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“Empirical evidence is abundant that the Santa Claus hypothesis of homotheticity in tastes and
in technical change is quite unrealistic.  Therefore we must not be bemused by the undoubted
elegances and richnesses of the homothetic theory. …we must accept the sad facts of life and be
grateful for the more complicated procedures that economic theory devises.”    

Samuelson and Swamy, 1974.

“It is evident that we shall get nowhere if all this individuality is to run riot.  ….  We get over the
difficulty by shutting our eyes to it.”   

In Facts from Figures, by M.J. Moroney,  1953.

Abstract— Divisia indexes play major roles in the measurement of productivity, price and
output change.  Paradoxically, however, the theoretical literature finds that the use of a Divisia
index is justifiable only under an assumption that is often unrealistic. I replace this assumption
with alternatives that plausibly describe most situations in which index numbers are needed.  The
Divisia quantity index then equals a weighted combination of the standard of living indexes
implied by various possible reference price vectors.  In special cases where the weights are
everywhere non-negative, the Divisia price index equals a product of one cost of living index
(CLI) based on the initial utility level and another based on the final utility level.  The properties
of Divisia indexes can be used to understand the properties of a CLI or chained index based on
the aggregate demands of a group of consumers.

___________________________

*  The views expressed in this paper are those of the author and should not be attributed to the FDIC or
the Bureau of Labor Statistics, where I began this paper.  I am grateful to Erwin Diewert, Zvi Griliches,
Jack Reidhill and Kim Zieschang for helpful comments.



Divisia indexes play major roles in the measurement of productivity, price and output change
(Jorgenson and Griliches, 1967).  They are also closely related to the important Marshallian
consumer surplus concept (Rader, 1976; Bruce, 1977; Takayama, 1987).  Yet despite their
widespread use, the theoretical literature finds that Divisia indexes are valid only under an
assumption that is often unrealistic.  Hence, a theory of what Divisia indexes measure without
this assumption is needed to bridge this disjoint between theory and practice.

In the cost of living index context, the assumption that past authors have found necessary is
homotheticity, which means that all Engel curves are straight lines radiating out from the origin.1

Replaces this assumption with more plausible alternatives yields three main results emerge.
First, in the most general case, the Divisia quantity index equals a weighted combination of the
standard of living indexes (SLIs) implied by various possible reference price vectors.  Second, in
special cases where the weights are everywhere non-negative, the Divisia price index equals a
product of one cost of living index (CLI) based on the initial utility level and another based on
the final utility level.  Third, in cases that are still more special, the Divisia price index equals a
CLI based on some intermediate utility level. These results can be used to clarify the
interpretation of a CLI based on the aggregate demands of a group of consumers.

The organization of this paper is as follows.  Section 1 reviews CLI and SLI concepts.
Section 2 explains their relationship to Laspeyres and Paasche indexes.  Section 3 introduces
Divisia indexes and Section 4 discusses their Achilles heel, their dependence on how the
researcher specifies the path for prices and income.  Section 5 shows how a Divisia price index
can equal a CLI based on either the initial or final level of utility.  Section 6 discusses conditions
under which the Divisia price index equals a CLI evaluated at an intermediate utility level.
Sections 7 and 8 show that under less restrictive conditions the Divisia quantity index equals a
weighted average of SLIs with reference prices drawn from the path connecting p0 to p1 and the
Divisia price index equals a product of CLIs based on the initial and final utility levels.  Section
9 uses these results to show that a CLI or a chained price index based on aggregate demands
summarizes, is at least approximately summarizes, the CLIs of the individuals in the society.
Section 10 concludes.

1. ECONOMIC PRICE AND QUANTITY INDEXES

Samuelson and Swamy (1974) distinguish between “economic indexes” and Divisia indexes.
Economic indexes reflect changes in the expenditure function e(p,u), which gives the minimum
cost of achieving utility u at prices p.  The economic price index is also known as a Konüs index
or a cost of living index (CLI).  It compares the cost of achieving reference utility level ur  at the
final price vector p1 to that cost at the initial price vector p0:
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1  In the productivity context, the stronger assumption of homogeneity of degree 1 is needed to prevent scale

economies from being counted as productivity growth.
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Fixing prices at a reference price vector pr and setting u equal to the utility function u(q),
turns the expenditure function into a money metric utility function e[pr,u(q)].  The economic
quantity index, or standard of living index (SLI), uses this function to calculate the relative value
of the final consumption bundle q1 (Samuelson and Swamy,1974, p. 567).  It is:
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If q0 and q1 are optimal consumption bundles given the price-income combinations (p0‚Y0)
and (p1‚Y1), the indirect utility functions v(p0‚Y0) and v(p1‚Y1) can be substituted for u(q0) and
u(q1) in (2) to obtain a ratio of money metric indirect utility functions. The result is an index that
compares the optimal quantities at initial income and prices with the quantities that are optimal at
final income and prices.  Jorgenson (1990) calculates an index of this type.

Henceforth I will use PE(* ,ur ) as a shorthand for PE(p0,p1,ur ) and QE(* ,pr ) as a shorthand
for QE(q0,q1,pr ).  The first two arguments of PE(·) or QE(·) will be made explicit only when
necessary.

2. LASPEYRES AND PAASCHE INDEXES

Economic indexes depend on the unobservable formula for the expenditure function, but they
can be bounded by indexes that depend on observable prices and quantities.  Four combinations
of observable prices and quantities are possible.  They are:
      (p1·q0)/(p0·q0), which is the Laspeyres price index or LPI;

      (p1·q1)/(p0·q1), the Paasche price index or PPI;

      (p0·q1)/(p0·q0), the Laspeyres quantity index or LQI; and

      (p1·q1)/(p1·q0), the Paasche quantity index or PQI.

The Laspeyres indexes are upper bounds for economic indexes and the Paasche indexes are
lower bounds.  Assuming that q0 is chosen optimally, e(p0,u0) = p0·q0, where u0 = u(q0).  Also

e(p1,u0) � p1·q0, since e(p1,u0) is defined as a minimum.  Hence the ratio of expenditure
functions that equals PE(* ,u0) is less than or equal to the LPI.  Letting u1 = u(q1), similar logic

shows that PE(* ,u1) is greater than or equal to the PPI.

Price index bounds imply quantity index bounds.  Dividing the expenditure change
(p1·q1)/(p0·q0) by the LPI yields the PQI, while dividing it by PE(* ,u0) yields QE(* ,p1).  Hence

LPI � PE(* ,u0) implies that the PQI � QE(* ,p1).  Similarly, the lower bound property of the PPI

implies that the LQI is an upper bound for a standard of living index with reference prices of p0.

