(48) Pt**  nS(t) ptnqtn/Qt** ; t = 1,...,T;

= nS(t) ptnqtn/nS(t) n
*qtn using (47)

= nS(t) ptnqtn/nS(t) n
*(ptn)−1ptnqtn

= [nS(t) stn(ptn/n
*)−1]−1

 exp[nS(t) stnln(ptn/n
*)]

= Pt*

• where the inequality follows from Schlömilch’s inequality; i.e., a weighted 

harmonic mean of the quality adjusted prices ptn/n
* that are present in period t, 

Pt**, will always be less than or equal to the corresponding weighted geometric 

mean of the prices where both averages use the same share weights stn when 

forming the two weighted averages. 

• The inequalities Pt**  Pt* imply the inequalities Qt**  Qt* for t = 1,...,T. This 

algebra is due to de Haan (2004b) (2010) and de Haan and Krsinich (2018; 763). 
32



More General Time Product Dummy Regressions (conc)

• If the estimated errors etn
*  lnptn − t

* − n
* that implicitly appear in the weighted

least squares minimization problem turn out to equal 0, then the underlying model,

ptn = tn for t = 1,...,T, nS(t), holds without error and thus provides a good

approximation to reality. Moreover, under these conditions, Pt* will equal Pt** for all t.

• The solution to the weighted least squares regression problem defined by (40) can be

used to generate imputed prices for the missing products. Thus if product n in period

t is missing, define ptn  t
*n

*. The corresponding missing quantity is qtn  0.

• Some statistical agencies use hedonic regression models to generate imputed prices for

missing prices and then use these imputed prices in their chosen index number

formula. This imputation procedure is an alternative to the inflation adjusted carry

forward price procedure explained in sections 3 and 4.

• From the viewpoint of the economic approach to index number theory, the section 4

procedure seems to be preferable since the Fisher index used in section 4 is a fully

flexible functional form whereas the preferences that are exact for the Weighted Time

Product Dummy model must be either linear in quantities or be Cobb Douglas (in

which case the expenditure shares are constant over time and there will be no missing

products).

• However, as indicated above, if the error terms in (40) are small, the missing product

prices generated by the solution to (40) can be used with some confidence.
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Hedonic Regressions that Use Characteristics Information

• The new assumption in section 6 is that the quality adjustment factors

n are functions of the vector of characteristics zn for each product

and the same function, g(z) can be used for each quality adjustment

factor; i.e., we have the following assumptions:

(49) n  g(zn) = g(zn1,zn2,...,znK) ; n = 1,...,N.

• Thus each product n has its own unique mix of characteristics zn but

the same function g can be used to determine the relative utility to

purchasers of the products. Define the period t quantity vector as qt =

[qt1,...,qtN] for t = 1,...,T.

• Using the above assumptions, the aggregate quantity or utility level Qt

for period t is defined as:

(50) Qt  f(qt)  n=1
N nqtn = n=1

N g(zn)qtn ; t = 1,...,T.

• Using our assumption of (exact) utility maximizing behavior with the

linear utility function defined by (50), equations (10) become the

following equations:

(51) ptn = tg(zn) ; t = 1,...,T; nS(t). 34



Hedonic Regressions Using Characteristics Information 2

• Consider the following functional form for the logarithm of the g(zn) :

(52) lng(zn) = 0 + k=1
K klnznk ; n = 1,...,N.

• Define the logarithms of the quality adjustment factors n as follows:

(53) n  lnn = lng(zn) = 0 + k=1
K klnznk ; n = 1,...,N

where we have used assumptions (50) and (52). 

• Now take logarithms of both sides of equations (51) and add error terms etn to 
the resulting equations. Using equations (53), we obtain the following system 
of estimating equations:

(54) lnptn = t + 0 + k=1
K klnznk + etn ; t = 1,...,T; nS(t)

where as usual, we have defined t as lnt for t = 1,...,T. 

• Equations (54) are the equations which characterize the classic log linear time 
dummy hedonic regression model. This model was first introduced by Court 
(1939) as his hedonic suggestion number 2. It was popularized by Griliches 
(1971; 7) and others. See Triplett (2004) and Aizcorbe (2014) for hundreds of 
references to the literature on the use of this model. 