Some weaker bounding conditions do not require specific reference prices or utilities.  If a
budget of p0·q0 is sufficient to purchase bundle q1 at prices p0, then q0 is revealed preferred to
q1.  Hence, a Laspeyres quantity index less than or equal to 1 implies that utility has not risen:
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Similarly, q1 is revealed preferred to q0 if the Paasche quantity index is greater than or equal to
1:
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The direction of change of the standard of living index must match the direction of change of
utility.  Hence, when the LQI is less than or equal to 1, the SLI must be less than or equal to 1
and when the PQI is greater than or equal to 1, the SLI is greater than or equal to 1.  For price
indexes, this means that: (a) PPI � Y1/Y0 � CLI�� Y1/Y0; and (b) LPI � Y1/Y0 � CLI�� Y1/Y0.

3. DIVISIA INDEXES

The motivation usually given for Divisia indexes is a desire for consistency between the price
and quantity indexes.  This is important because deflating an expenditure change to get an
implicit quantity index is a common use of price indexes.  Economic indexes with the same
reference period fail to decompose expenditure changes into mutually consistent price and
quantity components.  For example, if ur = u0 and pr = p0 then QE(* ,pr )�PE(* ,ur) =

[e(p0,u1)�e(p1,u0)] /(Y0)
2, which is likely to differ from Y1/Y0.  For the price index times the

quantity index to equal Y1/Y0, pr and ur must come from different periods.  The Paasche and

Laspeyres indexes also behave in this way, because LPI � LQI or PPI � LQI equals Y1/Y0.

In contrast, Divisia indexes do decompose expenditure changes into mutually consistent price
and quantity changes. Let pt : [0,1]��n

++ be a function of t that describes a piecewise smooth
path for prices from p0 to p1.  For example, pt  might equal p0 + t(p1 – p0), a path that traverses
the convex hull of p0 and p1.  Next, let Yt define a path for income, and let qt equal q(pt ,Yt),
where q(p,Y) is a function giving the quantity vector that occurs at prices p and expenditure
level Y.  Then substituting Yt for qt·pt  shows that the Laspeyres index for a price change from pt

to pt 	 
t   equals  1 + qt·(pt 	
t  – pt)/Yt.

A chained Laspeyres price index can be used to evaluate the change from (p0,Y0) to (p1,Y1)
by breaking the path into pieces and linking in a new Laspeyres index at each breakpoint.  The
Divisia price index PD is defined as the limit of a chained Laspeyres—or, equivalently,
Paasche—price index as the linking points grow close enough together to form a continuous
line.2  The limit as 
t approaches zero of the chained Laspeyres index is:

                                                
2   Similarly, the limit of a continuously chained Hicksian surplus with a reference utility levels v(pt ,Yt ) is the

Marshallian surplus.  Thus, the choice between a Hicksian and a Marshallian surplus measure amounts to a choice of
between an unchained and a chained measure.  Criticisms of the latter measure as conceptually flawed due to a
mixing of price and utility changes are, therefore, misleading.
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Letting pt� denote �pt /� t and Y t�

denote �Yt /� t,  log[1 + qt·(pt 	 
t  – pt)/Yt] /

t has a limit as 
t approaches 0 of
qt·pt��/Yt.  Hence, of the logarithm of equation (5) is:
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A convenient way to express the integrand in equation (6) is as an expenditure-share
weighted average of rates of price change.  Let wit = pit qi (pt ,Yt) /Yt , the expenditure share for

good i.  Then  qi (pt ,Yt) pit� /Yt  = wit pit� /pi t   and qt·pt� /Yt  = wt·p
·

t, where wt  is the vector of

expenditure shares given (pt ,Yt) and p· t is a vector of the rates of price change pit� /pi t .  Equation
(6) then becomes:

(7) 
 ��
1

0
log dtP ttD pw � .

The Divisia quantity index, QD, resembles the price index.  A Laspeyres quantity index from
time t to time t+
t equals 1 + pt · [qt +
t  – qt ] /Yt .  Also, Yt 	 
t – Yt  = pt·[qt +
t  – qt ]  + qt· [pt +
t

– pt]  + [qt +
t  – qt ]·[pt +
t – pt] .  Thus, pt · [qt +
t  – qt ] /[Yt 
t] has a limit as 
t approaches zero

of  Y 
·
t – w(pt ,Yt)·p· t, where Y 

·
t denotes Y t�/Yt .  The limit of the logarithm of a sequence of

Laspeyres quantity indexes chained at intervals of 
t is, then,

(8) � �
 ���
1

0
log dtYQ tttD pw �

� .

Equations (7) and (8) are line integrals whose value depends on the path for prices and
income and on the demand system specification.  A practical way of approximating these
theoretical Divisia indexes for empirical applications is to chain at discrete intervals, using
average expenditure shares as weights.  For example, in addition to observing p0 and p1, we
might observe prices and quantities at t = 0.5.  An approximation to equation (7) based on these
observations is:

(9) PD  �  [� i (pi,0.5/pi 0)
0.5(wi 0  + wi ,0.5)][ � i (pi1/pi ,0.5)

0.5(wi ,0.5 + wi 1)]  .
In empirical contexts, the term “Divisia index” usually means a chained index of this type.

Certain formulas can give an exact value for PD when the expenditure function has a
particular form.  For instance, the Törnqvist index formula, which employs simple averages of
the initial and final shares, is used twice in equation (9).  It gives the exact value of PD  in the
case of a homothetic translog expenditure function.3  Let pit  =  pi 0(pi1/ pi 0)t  for all i.  Then wit  is

                                                
3   Theorem 2.16 in Diewert (1976) states that, given a nonhomothetic translog expenditure function, the

Törnqvist index equals PE(* ; u* ) when u* is the geometric mean of u0 and u1.  Specifying the p· t as constants makes

the nonhomothetic translog Divisia price index approximately—but not precisely—equal the Törnqvist index.
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a linear function of t because the translog model implies that expenditure shares depend linearly

on log prices.  Moreover, since p· it = log(pi1/ pi 0) is constant, wt·p
·

t is linear in t.  Since the
integral of a linear function of t equals the change in t (in this case 1) times the average of the

endpoint values of the integrand, PD = � i (pi1/ pi 0)
0.5(wi 0 + wi 1).

Another noteworthy exact formula for PD  is the Sato-Vartia index.  In the CES case, for any

i, 
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A final example of an exact formula for PD  occurs in the case of Deaton and Muellbauer’s
(1980) Almost Ideal Demand System (AIDS).  When pit  = pi 0(pi1/ pi 0)t  for all i, this model
implies that every wit is a quadratic function of t.4  Simpson’s rule therefore implies that the
integral for PD can be evaluated by putting a two-thirds weight on the expenditure shares implied
by the geometric mean of the initial and final values for prices and income.  In particular, log PD

= [1
6 w(p0,Y0) + 23 w(p0.5,Y0.5) + 16 w(p1,Y1)]·log(p1/p0), where log(p1/p0) denotes a vector with

elements of the form log(pi1/ pi 0).  This expression also gives a good approximation for log PD

for almost any other demand model when the path is straight line in log price and log income
space.

4. THE PATH DEPENDENCE PROBLEM

The advantages of Divisia indexes give them a crucial role in the theories of welfare and
productivity measurement.  Yet they also a have a problem serious enough to raise questions
about their validity: in the absence of the implausible assumption of homotheticity, the value of
the Divisia index depends on how the researcher specifies the path that prices and income take in
changing from (p0,Y0) to (p1,Y1).

5

                                                
4   I am grateful to Rob Feenstra for assistance with the AIDS model Divisia index.
5  This argument has also been used to dispute the validity of the Marshallian consumer surplus measure: see

Silberberg (1972).



6

Let the demand system be consistent with utility maximization, so that an indirect utility
function exists.  Rescaling the quantity index integrand by an “integrating factor” equal to
� log v(p,Y)/� log Y gives an expression that integrates to log u1 – log u0 regardless of the path

from (p0,Y0) to (p1,Y1).  In particular, vY(pt ,Yt )(Yt /ut) times the quantity index integrand

(1/Yt) [Y�t – qt ·p�t ] dt equals (1/ut)vY(·)[Y�t – qt ·p�t] dt, where ut = v(pt,Yt).  This, in turn, equals

d log v(pt ,Yt) since qt = -vp(·)/vY(·) by Roy’s identity.   Hence, utility that is proportional to
income to some power implies path independence for the Divisia quantity index.  Non-
homothetic demand systems lack this property because they make � log v(p,Y)/� log Y a
function of p and Y.

Hulten (1973) points out that without homotheticity a Divisia index can be made equal to any
positive value by cycling around a loop sufficiently often.  The path must, therefore, be restricted
in some way for a non-homothetic Divisia index to be meaningful.  Given utility maximization,
an integrating factor factor exists and is globally positive. (See Ville, 1951-2, p. 123.)  Hence,

considering only paths where the quantity index integrand Y 
·
t – wt ·p

·
t  nowhere changes sign

confers enough immunity to the path dependence problem to ensure that the sign of log QD

matches the sign of the utility change.  An integrand that never reverses its sign implies an
integral that either grows monotonically or falls monotonically as the path is traversed.  I
therefore term paths that have this property “monotonic”.

Of course, one would like not just the sign but also the value of the index to be uniquely
determined by the points that it is to compare, (p0,Y0) and (p1,Y1).  Unfortunately, this is
impossible because no particular path can be singled out as the “correct” one except in special
circumstances.  One such circumstance is when only one price changes.  The other is when
(p0,Y0) and (p1,Y1) generate demands on the same indifference curve.  In this case, the integrand
must equal zero everywhere for the path to be monotonic.  This means that the path must lie on
an indifference curve in price-income space from (p0,Y0) to (p1,Y1).

5.  PATHS ON AN INDIFFERENCE CURVE: DIVISIA PRICE INDEXES AS KONÜS INDEXES

When (p0,Y0) and (p1,Y1) are on distinct indifference surfaces, either of those surfaces can be
a route for a monotonic path.  A path on the u0 indifference curve yields a PD that equals
“Laspeyres-Konüs” index PE(* ,u0), while a path on the u1 indifference curve yields a PD equal

to a “Paasche-Konüs” index PE(* ,u1).  Figure 1 depicts these paths for a price change from
(0.25,2) to (3,0.5) given a constant income of 4 and a utility function of u = (q1 – 1)0.5(q2 – 1)0.5.

Both paths have two segments.  The first segment of Laspeyres-Konüs index path starts at
(p0,Y0) and ends at (p1/�1,Y0), where “p1/�1” means that some scalar �1 deflates every element of
the vector p1.  On this segment Yt always equals Y0 and pt is such that v(pt ,Y0) always equals u0.
Since this segment follows an indifference curve, it has a log price index integral of 0.  Also,
since v(p1/�1,Y0) = u0 implies that v(p1,�1Y0) = u0, �1 must equal PE(* ,u0).
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The next segment of the path runs from (p1/�1,Y0) to (p1,Y1), which means that prices move

along a ray from the origin that passes through p1.  Since every price changes by a factor of �1,

the price index integral on this segment must equal log �1 regardless of how the income path
affects the expenditure share weights.  Combining the two path segments therefore implies a
value of �1 for PD.

To obtain the Paasche-Konüs index, let the first segment of the path have prices start at p0

and move along a ray to p0�0, where the scalar��0� is such that v(p0�0,Y1) = v(p1,Y1).

Integrating over this part of the path contributes log �0� to the value of the log price index.  The
second segment of the path keeps v(pt,Y1) equal to u1 until it arrives at (p1,Y1).  The combined

integral for PD therefore equals log �0.  Moreover, since v(p0,Y1/�0) = u1, �0 equals the Paasche-
Konüs index.

If the value of QD is of no interest, a path where prices move in a smooth fashion from p0 to

p1 can be used to generate a PD that equals �1 or �0.  On these paths, instead of keeping wt ·p
·

t

equal to 0, income is adjusted to keep the log quantity index integrand equal to 0.  Holding utility
constant effectively results in the integration of a Hicksian (or compensated) demand function.
This yields a Konüs index because the integral of a Hicksian demand function is an expenditure
function.  The following propositions consider paths of this type.

PROPOSITION 1:  The Divisia price index evaluated with income path Yt = e(pt‚ u0) equals the
Laspeyres-Konüs index PE(* ,u0).