• Note that our underlying economic model, which sets the error terms equal to 
zero, assumes that the N products are perfect substitutes once they have been 
quality adjusted, where the logarithms of the quality adjustment factors are 
defined by (53). 35



Hedonic Regressions Using Characteristics Information 3

• Estimates for   [1,...,T] and   [0,1,...,K] can be obtained by minimizing
the sum of the squared errors etn which appear in equations (54). This leads
to the following least squares minimization problem:

(55) min ,  t=1
T nS(t) [lnptn − t − 0 − k=1

K klnznk]2.

• In the previous section, we noted that weighting by economic importance was
preferred (but not necessary if the fit of the corresponding unweighted
hedonic regression was good).

• The same conclusion applies in the present context. Thus if quantity
information is available (in addition to price and product characteristic
information), then it is preferable to generate  and  estimates by solving the
following weighted least squares minimization problem:

(62) min ,  t=1
T nS(t) stn[lnptn − t − 0 − k=1

K klnznk]2

• where the expenditure or sales shares stn are defined as stn  ptnqtn/iS(t) ptiqti

for t = 1,...,T and nS(t). Diewert (2003b) (2005b) considered this model for
the bilateral case where T = 2. Silver and Heravi (2005) and de Haan and
Krsinich (2014) (2018) considered the general model.

• Section 6 of the paper goes on to look at some of the axiomatic or test
properties of the weighted hedonic regressions defined above as for the time
dummy regressions defined above in section 5.
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Conclusion

The paper developed a common framework based on economic theory for dealing
with quality change. Some of the conclusions from this approach are:

• Using the theoretical framework explained in section 2 and applying it to hedonic
regressions in section 5 (when price and quantity data are available) shows that
the hedonic regression approach generates two distinct estimates for the resulting
price and quantity levels generated by the regression (unless the regression fits
the data perfectly, in which case the two methods generate identical estimates).
Thus statistical agencies will have to choose between these two alternative index
number estimates.

• The use of weights that reflect economic importance is recommended when
running hedonic regressions; see the summary of the work by de Haan and
Krsinich (2018) in section 7.

• The usefulness of the weighted time product dummy hedonic regressions (without
characteristics information) that was studied in section 5 is questionable; i.e., in
place of this model, it may be preferable to use the model explained in section 4
that used inflation adjusted carry forward and backward prices along with the
use of a superlative index number formula for matched products.

• Weighted time dummy hedonic regression models that use characteristics
information are recommended for dealing with quality adjustment problems
provided that the products are moderately or highly substitutable; see sections 6
and 7.
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Bonus Slides on Clustering (1) 

• When constructing elementary indexes using scanner data, statistical
agencies often find that product churn reduces the number of matched
products across two time periods to a low level.

• In response to this lack of matching problem, one could loosen the product
specification and declare that two or more products are effectively equivalent.

• Thus the unit value price for the elementary category that results from this
grouping or clustering strategy which will be used in later stages of
aggregation could suffer from unit value bias if in fact the aggregated
products are not perfectly equivalent.

• But how could we detect possible unit value bias? One possible way is to take
the price and quantity data for the products in scope and run a (weighted)
time product dummy regression. If the fit is pretty good, then the prices in
the group are varying in (approximately) a proportional manner and thus the
prices generated by the regression will be close to any old sensible index
number.

• If the fit is poor, then go back to the drawing board and disaggregate the
products into more homogeneous groups.

• If the fit is poor, then another alternative is to simply give up on clustering
and use a multilateral method that is base on matched models.
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Bonus Slides on Clustering (2) 

• In other words, in general, I am a fan of using a matched model methodology

whenever possible (rather than using grouping or clustering of products).

• But I can think of some counterexamples where grouping might be called for.

Example 1: William Nordhaus on the price of light. What counts is the number

of lumens that the device generates. This allows us to compare the utility of a

kerosene lamp versus an old fashion light bulb versus a new smart light bulb.

Example 2: A drug that is patented (but the patent has expired) versus a generic

counterpart. The efficacy of the drug is the same for each product so a unit value

aggregation seems to be called for. (Berndt and Griliches paper).

• Both of the above examples could be treated by clustering (or by using

characteristics hedonics where the main characteristic is lumens or the

amount of the chemical in the drug) or by just allowing the products to be

different.

• If we simply allow the products to be different, then we are simply back to the

matched model world and we do not have to make any difficult decisions.

Example 3: Clothing (in particular, fashion clothing). The problem here is that

fashion clothing has to be treated as a seasonal product but we also need to

either stratify or use hedonics so that we get some matches (versus no matches).
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