PROOF:  By the definition of PE(* ,u0),

(10) log PE(* ,u0)  =  
 �
�1

0

0),(log
dt

t

ue tp

Shepard’s lemma implies that q[pt ‚ e(pt‚ u0)] equals �e(p,u0)/�p  evaluated at p = pt.
Consequently,
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Equation (7) implies that the log Divisia price index evaluated with the income path in question
equals the integral of the right side of equation (11). QED

The next proposition states that the Divisia index equals PE(* ,u1) when the consumer’s
income path keeps utility at u1 as relative prices change.

PROPOSITION 2:   The Divisia price index evaluated with Yt = e(pt‚ u1)  equals the Paasche-

Konüs index PE(* ,u1)���for�the price change from p0 to p1.

PROOF:  Analogous to the proof of Proposition 1.
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6.  DIVISIA INDEXES AS INTERMEDIATE UTILITY CLI S WHEN ENGEL CURVES ARE GLOBALLY

CONVEX OR GLOBALLY CONCAVE

A Divisia price index based on a monotonic path evaluates the price change using utility
levels that vary from u0 to u1.  One might, therefore, suppose that a path that holds income
constant and allows only one price to change would nearly always imply an intermediate utility
CLI interpretation for the Divisia index.  The following two examples show that even simple
departures from homotheticity can prevent this from happening.  Since luxury status is
presumably more common at high prices, the example that has PD below the lower CLI may be
more representative of the usual state of affairs.  Calculation details for the examples are
relegated to the appendix.

For the first example, let the indirect utility function be (Y – p1 – p2)(p1)
-0.5(p2)

-0.5, which
arises from the utility function underlying Figure 1.  Let p1 rise from 0.5 to 1.5 with Y constant at
3.  Then PE(* ,u0) equals 1.699, PE(* ,u1) equals 1.677, but PD equals 1.704.  Figure 2 shows why

both CLIs give less weight to the price increase than PD.  It shows the compensated integrand of
Proposition 1, q1[p, e(p, u0)] /e(p, u0), as the line that starts out highest and the compensated

integrand of Proposition 2, q1[p, e(p, u1)] /e(p, u1), as the line that starts out lowest.  These lines
cross at p1 = 1 because good 1 is a luxury below this price and a necessity above it.  The ordinary

integrand q1(p, Y)/Y  is always between the compensated integrands, but as utility approaches u1

it switches from being close to the u0 compensated integrand to being close to the u1 integrand.  It
therefore integrates to a higher value than either of the functions that bracket it.

The second example comes from Hausman’s (1981) paper on Hicksian consumer surplus
measures for linear demand curves.  Hausman’s gasoline example has q = -14.22p + 0.082Y +
4.95, where Y = $720 per month.  The $0.75 to $1.50 price change that Hausman considers
implies a path entirely in the luxury range.  Hence PD, which equals 1.0513, is between PE(* ,u1)

= 1.0510, and PE(* ,u0) = 1.0516.  On the other hand, below 34.8¢ per gallon gasoline becomes a

necessity.  A price change from 20¢/gallon to 50¢/gallon therefore implies a PD below both CLIs.
In particular, PD = 1.02489 and PE(* ,u0) = PE(* ,u1) = 1.02490.  Hence no u* exists in [u0,u1]

such that PE(* ,u*) = PD.

Most non-homothetic demand systems have a region where a good has concave Engel
curves, which make it a necessity, and another region where that same good has convex Engel
curves, which make it a luxury.  Movements from one region to the other cause a reversal in the
order of the u0 and u1 compensated integrands.  In the above examples, this allows the ordinary

Divisia integrand wt·p
·

t to integrate to a value outside of the range of PE(* ,u) for u � [u0,u1].  On

the other hand, the following proposition states that all the Engel curves bending the same way is
a sufficient condition for PD to equal an intermediate utility CLI.
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PROPOSITION  3:  Let only one price change, and let the affected good not change status
between luxury and strict necessity anywhere in the region bounded by the segments of the u0

and u1 indifference curves that surround the path.  Then PE(* ,u* ) = PD for some u* � [u0,u1].

PROOF:  Case (i):  (pi1 –  pi0)[ �wi(pt‚Yt) /�Yt]  �  0 � t� [0,1], where good i’s price is
assumed to be the one that changes.  Either good i is a luxury with a rising price or a necessity
with a falling price.  If it is a luxury then it has a smaller budget share at lower utility levels and
u1 <  u0.  If good i is a necessity, then it has a larger budget share at lower utility levels and u0 <
u1.

Let w0t  denote w[pt‚ e(pt ‚ u0)] and w1t  denote w[pt‚ e(pt ‚ u1)].  Then  w1t·p
·

t � wt ·p
·

t � w0t·p
·

t

� t� [0,1].  Proposition 1 says that w0t·p
·

t integrates to log PE(* ,u0), and Proposition 2 says that

w1t·p
·

t integrates to log PE(* ,u1). Hence, integrating the three terms in the inequality gives: log

PE(* ,u1) �� log�PD �  log PE(* ,u0).  By continuity of PE(* ,u) in u, this implies the existence of a

u* in [u0, u1] such that PE(* ,u* ) = PD..

Case (ii ): (pi1 –  pi0)[ �wi(pt‚Yt) /�Yt]  �  0 � t� [0,1].  Either good i is a necessity with a

rising price or a luxury with a falling price.  In this case, w0t·p
·

t � wt·p
·

t � w1t·p
·

t � t� [0,1].

Integrating  then shows that PE(* ,u0) ��PD � PE(* ,u1).  Continuity again implies the existence of

a u*  such that PE(* ,u* ) = PD. QED

The globally identical curvature condition of Proposition 3 is satisfied by two important
models.  They are the non-homothetic translog model and Deaton and Muellbauer’s (1980)
AIDS model.  Indeed, for these models, any path that follows a straight line in log price space
and keeps ut in between u0 and u1 will generate a PD with an intermediate utility CLI

interpretation. These models imply that �wt /�Yt  is proportional to vector of constants.  This

precludes reversals in the order of w0t·p
·

t  and w1t·p
·

t  if p
·

t  is a vector of constants.

7. DIVISIA QUANTITY INDEXES AS WEIGHTED AVERAGES OF SLIS

WHEN ENGEL CURVES HAVE UNIFORM CURVATURE

Goods can be luxuries at some prices and necessities at others without affecting the
interpretation of a Divisia quantity index as a weighted average of economic indexes that have
reference prices drawn from the path.  A weighted average interpretation for the quantity index
requires only that regions of convex curvature and regions of concave curvature not occur on the
same Engel curve.  In a paper on revealed preference theory, Freixas and Mas-Colell (1987) use
the term “uniform curvature” for this condition.
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Assuming that u1 � u0, the weighting function that generates this average is the derivative of a

function Ft  that measures the relative distance of the ordinary price index integrand wt·p
·

t from

the utility u0 compensated integrand w0t·p
·

t .   This generally means that points on the path where
utility is changing fastest have the highest weights, while points where the path is moving along
an indifference curve have zero weights.  The path dependence problem is thus a reflection of the
fact that different paths imply different weighting schemes for combining the values of QE(* ,pt).

Let �·t = wt·p
·

t  and let �· t = w0t·p
·

t , which is the time derivative of the logarithm of �t  =

PE(p0,pt ‚ u0) = e(pt ‚ u0)/Y0.  Similarly, let �· t = -w1t·p
·

t , where �t = PE(pt ‚ p1,u1), or Y1/e(pt ‚ u1).
Finally, define Ft as a continuously differentiable monotonic function from [0,1] to [0,1] that

solves the equation �·t = (Ft)(-�
·

t) +  (1 – Ft)�
·

 t.  At points where �· t �  -�· t,

(12)
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At points where �· t � -�· t,  to preserve continuity Ft must equal the limit of [�·  – �· ] /[ �· �– �·  ] as �

approaches t if this limit exists.  (This limit will exist if �· t � -�· t almost everywhere.)  If �· t equals

-�· t everywhere, as it would in the homothetic case or if all prices changed by the same
proportion, let Ft = t.

For an important class of demand systems that includes the AIDS and non-homothetic
translog models, the appendix shows Ft is simply the relative change in utility when the path
reaches the point (pt ,Yt):

(13)
01

0

uu

uu
F t

t �
�

�

The class of demand systems that yield equation (13) is known as the “PIGLOG” class.
Muellbauer (1975) uses this term for models where the element of w(·) for any good i has the
form
(14) wi(p,Y)  =  g(p,Y)ai(p) + bi(p)
with g(p,Y) = log Y.

The only other case where prices have no effect on g(·) has g(·) = Y!.  Muellbauer terms this
“PIGL” (for “price independent generalized linear”).  In the PIGL case, Ft equals the relative
change in a monotonic transformation of a money metric utility function:

(15)
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As an illustration of the calculation of Ft, let pt = (2t,2-t) connect p0 = (1,1) and p1 = (2,0.5),

with Y constant at 4.  Also, let the demand functions be: q1 = 0.5 + 0.5(Y – p2)/p1; and q2 = 0.5 +

0.5(Y – p1)/p2.  These demands arise from the indirect utility function (Y – p1 – p2)(p1)
-0.5(p2)

-0.5,

so u0 = 2 and u1 = 1.5.  Solving for e(pt,u0)/e(p0,u0) shows that  �t = (2 + 2t + 2-t)/(2 + 1 + 1).

Consequently �· t = (log 2)(2t – 2-t)/(2 + 2t + 2-t).  Similarly, �t = (1.5 + 2 + 0.5)/(1.5 + 2t + 2-t),

and� -�· t = (log 2)(2t – 2-t)/(1.5 + 2t + 2-t).  Finally, an expression for �·t  is:
(16)

� � � � � � )2(log22
4

1
)2log()()(

2

1

2

1
)2(log)()(
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1
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Substituting the expressions for �· t, -�· t and �·t into equation (12) gives:

(17)  
11
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Incidentally, for this example PE(* ,u0) = 1.125, PD = exp(0.125), or 1.133, and PE(* ,u1) = 1.143.

The next proposition expresses log QD using the derivative of Ft to weight the logarithmic

SLIs that have a pr drawn from the price path { pt ;  0 �  t � 1} .  If  all the weights are non-negative
the expression defines a weighted average of the SLIs.

PROPOSITION 4:  Assuming u1 � u0, let ft  be the derivative of a function Ft that solves the

equation �·t  = Ft(-�
·

t) + [1 – Ft]�
·

t , with F(0) = 0 and F(1) = 1.  Then

(18) dtf
ue

ue
Q t

t

t
D 
 "

#

$
%
&

'
�

1

0
0

1

)‚(

)‚(
loglog

p
p

  .

The Divisia quantity index uses the weighting function ft  to combine all the standard of living

indexes that have a reference price vector of pt  for a t� [0,1].

PROOF:  From equation (8),

(19) log QD  =  log(Y1/Y0) – ()
*+

�·t dt .

Substituting -Ft�
·

t +  [1 – Ft]�
·

t  for �·t gives:

(20) log PD  =  ()
*+

 { -Ft�
·

t +  [1 – Ft]�
·

t}  dt .

Now integrate the first term inside the brackets in equation (20) by parts:

()
*+

  -Ft�
·

t dt  =  -Ft [log �t],)
,+

   +  ()
*+

 log �t ft dt

(21)  =   ()
*+

 log �t ft dt .
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Next integrate the second term inside the brackets in equation (20) by parts:

()
*+

  [1 – Ft] �
·

t dt  =  [1 – Ft][ log �t],)
,+

   +  ()
*+

 log �t ft dt

(22) =   ()
*+

 log �t ft dt .

Substituting for the two components of the integral in equation (20) now gives:
(23)
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Substituting into equation (19) then establishes the desired result.
QED

Proposition 4 shows that the Divisia quantity index has a satisfactory interpretation as an
average SLI if Ft is monotonic.  For PIGLOG demands, Ft is monotonic if and only if ut is
monotonic.  For PIGL demands, equation (15) shows that changes in ut along the path have a
first order effect on Ft but changes in pt have a second order effect that depends on a cross-partial
derivative with respect to u and p.  This means that Ft will be monotonic if the path makes ut

strongly monotonic, but Ft can be non-monotonic if the path nearly parallels an indifference
curve.  In the latter case, however, the magnitude of the distortion from the negative weights on
some of the log QE(* ,pt) will be slight because log QE(* ,pr ) � 0 regardless of the value of pr

when u0 � u1. Moreover, we know that any monotonic path will give a result on the correct side
of 0.

PIGL and PIGLOG demand systems are special cases of the kind of individual demand
systems that cause the Weak Axiom of Revealed Preference (WARP) to hold in the aggregate
given an income distribution that is independent of prices.  In particular, Freixas and Mas-Colell
(1987) find that the two conditions for WARP to hold in the aggregate are: (a) the expenditure
shares have the functional form of equation (14)6; and (b) Engel curves extended by straight
lines from q(p,Ymin) to the origin do not include both strictly convex and strictly concave
regions.7  If g(p,Y) is C3, condition (b) implies that g(p,Y) is monotonic in Y for all
Y� (Ymin,Ymax).  As in equation (15), Ft then equals the relative change in a monotonic
transformation of a money metric utility function.  Hence, Freixas and Mas-Collel’s conditions
have similar implications to PIGL.  A strongly monotonic ut guarantees a monotonic Ft, but a
path that almost runs along an indifference curve may not.

                                                
6   Lewbel (1991) classifies demand systems based on the rank of the space spanned by their Engel curves.

Equation (14) implies that the demand system is rank 2.  Homothetic demand systems are rank 1.

7   Another way of stating this second condition is that  
�2qi(p‚Y)

�-Y
  cannot change sign at any Y� (Ymin,Ymax) or

have the opposite sign from  
� wi(p‚Y)

�Y
 evaluated at Ymin.
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8.  PD AS A COMBINATION OF LASPEYRES-KONÜS AND PAASCHE-KONÜS INDEXES

If QD has a weighted average interpretation, continuity of QE(* ,pt) in t implies the existence

of a t*  � [0,1] such that QE(* ,pt* ) = QD.  Duality of price and quantity indexes then implies that

�t* � �t* = PD.  Thus under the weak conditions that the path is monotonic and does not pass
through a region where the Engel curves have inflection points, the Divisia price index evaluates
part of the price change from p0 to p1 at utility level u0 and the rest of the change at utility level
u1.  The next proposition formalizes these notions.

PROPOSITION  5:  Let Ft be monotonic.  Then: (a) there exists a t* � [0,1] such that an SLI
with reference price vector pt* equals the Divisia quantity index; and (b) chaining a Laspeyres-
Konüs index for the change from p0 to pt* and a Paasche-Konüs index for the change from pt* to
p1 gives the Divisia price index.

PROOF:  By Proposition 4, a monotonic Ft implies that log QD is a weighted average of the
log QE(* ,pt).  It must therefore be the case that:

(24) min
t�[0‚1]

 [QE(* ,pt)]  �  QD  �  max
t�[0‚1]

 [QE(* ,pt)] .

Since the expenditure function is continuous in prices, QE(* ,p) is a continuous in prices.

Moreover, by assumption, pt is continuous in t.  Therefore QE(* ,pt) is a continuous function of t.

Inequality (23) then implies existence of a t* � [0,1] such that QE(* ,pt* ) = QD.

Part (b) of Proposition 5 follows from the fact that log PD = log(Y1/Y0) – log QD
  = log �t*  +

log �t* .  QED

When Ft is not monotonic over the entire range of t, the path can be broken at any point
where ft changes sign to obtain three or more segments that are internally monotonic.  Path
without undulations or loops rarely have more than one region where Ft declines.  Let t1 and t2 be

the bounds of such a region, meaning that ft � 0 for 0 � t � t1, ft . 0 for t1 . t . t2, and ft � 0 for t2
� t � 1.  Then there exist t1* � [0, t1],  t2* � (t1, t2) and t3* � [t2, 1] such that:

log QD  =  Ft1 log QE(* ,pt1*  )] +  [Ft2 – Ft1] log QE(* ,pt2*  )

(25)   +  [1 – Ft2       
] log QE(* ,pt3*  ) .

Equation (25) implies that the Divisia quantity index equals the product of three SLIs raised
to powers that sum to 1.  The first of these values the change from u0 to u1 based on a reference
price from the first segment of the path, the second takes its reference price from the second
segment of the path and has a negative power, and the third takes its reference price from the
region where Ft resumes rising.  If the index with a negative exponent is far outside the range of
the indexes with positive exponents, QD may differ from every QE(* ,pt).
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9. AN APPLICATION TO THE “R EPRESENTATIVE CONSUMER” PROBLEM

Official Consumer Price Indexes attempt to summarize the cost of living changes of large
groups of consumers with diverse income levels and preference structures.  A practical solution
to the group CLI problem is to calculate a cost of living index for a “representative consumer”
whose expenditure patterns mimic those of the group as a whole.  Despite the common sense
appeal of this procedure, theorists have viewed it as unjustifiable (Kirman, 1992; Lewbel, 1994,
p. 1834).

Pollak (1981) offers two theoretical solutions to problem of how to aggregate over
consumers.  The “social cost of living index” uses a social welfare function to calculate the cost
of attaining a reference level of social welfare at p0 and p1.  Jorgenson (1990) fleshes out this
proposal and implements it empirically.

The second possible solution is based on Scitovsky contours, which hold constant the cost to
a hypothetical social planner of keeping every consumer in the group at a reference utility level.
For example, Pollak’s (1980, p. 275;1981, p. 328) “Scitovsky-Laspeyres” index equals the
relative cost at prices p1 of keeping all consumers at the utility level they had when prices
equaled p0.  The ordinary Laspeyres index is an upper bound for the Scitovsky-Laspeyres index.
Also, the Paasche index is a lower bound for a Scitovsky-Paasche index, which uses consumers’
period 1 utilities.

Consider, for example, a society of two consumers with identical constant incomes of Y.  Let
consumer A buy only good 1 and consumer B buy only good 2.  Since the aggregate expenditure
shares are constant, the society has a representative consumer who has Cobb-Douglas

preferences and a CLI that equals the geometric mean of price relatives, or /2�0.5
–––––

.  Now let p0

= [1 2] and p1 = [2 1].  To have the same utility as at time 0, consumer A must receive Y units of

good 1 at time 1 and B must receive Y/2 units.  The Scitovsky-Laspeyres index therefore equals
[2Y + (Y/2)] /2Y, or 1.25.  The Scitovsky-Laspeyres index is an arithmetic mean of individual
consumers’ CLIs.  Also, the Scitovsky-Paasche index is a harmonic mean of individuals’ CLIs,
or 0.80.

An important axiomatic property for index numbers is the time-reversal test, which requires
consistent treatment of the reverse of the original price change.  This means that the Scitovsky-
Laspeyres index should value the reverse change from [2 1] to [1 2] as a 20 percent decrease.
Instead, it deems the reverse change to be as much of an increase as the forward change.  In view
of the well-documented tendency of arithmetic means to cause trouble in index number contexts,
the poor axiomatic properties of Scitovsky-Laspeyres index are not surprising.

One way to pass the time reversal test is to use a Fisher index, which equals a geometric
average of the Laspeyres and Paasche indexes.  Diewert (1983, p. 191) shows that a group price
index in between the Paasche and Laspeyres indexes tracks the cost of staying on a Scitovsky
contour that uses some set of intermediate utility levels.  Thus, Scitovsky contours can furnish a
conceptual underpinning for using the Fisher index as a measure of a group CLI.
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Nevertheless, the cost of living index formula for the representative consumer—when one
exists—has even better axiomatic properties than the Fisher index.  In particular, the CLI
formula satisfies transitivity tests when it is chained that the Fisher index will generally not
satisfy.  Indeed, a Scitovsky contour argument cannot be used to justify a chained index.
Moreover, the CLI formula may be simpler than the Fisher formula.  Given the constant
expenditure shares of the above example, the Fisher index equals a geometric mean of identically
weighted arithmetic and harmonic means of the price relatives.  Applying the geometric mean to
the price relatives themselves seems more natural and straightforward than this complicated
procedure.

To avoid complicated questions that are tangential to the concerns of the present paper, I
assume that consumers have constant shares of aggregate income.  These questions arise
because, if the income distribution varies with the price structure, aggregate demands may reflect
producer behavior rather than consumer behavior.8

If individuals have constant shares of aggregate income and individual preferences are
homothetic but not necessarily identical, the representative consumer’s CLI has an interpretation
as a social cost of living index of Pollak’s first type.  The social welfare function that underlies
this social CLI is a geometric mean that weights individuals’ utilities in proportion their
incomes.9  In addition, Blackorby and Russell (1993) have shown that giving consumers fixed
proportions of aggregate income can maximize a social welfare function if consumers have
certain types of PIGLOG or PIGL expenditure functions that need not be identical.  This implies
existence of a representative consumer who also has PIGLOG or PIGL preferences.  The CLI of
this representative consumer again has an interpretation as a social cost of living index.

The formula that furnishes the representative consumer’s CLI has an important alternative
interpretation.  As a social Divisia index, this formula is as an average of Divisia indexes of the
members of the society.  The market-level Marshallian demand function of a group of consumers
who face common prices is the sum of the individual consumers’ Marshallian demand functions.
Since Divisia indexes are based on Marshallian demand functions, the logarithmic Divisia index
implied by market-level demands equals a weighted average of individual consumers’ log
Divisia indexes, where the weights are consumers’ shares of aggregate income if these are
constant.

                                                
8   In an endowment economy, a redistribution of income and a reversal of this redistribution will generally both

generate positive sums of compensating variations because in this circumstance equilibrium prices and quantities
reflect producers’ substitution between outputs rather than consumers’ substitution between inputs.  This
phenomenon is known as the Boadway paradox.

9  To be precise, the individual utility functions must be linear homogeneous for this to work, but any
homothetic utility function is observationally equivalent to a linear homogeneous one except in situations that reveal
the degree of risk aversion.  This follows from results in Eisenberg (1961) or Jerison (1994).  Representative
consumer results on aggregating discrete choice models in Anderson, de Palma and Thisse (1992) and Feenstra
(1995) are special cases of this.



16

When individual preferences are neither homothetic nor of the types considered by
Blackorby and Russell, a representative consumer will fail to exist or exist but violate the Pareto
principle (Jerison, 1994.)  In the former case, a representative consumer’s CLI is, of course,
unavailable, but social Divisia indexes still exist.  The major difficulty with these indexes is that,
with three or more consumers and goods, a path that is a closed loop may have a positive
integrand for log QD at every point.  Although this implies some inconsistency between the
indifference curves of different subspaces, as long as loops are avoided the practical magnitude
of the distortion is usually slight.

The possibility of violations of the Pareto principle is, however, the main source of theorists’
opposition to the use of the representative consumer for normative purposes.  A violation of the
Pareto principle  occurs when the aggregate demands imply a positive log QD while every
consumer suffers a welfare loss.  Violations of the Pareto principle are possible either with or
without a representative consumer because a path that keeps the integrand for the aggregate log
QD positive at every point may imply integrands for individual consumers that change sign.  In
particular, although some consumer must have a positive quantity index integrand whenever the
aggregate integrand is positive, the identity of the consumers with positive integrands may
change from point to point.  When individual consumers all have non-monotonic paths, they can
all have a log QD that has the wrong sign.

Nevertheless, micro level consumption data are so often unavailable or impractical to use that
if applied economists are to be forbidden from basing welfare judgments on aggregate data, our
discipline will be of little value in many practical situations.  Moreover, however disturbing
violations of the Pareto principle may be, they do not imply the presence of large distortions in
the aggregate Divisia price and quantity indexes.  Pareto principle violations occur when the path
is nearly parallel to individual consumers’ indifference curves.  In this circumstance, the
magnitude of the distortion will be small in the absence of loops because every reference price
vector pt will yield an SLI with an absolute value near 0.  Furthermore, in the more usual
circumstance of a path with a strongly monotonic effect on welfare, every consumer will have a
log QD that is a proper average of valid SLIs.  In particular, when Laspeyres or Törnqvist index
formula based on aggregate data is chained at points that do not involve price oscillations or
loops, the result will generally be a reasonable summary statistic for individual consumers’ cost
of living or standard of living changes.

10. CONCLUSION

Samuelson and Swamy (1974, p. 592) conclude by suggesting that “one must not expect to
be able to make the naïve measurements that untutored common sense always longs for.”  Here I
have attempted to show that the non-homothetic Divisia index, which seems to be the subject of
this remark, is more justifiable than has been supposed.  This is fortunate, since the non-
homothetic Divisia index often provides the most realistic description of the theoretical concept
that empirical index numbers tend towards.
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The problem with non-homothetic Divisia indexes is their dependence on the researcher’s
choice of a path.  Here I have shown that different paths correspond to different weighting
schemes for possible reference price vectors in the SLI.  Points on the path where utility is
changing fastest in a forward direction generally have the highest weights, and points where
utility is moving backwards generally have negative weights.  A path where prices and income
move monotonically towards their final configuration is unlikely to include a significant region
of negative weights.  The Divisia quantity index is then a weighted average of the SLIs that use
the points in between p0 and p1 as reference price vectors.  Also, the Divisia price index
effectively uses a Laspeyres-Konüs index to value part of the price change and a Paasche-Konüs
index to value the rest of it.

In numerical examples, all paths that avoid swerves and loops invariably yield very similar
values for the Divisia index.  This is not surprising, since any such path is likely to provide a
reasonable welfare change measure.  A practical caveat for users of chained indexes is, however,
that paths containing kinks or loops may not yield an index with a sensible interpretation.  In
particular, links that coincide with a back and forth motion of prices can, over time, greatly
distort a chained index.  Consequently, chaining more often than annually should be avoided
when prices have seasonal fluctuations. Linking should instead be timed to occur when the
structure of relative prices is as close to its starting point as possible.

A Divisia index can be used to investigate the meaning of chained or Törnqvist indexes
based on market-level demand curves because these demand curves imply a log Divisia index
that is a weighed average of individual consumers’ log Divisia indexes.  The Divisia price index
calculated from aggregate data is usually an average or summary of individual consumers’ CLIs
unless the path contains kinks or loops.  Under circumstances where it is not an average CLI, the
distortion will be small.

This is not to deny that a detailed examination of the distribution of individuals’ CLIs would
yield valuable information obscured by a single, aggregate statistic.  The point is simply that the
practical, common-sense procedures based on aggregate data are more justifiable than the
theorists have supposed.
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Appendix

Example of a Divisia Index for a Stone-Geary Demand System:   With two goods, the
Stone-Geary indirect utility function is: v(p,Y) = (Y – p101 – p202)(p1)

�11(p2)
- (1�11).  The

expenditure share of good 1 then equals:

(A-1) w1(p,Y)  =��11(1 – p202/Y) + (1 – 11)(�01/Y) p1.

Let p1 change from p1,0 to p1,1 while all other variables remain constant.  Solving for the Divisia
price index gives:

(A-2)  log D  =  11(1 – p202/Y) log(p1,1/p1,0)  +  (1 – 11) 01( p1,1 – p1,0)/Y.

Evaluating e(p1,u0) gives:

(A-3) p1,101 + p202  + u0(p1,1)
11(p2)

(1�11)  =  p1,101 + p202  + (Y – p1,001 – p202)(p1,1/p1,0)
11 .

The Laspeyres-Konüs index is, therefore,

(A-4)
Y

ppppYpp
L

1)/)(( 0,11,12210,12211,1
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Similarly, the Paasche-Konüs index is,

(A-5)
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Let  01 = 02 = p2 = 1 and let 11 = 0.5. Good 1 switches status from luxury to necessity when p1

equals 2
1

2

1

1

1
p
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�
.  The value of this expression—which in the present case equals 1— must lie

near the midpoint of [p1,0, p1,1] for D to exceed both L and 2.  Therefore let p1,0 = 0.5 and  p1,1 =

1.5.  Also, let Y = 3.  We then have L = [2.5 + 1.5(30.5)]/3, or 1.699, and  2 = 3/[1.5 + 0.5(3-0.5)],
or 1.677.  Yet D = exp{ (1/3) log 3 + 1/6} , or 1.704.

The economic price index is monotonic in ur for  ur � [u0,u1], since it equals,

(A-6)
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Hence, there exists no ur � [u0,u1] that makes EPI(p0,p1,u
r ) equal a D that exceeds both L and

2.  In fact, given the assumptions, the ur  corresponding to D is 2.85, while  u0 = 2.121 and  u1 =
0.408.
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Note that D would have been in between L and 2 if the price had changed from 0.5 to 1 or
from 1 to 1.5.  For a price change from 0.5 to 1 we have 2 < D < L, with index values of:  L =
1.374;  2 = 1.359; and  D = 1.369.  Letting the price change from 1 to 1.5 reverses the
inequalities, with  L = 1.242, 2 = 1.246, and  D = 1.244.

Example of a Divisia Index for a Linear Demand Curve:  Assume that only good i changes
price and that its demand function is:  qi(pi,Y) = 3pi + �Y + 0.  Good i becomes a luxury at prices

above -0/3. Hausman (1981) shows that the conditional expenditure function ê(pi,u) is:

(A-7 ) � �	�
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� 		�� /
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)exp(),(ˆ iii pupupe

If income is constant, log D is just A/Y, where A denotes the Marshallian surplus.

Integrating qi(pi,·) shows that A = (3�p�i + �Y + 0)(pi1 – pi0), where�p�i  denotes the average of pi1

and pi0, the initial and final values of pi.  Hence
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Define u0 as the solution to ê(pi0,u0) = Y.  Then evaluating ê(pi1,u0)/ê(pi0,u0) gives a
Laspeyres-Konüs index of:

(A-8)
�

	�



�

	�


�

Y

p

Y

p
ppL ii

ii

		
�"#

$
%&
' 		

	��
//

1)}(exp{ 10
01

Similarly, evaluating ê(pi1,u1)/ê(pi0,u1) gives a Paasche-Konüs index of:

(A-9)
4	5	4678�49	5		
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Hausman illustrates the calculation of the Hicksian and Marshallian surplus measures for a
change in the price of gasoline from 75 cents to $1.50 per gallon on the assumption that Y =
$720, 3 = -14.22, � = 0.082 and 0 = 4.95.  Since both the initial and final price exceed the price
of 34.8 cents at which gasoline becomes a luxury, the Divisia index for Hausman’s illustration
lies in between L and 2, with values of 2 = 1.0510, D = 1.0513 and L = 1.0516.  However a
price change from 20 cents to 50 cents implies a Divisia index of 1.02489, compared with a
value of  1.02490 for L and 2:  Solving EPI(0.2,0.5,ur ) = 1.02489 implies that ur  = -1560, while
u0 = -1346.9 for the 20 cent price and u1 = -1364.1 for the 50 cent price.

Derivation of Equation (14):  For PIGLOG demands, equation (12) has the form:

(A-10) w(p,Y)  =  (log Y)a(p) + b(p).

Muellbauer’s (1975) Theorem 5 states that in the PIGLOG case, the expenditure function is of
a form whose logarithm equals:

(A-11) log Y  =  u[log H(p)] +  log B(p).
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Consequently, wt·p
·

t = { ut [log H(p)] +  log B(p)}{ a(p)·p· t}  + b(p)·p· t.  The numerator of

equation (12) is then (wt  – w0t)·p· t = (ut  – u0)[log H(p)][a(p)·p· t].  Similarly, the denominator is

(w1t  – w0t)·p
·

t = (ut  – u0)[log H(p)][a(p)·p· t].  Canceling like terms gives equation (13).

Figure 1: Paths Yielding Paasche-Konus and Laspeyres-Konus Indexes
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F i g u r e  2 :  O r d i n a r y  a n d  C o m p e n s a t e d  I n t e g r a n d s  f o r  F i r s t  E x a m p l e
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